首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chloroplast genomes of two photosynthetic euglenoids, Colacium vesiculosum Ehrenberg (128,889 bp), and Strombomonas acuminata (Schmarda) Deflandre (144,167 bp) have been sequenced. These chloroplast genomes in combination with those of Euglena gracilis, Eutreptia viridis, and Eutreptiella gymnastica provide a snapshot of euglenoid chloroplast evolution allowing comparisons of gene content, arrangement, and expansion. The gene content of the five chloroplast genomes is very similar varying only in the presence or absence of, rrn5, roaA, psaI, psaM, rpoA, and two tRNAs. Large gene rearrangements have occurred within the C. vesiculosum and S. acuminata chloroplast genomes. Most of these rearrangements represent repositioning of entire operons rather than single genes. When compared with previously sequenced genomes, C. vesiculosum and S. acuminata chloroplast genomes more closely resemble the E. gracilis chloroplast genome in size of the genome, number of introns, and gene order than they do those of the Eutreptiales. Overall, the chloroplast genomes of these five species show an evolutionary trend toward increased intron number, a decrease in gene density, and substantial rearrangement of gene clusters.  相似文献   

2.
A local strain of the pennate diatom Pinnularia cf. “nobilis” was investigated using cytochemistry and fluorescence and EM techniques. The regular perforation of the chloroplasts of P. “nobilis” and the lack of a typical diatom pyrenoid were confirmed at the ultrastructural level. Cavities and channels in the complex secondary plastid were found to harbor symbiotic bacteria, and their DNA elicited DAPI fluorescence. Wheat germ agglutinin, labeling bacteria walls, elicited a similar fluorescence pattern. Previous speculation that the apochlorotic DNA‐positive dots in the plastids of several Pinnularia species are “scattered ct‐nucleoids” is thus refuted. Bacteria were rod shaped and gram negative. They resided in the lumen of the endoplasmic reticulum (ER) during host interphase confined to the specialized ER compartment housing the secondary plastid, that is, to the space between the third and the fourth membrane profile, encircling the chloroplast. TEM images of chemically and cryofixed cells revealed that cavities resulted from the interaction of bacteria with the plastid according to the following sequence, alignment, attachment, deformation, and disintegration. This occurred without visible injury to the primary chloroplast envelope or the relict cell membrane of the reduced ancestral red alga that surrounds the chloroplast. The patterned arrangement of bacteria suggests recognition sites on the vestigial cell membrane, thought to interact with surface groups on the bacteria. The intimate association between bacteria and secondary plastid inside the common specialized ER cisterna suggests they form a functional unit. Comparison of thylakoid profiles, disrupted by bacteria in Pinnularia, with those disrupted by the pyrenoid in other pennate diatoms (e.g. Trachyneis) revealed a significant ultrastructural resemblance. No aposymbiotic Pinnularia cells were found at the sampling site.  相似文献   

3.
M. -B. Schröder 《Protoplasma》1985,124(1-2):123-129
Summary This paper describes the development of pollen grains ofGasteria verrucosa from the late microspore to the mature two-cellular pollen grain. Ultrastructural changes and the distribution of plastids as a result of the first pollen mitosis have been investigated using light and electron microscopy. The microspores as well as the generative and the vegetative cell contain mitochondria and other cytoplasmic organelles during all of the observed developmental stages. In contrast, the generative cell and the vegetative cell show a different plastid content. Plastids are randomly distributed within the microspores before pollen mitosis. During the prophase of the first pollen mitosis the plastids become clustered at the proximal pole of the microspore. The dividing nucleus of the microspore is located at the distal pole of the microspore. Therefore, the plastids are not equally distributed into both the generative and the vegetative cell. The possible reasons for the polarization of plastids within the microspore are briefly discussed. The lack of plastids in the generative cell causes a maternal inheritance of plastids inGasteria verrucosa.  相似文献   

4.
The plastid genome of angiosperms represents an attractive target for genetic manipulations. However plastid transformation of higher plants, especially of agriculturally valuable crops is an extremely difficult problem. Transformation protocols developed for tobacco 15 years ago failed to produce similar results with more than a handful of other species so far. We have analyzed plastid transformability of remote cytoplasmic hybrids (cybrids) that combine nuclei of tobacco, an easily transformable species, and plastids of some other, recalcitrant Solanaceae species. Here, we demonstrate that the plastids of five species of Solanaceae family, representing two subfamilies and three tribes, can be easily transformed if the plastids of these species are transferred into a cell of a transformable species (tobacco). The results can be considered to be an alternative approach to the development of plastid transformation technologies for recalcitrant species using a transformable intermediary (“clipboard”) host.  相似文献   

5.
Representatives of three genera of anthooerotes were examined: Phaeoceros, Notothylas, and Megaceros. Species of the first two genera were found to exemplify the typical anthocerote plastid condition. This condition is characterized by the presence in each cell of the gametophyte of only a single large chloroplast containing a “multiple” pyrenoid. The genus Megaceros, however, proved to be quite different. In two species of Megaceros the pyrenoid was observed to be composed of a highly subdivided thylakoid system of even greater complexity than the “multiple” pyrenoids of Phaeoceros. In another species only an indistinct “pyrenoid-like” area was noted while in a fourth species no evidence was found for any internal differentiation. Associated with these changes in plastid structure there are corresponding alterations in the number and the size of the chloroplasts. Together they indicate an evolutionary trend away from a primitive, algal-like condition to a more advanced land plant form.  相似文献   

6.
Biparental inheritance of plastids has been documented in numerous angiosperm species. The adaptive significance of the mode of plastid inheritance (unior biparental) is poorly understood. In plants exhibiting paternal inheritance of plastids, DNA-containing plastids in the microgametophyte may affect survival or growth of the gametophyte or the embryo. In this study the number of plastids containing DNA (nucleoids) in generative cells and generative cell and pollen volumes were evaluated in a range of genotypes of Medicago sativa (alfalfa). M. sativa exhibits biparental inheritance of plastids with strong paternal bias. The M. sativa genotypes used were crossed as male parents to a common genotype and the relationships between the gametophytic traits measured and male reproductive success were assessed. Generative cell plastid number and pollen grain size exhibited opposing associations with male fertility. Path analysis showed that generative cell plastid number was negatively associated with male fertility. This study provides evidence that there may be a competitive advantage at fertilization afforded sperm that have minimized their organelle content. The apparent lack of strong selection for reduced plastid number in generative cells of M. sativa may be a reflection of the diminished importance of reproductive success due to its perenniality or its long use in cultivation.  相似文献   

7.
Parasitism has evolved innumerable times among eukaryotes. Red algal parasites alone have independently evolved over 100 times. The accepted evolutionary paradigm proposes that red algal parasites arise by first infecting a close relative and over time diversifying and infecting more distantly related species. This provides a natural evolutionary gradient of relationships between hosts and parasites that share a photosynthetic common ancestor. Upon infection, the parasite deposits its organelles into the host cell and takes over, spreading through cell‐cell connections. Microscopy and molecular studies have demonstrated that the parasites do not maintain their own plastid, but rather abscond with a dedifferentiated host plastid as they pack up spores for dispersal. We sequenced a ~90 kb plastid genome from the parasite Choreocolax polysiphoniae, which has lost genes for light harvesting and photosynthesis. Furthermore, the presence of a native C. polysiphoniae plastid indicates that not all red algal parasites follow the same evolutionary pathway to parasitism. Along with the 167 kb plastid genome of its host, Vertebrata lanosa, these plastids are the first to be sequenced from the Ceramiales.  相似文献   

8.
Ultrastructural investigations on many isolates ofTetraselmis have revealed that the species have characteristic fine structural features of the pyrenoid and it was proposed (Horiet al., 1982) that the genus be subdivided into four subgenera. In the present study of this series, species of the subgenusPrasinocladia, includingTetraselmis marina, T. verrucosa andT. verrucosa f.rubens, are described in detail.  相似文献   

9.
Cryptophyte vestiges showing selective digestion of nuclei were found in the gonyaulacalean dinoflagellates Amylax buxus (Balech) Dodge and Amylax triacantha (Jörgensen) Sournia. They emitted bright yellow‐orange fluorescence (590‐nm emission) under epifluorescent microscopy and possessed U‐shaped plastids, suggesting the vestiges were active in photosynthesis. Under transmission electron microscopy, the plastid was characterized by a loose arrangement of two to three thylakoid stacks and included a stalked pyrenoid, as in the cryptophyte genus Teleaulax. Indeed, molecular data based on the plastid small‐subunit rRNA gene demonstrated that the vestiges in Amylax originated from Teleaulax amphioxeia. The stolen plastid (kleptoplastids) in Dinophysis is also derived from this cryptophyte species. However, in sharp contrast to Dinophysis, the plastid of the vestige in Amylax was surrounded by a double layer of plastid endoplasmic reticulum, and within the periplastidal area, a nucleomorph was retained. The vestiges also possessed mitochondria with characteristic plate‐like cristae, but lost the cell‐surface structure. The phagocytotic membrane of the dinoflagellates seemed to surround the cryptophytes right after the incorporation, but the membrane itself would probably be digested eventually. Remarkably, only one cryptophyte cell among 14 vestiges in a cell of A. buxus had a nucleus. This is the first recording of possible kleptoplastidy in gonyaulacalean dinoflagellates, and documents the strategy of a dinoflagellate involving the selective elimination of the cryptophyte nucleus.  相似文献   

10.
Red-fluorescent, non-phycobilin-containing plastids were found in the heterotrophic dinoflagellate, Dinophysis mitra. Transmission electron microscopy showed that they contained a three-layer thylakoid, the absence of girdle lamella, and an embedded pyrenoid with thylakoid intrusions. These characteristics all coincide with haptophyte plastids. Phylogenetic analysis of the plastid small-subunit ribosomal DNA (SSU rDNA) revealed that the Dinophysis mitra sequences are distantly related to those of phycobilin-containing Dinophysis species and are positioned within a lineage of haptophytes belonging to Prymnesiophyceae. Because the plastid SSU rDNA sequences of Dinophysis mitra showed significant heterogeneity, despite being derived from a single species, it is highly likely that they were not established as plastids through an evolutionary process but are "kleptoplastids" (temporally stolen plastids) from multiple sources of haptophytes in the environment. We deduced that Dinophysis mitra takes up haptophytes myzocytotically and selectively retains the plastid with surrounding plastidal membranes, whereas other haptophyte cell components are degraded. This represents another type of kleptoplastidy in the Dinophysis species, which mostly harbor cryptophyte plastids, and is the first evidence of kleptoplastidy originating from haptophytes.  相似文献   

11.
The fine structure of released, attached, and germinating carpospores of Porphyra variegata (Kjellm.) Hus is described. Adhesive vesicles, formed during sporogenesis and discharged upon settling of the spore, produced a layer of adhesive mucilage around the spore and filled a deep imagination on the spore's ventral side. The mucilage layer was punctured by the emergence of a germ tube. Both spore and germ tube were lined by newly deposited cell wall. Germination was accompanied by vacuolation and starch mobilization. The morphological development of the sporeling was not noticeably influenced by the great variability of the timing, location, and orientation of septum formation. The attached carpospore possessed a plastid like that of gametophyte cells: stellate with one large central pyrenoid and no peripheral encircling thylakoids. Cells of mature vegetative cells of the conchocelis had plastids that were elongate and parietal and had multiple pyrenoids and encircling thylakoids. Most stages in the transition between the two forms of plastids occurred during carpospore germination.  相似文献   

12.
Taxonomy of the little‐studied brown algal species Punctaria mageshimensis (Ectocarpales s.l.) was reexamined by molecular phylogeny and morphology. In the genetic analyses of newly collected specimens using plastid rbcL and psaA gene sequences, the specimens morphologically referable to P. mageshimensis were phylogenetically distant from Ectocarpales s.l. and were included in the clade of Spatoglossum (Dictyotales). Morphological reexamination of the type specimen and newly collected specimens confirmed its systematic position in Dictyotales: Branched thallus; cushion‐shaped rhizoidal holdfast occasionally forming secondary holdfast at the bottom of the thallus; many discoidal plastids without pyrenoid per cell; tetrasporangium‐like reproductive structures with dark, homogeneous cell content; occurrence of hair tufts. Genetically P. mageshimensis was most related to a reported sequence of Spatoglossum asperum, but P. mageshimensis was considerably different from S. asperum as well as other known Spatoglossum species in the deep habitat and in having scarcely‐branched lanceolate and considerably thickened thallus. In conclusion, we propose the transfer of P. mageshimensis to Spatoglossum as S. mageshimense comb. nov.  相似文献   

13.
The brown algal family Ishigeaceae currently includes a single genus, Ishige Yendo, with two species. The relationship of the family to other brown algal lineages is less studied in terms of their plastid ultrastructure and molecular phylogeny. We determined the sequences of rbcL from four samples of the two Ishige species and nine putative relatives and the psaA and psbA sequences from 37 representatives of the brown algae. Analyses of individual and combined data sets resulted in similar trees; however, the concatenated data gave greater resolution and clade support than each individual gene. In all the phylogenies, the Phaeophyceae was well resolved, the Ectocarpales being placed in a terminal position and the Ishigeaceae ending up in a basal position. From our ultrastructural study, we concluded that the pyrenoid is absent in the Ishigeaceae, despite the presence of a rudimentary pyrenoid in I. okamurae. These results suggest that the Ishigeaceae is an early diverging brown lineage. Our molecular and morphological data, therefore, lead us to exclude the Ishigeaceae from the Ectocarpales s.l., which have an elaborate pyrenoid, and to propose its own order Ishigeales ord. nov. The Ishigeales is distinguished by oligostichous structure of thalli, phaeophycean hairs formed within cryptostomata, unilocular sporangia transformed from terminal cortical cells, and plurilocular sporangia lacking sterile terminal cells. This study is the first to document the utility of the psaA and psbA sequences for brown algae and also the first report on the multigene phylogeny of the Phaeophyceae based on three protein‐coding plastid genes.  相似文献   

14.
We describe the 159,4443-bp sequence of the plastid chromosome of Oenothera elata (evening primrose). The Oe. elata plastid chromosome represents type I of the five genetically distinguishable basic plastomes found in the subsection Euoenothera. The genus Oenothera provides an ideal system in which to address fundamental questions regarding the functional integration of the compartmentalised genetic system characteristic of the eukaryotic cell. Its highly developed taxonomy and genetics, together with a favourable combination of features in its genetic structure (interspecific fertility, stable heterozygous progeny, biparental transmission of organelles, and the phenomenon of complex heterozygosity), allow facile exchanges of nuclei, plastids and mitochondria, as well as individual chromosome pairs, between species. The resulting hybrids or cybrids are usually viable and fertile, but can display various forms of developmental disturbance. Received: 9 January 2000 / Accepted: 29 January 2000  相似文献   

15.
ULTRASTRUCTURE OF PLASTID INHERITANCE: GREEN ALGAE TO ANGIOSPERMS   总被引:2,自引:0,他引:2  
1. Plastid inheritance in most green algae and land plants is uniparental. In oogamous species, plastids are usually derived from the maternal parent; even when inheritance is biparental, maternal plastids usually predominate. Only a few species of conifer are known to have essentially paternal plastid inheritance. In spite of the overall strong maternal bias, there exists a spectrum of species in which plastid inheritance ranges from purely maternal to predominantly paternal. 2. Factors that influence the pattern of plastid inheritance operate both before (often long before) and after fertilization. For example, several different mechanisms for exclusion of plastids from particular cells, none of which is completely effective on its own, may operate sequentially during both gametogenesis and embryo-genesis. There appears to exist a general trend such that the more highly evolved the organism, the more numerous the mechanisms employed and the earlier they first come into operation. The pattern of plastid inheritance shown by a species represents the efficiency or lack of efficiency of these combined mechanisms. 3. In the newly-formed zygote of many unicellular algae, the plastids from both gametes are present and there is direct competition between them. Often the plastid from one mating type (usually the ‘invading’ male gamete, where this can be identified) quickly degenerates. Species such as Chlamydomonas are unusual in that the plastids from the two gametes fuse. In spite of this, inheritance of plastid DNA is normally uniparental. How this is accomplished remains unclear. In oogamous algae, the paternal plastids which enter the egg cell are frequently fewer in number and smaller in size than those contributed by the female gamete. The reduced contribution of paternal plastids can result from asymmetrical cell division or from differential timing of cell and plastid division during spermatogenesis. 4. In species ranging from unicellular algae to angiosperms, plastids may be partially or completely debarred from particular cells at critical stages during the reproductive cycle. An important factor in this form of plastid elimination is their postioning with respect to the nucleus prior to a cell division. When plastids closely encircle the nucleus, they are usually incorporated equally into the two daughter cells; when the plastids are concentrated at some distance from the nucleus, they are frequently excluded from one daughter cell. 5. Elimination of plastids from a gamete prior to plasmogamy prevents direct competition between the two types of plastid in the zygote or embryo. Perhaps the most effective method of excluding paternal plastids from the egg cell has been achieved by some lower land plants; the plastids migrate to the posterior part of the spermatozoid, and are discarded from there in a discrete vesicle before the egg is reached. 6. Plastid inheritance in conifers appears to be unique. In those species in which the derivation of plastids in the pro-embryo can be determined, it has been found that they come only from the male gamete. Maternal plastids are positively excluded from the pro-embryo and later degenerate. 7. In most angiosperm species plastid inheritance is maternal; in only a few species is it regularly biparental. The first step towards exclusion of paternal plastids often takes place in the uninucleate pollen grain where the plastids may be concentrated at the pole of the cell farthest from the site of the future generative cell. Any plastids that succeed in entering the generative cell may degenerate before the gametes are released from the pollen tube. Even if paternal plastids reach the egg, they are at a disadvantage because they are (a) entering an environment that is essentially alien, and (b) normally present in much smaller numbers than maternal plastids. Later, when the zygote divides, the few paternal plastids may fail to become incorporated in the small terminal cell which gives rise to the embryo proper. 8. There appears to be no consistent evolutionary progression in the use of more efficient mechanisms to influence plastid inheritance; most of the mechanisms associated with exclusion of paternal plastids in angiosperms, for example, can also be found in one or other species of green alga. The primary factors that influence plastid inheritance appear to be (I) direct competition in the zygote between plastids of the two parental types – the principal mechanism operating in isogamous algae, but also operating in some angiosperms; and (2) the divergent evolution of the two types of gamete - on the one hand a small male gamete with a minimum of cytoplasm which is capable of moving (spermatozoid) or being moved (pollen) efficiently, and, on the other hand, a large egg cell with numerous organelles, which is well able to act as ‘host’ for the future zygote. Many of the additional mechanisms that influence the pattern of plastid inheritance seem to be the more or less ‘accidental’ result of other evolutionary events.  相似文献   

16.
应用电镜和DNA的DAPI荧光检测技术研究了菜豆(Phaseolus vulgaris L.)小孢子/花粉发育中质体和线粒体及其DNA存在的状况。观察表明:在小孢子分裂时质体全部分配到营养细胞中,初形成的生殖细胞已不含质体。线粒体和质体的DNA在花粉发育中也先后降解,生殖细胞从刚形成时发育至成熟花粉时期这两种细胞器DNA均不存在。研究结果为菜豆质体母系遗传提供了确切的细胞学证据。遗传分析的研究曾确定菜豆质体为双亲遗传,对与本研究结论不同的原因进行了讨论。  相似文献   

17.
Transmission of plastids in Liriodendron and Magnolia was studied by examining inheritance of plastid DNA markers in interspecific crosses. In congeneric hybrids of Liriodendron and Magnolia, 2.9% and 11.1% of progeny, respectively, exhibited uniparental paternal transmission of plastids. This departure from strict uniparental maternal transmission of plastids indicates that mechanisms for the elimination of paternal plastids are not 100% efficient and that any proposed model for plastid transmission must account for a continuum of variation. Our results, and other results reviewed here, show a discrepancy with data obtained by cytological observations and point to the need of confirming the mode of plastid inheritance by genetic analysis. In addition, if paternal plastids are occasionally inherited, intensive sampling of plastid DNA in a putative hybrid population could identify both parents of hybrids and thereby aid in the phylogenetic reconstruction of hybrid zones.  相似文献   

18.
The structure of the pyrenoid supports the separation of Chlorella species into two groups based on cell wall chemistry and suggests evolutionary relationships. Chlorella species with a glucan-type wall exhibit quite diverse pyrenoid structures, which may indicate that these species are not closely related. Those species with glucosamine cell walls (C. kessleri, C. sorokiniana, C. vulgaris) are virtually identical in pyrenoid morphology, indicating a closer evolutionary relationship. In the species with glucosamine walls, the thylakoid that penetrates into the pyrenoid matrix, is unijormly double-layered. Pyrenoids in the species with glucan walls show various features: 1) a pyrenoid matrix only, 2) a pyrenoid traversed by a few discs of double thylakoids with many adhering pyrenoglobuli, 3) a pyrenoid penetrated with tubelike structures or 4) a pyrenoid penetrated with many single undulating thylakoids. The pyrenoid structure of the symbiotic Chlorella in Paramecium bursaria resembles those of free-living Chlorella with glucosamine walls.  相似文献   

19.
A Bayesian analysis, utilizing a combined data set developed from the small subunit (SSU) and large subunit (LSU) rDNA gene sequences, was used to resolve relationships and clarify generic boundaries among 84 strains of plastid‐containing euglenophytes representing 11 genera. The analysis produced a tree with three major clades: a Phacus and Lepocinlis clade, a Discoplastis clade, and a Euglena, Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena clade. The majority of the species in the genus Euglena formed a well‐supported clade, but two species formed a separate clade near the base of the tree. A new genus, Discoplastis, was erected to accommodate these taxa, thus making the genus Euglena monophyletic. The analysis also supported the monophyly of Colacium, Trachelomonas, Strombomonas, Monomorphina, and Cryptoglena, which formed two subclades sister to the Euglena clade. Colacium, Trachelomonas, and Strombomonas, all of which produce copious amounts of mucilage to form loricas or mucilaginous stalks, formed a well‐supported lineage. Our analysis supported retaining Strombomonas and Trachelomonas as separate genera. Monomorphina and Cryptoglena formed two well‐supported clades that were sister to the Colacium, Trachelomonas, and Strombomonas clade. Phacus and Lepocinclis, both of which have numerous small discoid chloroplasts without pyrenoids and lack peristaltic euglenoid movement (metaboly), formed a well‐supported monophyletic lineage that was sister to the larger Euglena through Cryptoglena containing clade. This study demonstrated that increased taxon sampling, multiple genes, and combined data sets provided increased support for internal nodes on the euglenoid phylogenetic tree and resolved relationships among the major genera in the photosynthetic euglenoid lineage.  相似文献   

20.
Relative changes in plastid DNA content in each stage of plastid division were investigated in order to better understand the division cycle of plastids in spore mother cells in the horwortAnthoceros punctatus. Samples of cells stained with DAPI were observed with epifluorescence microscopy and CHIAS. In spore mother cells of this species, plastids duplicated their own DNA prior to the plastidkinesis of the first plastid division, but did not replicate plastid DNA prior to the plastidkinesis of the second plastid division. Therefore, the DNA content of those plastids in which division had been completed was reduced to half its initial value. This indicates that the DNA replication pattern of plastids in spore mother cells corresponds to that of cell nuclei during premeiosis and meiosis inA. punctatus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号