首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The aim of this meta-analysis was to compare feed intake, milk production, milk composition and organic matter (OM) digestibility in dairy cows fed different grass and legume species. Data from the literature was collected and different data sets were made to compare families (grasses v. legumes, Data set 1), different legume species and grass family (Data set 2), and different grass and legume species (Data set 3+4). The first three data sets included diets where single species or family were fed as the sole forage, whereas the approach in the last data set differed by taking the proportion of single species in the forage part into account allowing diets consisting of both grasses and legumes to be included. The grass species included were perennial ryegrass, annual ryegrass, orchardgrass, timothy, meadow fescue, tall fescue and festulolium, and the legume species included were white clover, red clover, lucerne and birdsfoot trefoil. Overall, dry matter intake (DMI) and milk production were 1.3 and 1.6 kg/day higher, respectively, whereas milk protein and milk fat concentration were 0.5 and 1.4 g/kg lower, respectively, for legume-based diets compared with grass-based diets. When comparing individual legume species with grasses, only red clover resulted in a lower milk protein concentration than grasses. Cows fed white clover and birdsfoot trefoil yielded more milk than cows fed red clover and lucerne, probably caused by a higher OM digestibility of white clover and activity of condensed tannins in birdsfoot trefoil. None of the included grass species differed in DMI, milk production, milk composition or OM digestibility, indicating that different grass species have the same value for milk production, if OM digestibility is comparable. However, the comparison of different grass species relied on few observations, indicating that knowledge regarding feed intake and milk production potential of different grass species is scarce in the literature. In conclusion, different species within family similar in OM digestibility resulted in comparable DMI and milk production, but legumes increased both DMI and milk yield compared with grasses.  相似文献   

2.
Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red clover (Trifolium pratense L.) and lucerne (Medicago sativa L.) were leaf-labelled with 15N enriched urea during one growing season. N transfer to grasses (Lolium perenne L. and xfestulolium), white clover, red clover, lucerne, birdsfoot trefoil (Lotus corniculatus L.), chicory (Cichorium intybus L.), plantain (Plantago lanceolata L.), salad burnet (Sanguisorba minor L.) and caraway (Carum carvi L.) was assessed. Neighbouring plants contained greater amounts of N derived from white clover (4.8?g?m-2) compared with red clover (2.2?g?m-2) and lucerne (1.1?g?m-2). Grasses having fibrous roots received greater amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40?kg?N ha-1 to neighbouring plants. Below-ground N transfer from legumes to neighbouring plants differed among nitrogen donors and nitrogen receivers and may depend on root characteristics and regrowth strategies of plant species in the multi-species grassland.  相似文献   

3.
Transfer of N from legumes to associated non-legumes has been demonstrated under a wide range of conditions. Because legumes are able to derive their N requirements from N2 fixation, legumes can serve, through the transfer of N, as a source of N for accompanying non-legumes. Studies, therefore, are often limited to the transfer of N from the legume to the non-legume. However, legumes preferentially rely on available soil N as their source of N. To determine whether N can be transferred from a non-legume to a legume, two greenhouse experiments were conducted. In the short-term N-transfer experiment, a portion of the foliage of meadow bromegrass (Bromus riparius Rhem.) or alfalfa (Medicago sativa L.) was immersed in a highly labelled 15N-solution and following a 64 h incubation, the roots and leaves of the associated alfalfa and bromegrass were analyzed for 15N. In the long-term N transfer experiment, alfalfa and bromegrass were grown in an 15N-labelled nutrient solution and transplanted in pots with unlabelled bromegrass and alfalfa plants. Plants were harvested at 50 and 79 d after transplanting and analyzed for 15N content. Whether alfalfa or bromegrass were the donor plants in the short-term experiment, roots and leaves of all neighbouring alfalfa and bromegrass plants were enriched with 15N. Similarly, when alfalfa or bromegrass was labelled in the long-term experiment, the roots and shoots of neighbouring alfalfa and bromegrass plants became enriched with 15N. These two studies conclusively show that within a short period of time, N is transferred from both the N2-fixing legume to the associated non-legume and also from the non-legume to the N2-fixing legume. The occurrence of a bi-directional N transfer between N2-fixing and non-N2-fixing plants should be taken into consideration when the intensity of N cycling and the directional flow of N in pastures and natural ecosystems are investigated.  相似文献   

4.
Mallarino  A. P.  Wedin  W. F. 《Plant and Soil》1990,124(1):137-140
Losses of soil N through leaching and N2 fixation by legumes often are related to soil nitrate concentration. The seasonal distribution of soil ammonium and nitrate concentrations under ungrazed legume-grass and grass swards were evaluated on two experiments that were established in 1983 (Exp. 1) and in 1984 (Exp. 2). Treatments were white clover (Trifolium repens L.) (WC), red clover (Trifolium pratense L.) (RC), and birdsfoot trefoil (Lotus corniculatus L.) (BT), each grown with tall fescue (Festuca arundicacea Schreb.) (TF) at two legume proportions, and a pure stand of TF. The concentrations of both forms of N were measured in the top 20-cm layer during 2 years in Exp. 1 and for 1 year in Exp. 2. The concentrations of nitrate and ammonium were least in winter and spring, and greatest in summer. The concentration of nitrate for the mixtures decreased in the order WC-TF, RC-TF, and BT-TF in both summers of Exp. 1 but there were no mixture differences in Exp. 2. The concentration of soil ammonium was not affected by the treatments applied. We conclude that the concentration of soil nitrate usually was small for these swards but became greater and often dependent on species and legume proportion during summer. The concentration of soil ammonium also was greater in summer but was not affected by species or legume proportion. Journal of Paper no. J.-13359 of the Iowa Agric. and Home Econ. Exp Stn., Ames. Project 2281. Supported in part by the Facultad de Agronomía, Montevideo, Uruguay. Journal of Paper no. J.-13359 of the Iowa Agric. and Home Econ. Exp Stn., Ames. Project 2281. Supported in part by the Facultad de Agronomía, Montevideo, Uruguay.  相似文献   

5.
Providing forage to feed-restricted pregnant sows may improve their welfare by reducing their high feeding motivation. The aim of this study was to determine sows’ preferences for four forage mixtures cultivated in Canada. Forage mixtures were compared when offered either fresh or dry. The four forage mixtures were composed of different proportions and species of legumes (alfalfa (Alf) or red clover (Clo)) and grasses (tall fescue (F) and/or timothy (T)): (1) Alf-F, (2) Alf-F-T, (3) Clo-T and (4) Clo-F-T. Voluntary intake was measured, and preference tests were carried out for two experiments: one in spring for fresh forages ( n = 8) and the other in autumn for hays ( n = 8) with different sows housed in individual pens and fed a concentrated diet meeting their nutritional requirements for maintenance and foetal growth. Voluntary intake was measured by offering each forage mixture separately (one forage mixture/day) during 90 min according to a 4 × 4 Latin square design replicated four times. During preference tests, all six combinations of two forage mixtures were offered once (one combination/day) for 45 min to each sow. Individual forage intake was measured, and feeding behaviour was observed. Forages were analysed for botanical and chemical composition. Difference in voluntary intake among the four forage mixtures was determined using a variance analysis followed by Tukey tests for post hoc comparisons. In preference tests, differences between the two forage mixtures offered were determined using a paired Student’s t test, and the most ingested forage mixture was considered the preferred one. Results from both experiments revealed clear preferences for some forage mixtures when offered either fresh or dry. Forage mixtures with a greater proportion of legumes (AlfT and CloT) were preferred over forage mixtures with a higher proportion of grasses (AlfFT and CloFT). The AlfFT and CloFT forage mixtures contained at least 30% of fescue; therefore, the greater preference for the AlfT and CloT forage mixtures could also be due to the absence of fescue. Sows preferred forages with low DM and NDF concentrations and high CP and non-structural carbohydrates concentrations. Based on results from previous studies, the preferences seen in the present study are most likely due to the greater proportion of legumes, although an effect of tall fescue in preference cannot be excluded. Therefore, offering forages with a high proportion of legumes would be a good strategy to maximise both fresh and dry forage intake in pregnant sows.  相似文献   

6.
Anaerobic conditions developing under ice cover affect winter survival and spring regrowth of economically important perennial crops. Our objective was to assess interspecific differences in the resistance to anaerobic conditions at low temperature, and to relate those differences to plant metabolism. Four perennial forage species, alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.), timothy (Phleum pratense L.) and orchardgrass (Dactylis glomerata L.), were subjected to a progressively developing anoxic stress by enclosing potted plants in gas‐tight bags in late autumn and exposing them to simulated winter conditions in an unheated greenhouse. Near‐anaerobic conditions were reached after 60 d of enclosure for orchardgrass, alfalfa and red clover, and after 80 d for timothy. The sensitivity of the species to anaerobic conditions, based on plant regrowth, was: red clover and orchardgrass > alfalfa > timothy. The concentration of ethanol increased in response to oxygen deprivation, and reached the highest value in the sensitive red clover, whereas its concentration was the lowest in timothy. The expression of the alcohol dehydrogenase (ADH) gene was markedly lower in timothy than in the other three species for which the expression was equivalent. We conclude that the greater resistance of timothy to anaerobic conditions at low temperature is associated with a slower glycolytic metabolism.  相似文献   

7.
Fixation and transfer of nitrogen (N) from alfalfa (Medicago sativa L.) to different grass species including timothy (Phleum pratense L.) and bromegrass (Bromus inermis Leyss) were studied under field conditions, using the15N dilution technique.The percentage of alfalfa N derived from fixation (%NF) increased throughout the growing seasons and ranged from 62 to 83%. Nitrogen transfer (NT) from alfalfa to associated grasses was evident and contributed 26,46 and 38% of the total annual N yield of associated grasses or represented absolute amounts of 5, 20 and 19 kg N ha–1 during the first, second and third year, respectively. The gradual and consistent percentage of NT that occurred before first harvest indicated that this transfer is a result of a direct excretion of N compounds from alfalfa root systems. Decomposition of root and nodule debris seems to contribute to the NT from alfalfa to associated grasses in the later cuts. All grass species benefitted similarly from alfalfa, although earlier maturing species with greater competitive ability were slightly more responsive.Contribution No. 1159 from the Plant Research Centre  相似文献   

8.

Background and aims

The selection of legume species and species mixtures influences agroecosystem nitrogen (N) and carbon cycling. We utilized a fertility gradient to investigate the effects of plant species interactions on biological N fixation of an annual and perennial legume in response to shifting soil resource availability.

Methods

Legume N fixation of annual field pea (Pisum sativum) and perennial red clover (Trifolium pratense) grown in monoculture and mixtures with oats (Avena sativa) or orchardgrass (Dactylis glomerata) was estimated using the 15N natural abundance method across 15 farm fields and we measured six soil N pools ranging from labile to more recalcitrant.

Results

Evidence of complementary and facilitative species interactions was stronger for the perennial red clover-orchardgrass mixture than for the annual field pea-oat mixture (N Land Equivalency Ratios were 1.6 and 1.2, respectively). We estimated that the transfer of fixed N from red clover to orchardgrass increased aboveground N fixation estimates by 15% from 33 to 38?kg?N ha?1. Despite a more than 2-fold range in soil organic matter levels and more than 3-fold range in labile soil N pools across field sites, the N fertility gradient was not a strong predictor of N fixation. While grass N assimilation was positively correlated with soil N pools, we found only weak, inverse correlations between legume N fixation and soil N availability. In grass-legume mixtures, soil N availability indirectly influenced N fixation through plant competition.

Conclusions

These results suggest that increasing diversity of cropping systems, particularly through the incorporation of perennial mixtures into rotations, could improve overall agroecosystem N cycling efficiency.  相似文献   

9.
Grasses grown in mixture with nodulated legumes often are N-limited, but N fertilization may result in reductions of N2 fixation and legume stands. We studied N-fertilizer effects on N2 fixation for three binary legume-grass mixtures in Uruguay. Replicated swards of white clover (Trifolium repens L.) (WC), red clover (Trifolium pratense L.) (RC), or birdsfoot trefoil (Lotus corniculatus L.) (BT), each in combination with tall fescue (Festuca arundinacea Schreb) (TF) at two legume proportions were sown in 1983 (Exp. 1) and 1984 (Exp. 2). In the fall of 1984, N treatments at 100 kg ha−1 and controls were randomly assigned to subplots in Exp. 1 (established swards) and in Exp. 2 (at seeding). The soil for both experiments was a fine, montmorillonitic, mesic, Typic Argiudolls. Herbage fixed-N was estimated by 15N isotope-dilution with pure stands of TF as reference. In both experiments, N fertilization reduced the proportion of legume N derived from air (% Ndfa) and increased herbage yield only during the first 18 to 20 weeks after application. Fertilizer-N reduced annual fixed-N yield from 178 to 148 kg ha−1 in Exp. 1 and from 65 to 29 kg ha−1 in Exp. 2 Fixed-N yield for BT was markedly reduced by N in both experiments (33 to 53%), whereas for the clovers reduction was lesser in Exp. 1 (9 to 13%) than in Exp. 2 (46 to 64%). Negative effects of N on % Ndfa were more evident for the high legume proportion. We conclude that fertilization with 100 kg N ha−1 reduced % Ndfa only for the immediate 18 to 20 weeks after application. Fertilizer-induced reduction of fixed-N yields lasted longer because of a more prolonged depression of legume proportion, especially for BT and for newly seeded swards. Journal Paper no. J.-13327 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, U.S.A. (Project 2281). Supported in part by the Facultad de Agronomía, Montevideo, Uruguay; and the International Atomic Energy Agency, Vienna, Austria (Project URU/5/012). Journal Paper no. J.-13327 of the Iowa Agric. and Home Econ. Exp. Stn., Ames, U.S.A. (Project 2281). Supported in part by the Facultad de Agronomía, Montevideo, Uruguay; and the International Atomic Energy Agency, Vienna, Austria (Project URU/5/012).  相似文献   

10.
The capacity of two grasses, tall fescue (Festuca arundinacea) and orchardgrass (Dactylis glomerata), to remove terbuthylazine (TBA) from polluted solutions has been assessed in hydroponic cultures. Different TBA concentrations (0.06, 0.31, 0.62, and 1.24 mg/L) were chosen to test the capacity of the two grasses to resist the chemical. Aerial biomass, effective concentrations (to cause reductions of 10, 50, and 90% of plant aerial biomass) and chlorophylls contents of orchardgrass were found to be more affected. Tall fescue was found to be more capable of removing the TBA from the growth media. Furthermore, enzymes involved both in the herbicide detoxification and in the response to herbicide-induced oxidative stress were investigated. Glutathione S-transferase (GST, EC. 2.5.1.18) and ascorbate peroxidase (APX, EC. 1.11.1.11) of tall fescue were found to be unaffected by the chemical. GST and APX levels of orchardgrass were decreased by the treatment. These negative modulations exerted by the TBA on the enzyme of orchardgrass explained its lower capacity to cope with the negative effects of the TBA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号