首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
云南野生稻籽粒淀粉合成关键酶活性测定   总被引:4,自引:0,他引:4  
为研究云南3种野生稻直链淀粉合成机制并利用其直链淀粉含量较低的优良品质,以云南3种野生稻和4种当地栽培稻为材料,研究野生稻灌浆期籽粒4种淀粉合成关键酶(包括ADPG焦磷酸化酶、可溶性淀粉合成、颗粒凝结型淀粉合成酶、淀粉分支酶)活性变化。结果表明,野生稻中4种淀粉合成酶的变化趋势与栽培稻相似,但活性有较大差别。颗粒凝结型淀粉合成酶的活性与直链淀粉含量呈正相关,说明在野生稻中同样是由颗粒凝结型淀粉合成酶控制直链淀粉的合成。同时发现在同一灌浆期,同种材料中可溶性淀粉合成酶和淀粉分支酶的活性变化呈相反趋势,推测这两种酶之间可能在淀粉合成过程中存在某种反馈调节机制。  相似文献   

2.
3.
In rice (Oryza sativa L.), later flowering inferior spikelets (IS), which are located on proximal secondary branches, fill slowly and produce smaller and lighter grains than earlier flowering superior spikelets (SS). Many genes have been reported to be involved in poor grain filling of IS, however the underlying molecular mechanisms remain unclear. The present study determined that GF14f, a member of the 14‐3‐3 protein family, showed temporal and spatial differences in expression patterns between SS and IS. Using GF14f–RNAi plants, we observed that a reduction in GF14f expression in the endosperm resulted in a significant increase in both grain length and weight, which in turn improved grain yield. Furthermore, pull‐down assays indicated that GF14f interacts with enzymes that are involved in sucrose breakdown, starch synthesis, tricarboxylic acid (TCA) cycle and glycolysis. At the same time, an increase in the activity of sucrose synthase (SuSase), adenosine diphosphate‐glucose pyrophosphorylase (AGPase), and starch synthase (StSase) was observed in the GF14f–RNAi grains. Comprehensive analysis of the proteome and metabolite profiling revealed that the abundance of proteins related to the TCA cycle, and glycolysis increased in the GF14f–RNAi grains together with several carbohydrate intermediates. These results suggested that GF14f negatively affected grain development and filling, and the observed higher abundance of the GF14f protein in IS compared with SS may be responsible for poor IS grain filling. The study provides insights into the molecular mechanisms underlying poor grain filling of IS and suggests that GF14f could serve as a potential tool for improving rice grain filling.  相似文献   

4.
Weight of individual grains is a major yield component in wheat. The non-uniform distribution of single grain weight on a wheat spike is assumed to be closely associated with starch synthesis in grains. The present study was undertaken to determine if the enzymes involved in starch synthesis cause the differences in single grain weight between superior and inferior grains on a wheat spike. Using two high-yield winter wheat (Triticum aestivum L.) varieties differing in grain weight and three nitrogen rates for one variety, the contents of amylose and amylopectin, and activities of enzymes involved in starch synthesis in both superior and inferior grains were investigated during the entire period of grain filling. Superior grains showed generally higher starch accumulation rates and activities of enzymes including SS (sucrose synthase), UDPGPPase (UDP-glucose pyrophosphorylase), ADPGPPase (ADP-glucose pyrophosphorylase), SSS (soluble starch synthase) and GBSS (starch granule bound starch synthase) and subsequently produced much higher single grain weight than inferior grains. Nitrogen increased enzyme activities and starch accumulation rates, and thus improved individual grain weight, especially for inferior grains. The SS, ADPGPPase and SSS were significantly correlated to amylopectin accumulation, while SS, ADPGPPase, SSS and GBSS were significantly correlated to amylose accumulation. This infers that SS, ADPGPPase and starch synthase play key roles in regulating starch accumulation and grain weight in superior and inferior grains on a wheat spike.  相似文献   

5.
Improving grain filling in the presernt farming systems is crucial where grain filling is a concern due to the extreme use of chemical fertilizers (CF). A field experiment was conducted at the experimental station of Guangxi University, China in 2019 to test the hypothesis that cattle manure (CM) and poultry manure (PM) combined with CF could improve rice grain filling rate, yield, biochemical and qualitative attributes. A total of six treatments, i.e., no fertilizer (T1), 100% CF (T2), 60% CM + 40% CF (T3), 30% CM + 70% CF (T4), 60% PM + 40% CF (T5), and 30% PM + 70% CF (T6) were used in this study. Results showed that the combined treatment T6increased starch metabolizing enzymes activity (SMEs), such as ADP-glucose phosphorylase (ADGPase) by 8 and 12%, soluble starch synthase (SSS) by 7 and 10%, granule bound starch synthesis (GBSS) by 7 and 9%, and starch branching enzyme (SBE) by 14 and 21% in the early and late seasons, respectively, compared with T2. Similarly, higher rice grain yield, grain filling rate, starch, and amylose content were also recorded in combined treatments. In terms of seasons, higher activity of SMEs , grain starch, and amylose content was noted in the late-season compared to the early season. The increment in these traits was mainly attributed to a lower temperature in the late season during the grain filling period. Furthermore, our results suggested that an increment in starch accumulation and grain filling rate were mainly associated with the enhanced sink capacity by regulating key enzyme activities involved in Suc-to-starch conversion. In-addition, RT-qPCR analysis showed higher expression levels of AGPS2b, SSS1, GBSS1, and GBSE11b genes, which resultantly increased the activities of SMEs during the grain filling period under combined treatments. Linear regression analysis revealed that the activity of ADGPase, SSS, GBSS, and SBE were highly positively correlated with starch and amylose accumulation. Thus, we concluded that a combination of 30% N from PM or CM with 70% N from CF is a promising option in terms of improving rice grain yield and quality. Our study provides a sustainable fertilizer management strategy to enhance rice grain yield and quality at the lowest environmental cost.  相似文献   

6.
  • A significant asynchronous phenomenon exists in super hybrid rice because of the differences in spike and spikelet positions, which affect the accumulation and properties of starch. However, little is known about the endosperm enrichment and physicochemical properties of starch in superior and inferior grains in super hybrid rice.
  • Rice YY2640 was selected as study material to investigate the enrichment and physicochemical properties of starch in superior and inferior grains in super rice using semi‐thin sections, X‐ray diffraction and related technologies.
  • Superior grain filling was a continuous process, whereas inferior grain only started 8–10 days after anthesis. The order of starch accumulation starts in the central endosperm, then in the endosperm of the proximal vascular bundle and finally in the aleurone layer. Compared with the inferior grains, the superior grains have a higher 1000‐grain weight, apparent amylose content, total starch content, average starch granule size, relative crystallinity, solubility and a resonance peak ratio at 1022/995 cm?1, whereas the swelling power and ratio of the resonance peak at 1045/1022 cm?1 were lower. The final degree of hydrolysis of HCl, AAG and PPA of the superior grains were significantly lower than those of the inferior grains.
  • The findings indicate that the different physicochemical properties of starch were mainly related to the development order of superior and inferior grains and the spatial enrichment of starch.
  相似文献   

7.
The percentage of amylose in the endosperm of rice (Oryza sativa) largely determines grain cooking and eating qualities. Granule‐bound starch synthase I (GBSSI) and GBSSII are responsible for amylose biosynthesis in the endosperm and leaf, respectively. Here, we identified OsGBP, a rice GBSS‐binding protein that interacted with GBSSI and GBSSII in vitro and in vivo. The total starch and amylose contents in osgbp mutants were significantly lower than those of wild type in leaves and grains, resulting in reduced grain weight and quality. The carbohydrate‐binding module 48 (CBM48) domain present in the C‐terminus of OsGBP is crucial for OsGBP binding to starch. In the osgbp mutant, the extent of GBSSI and GBSSII binding to starch in the leaf and endosperm was significantly lower than wild type. Our data suggest that OsGBP plays an important role in leaf and endosperm starch biosynthesis by mediating the binding of GBSS proteins to developing starch granules. This elucidation of the function of OsGBP enhances our understanding of the molecular basis of starch biosynthesis in rice and contributes information that can be potentially used for the genetic improvement of yield and grain quality.  相似文献   

8.
Sugar metabolism and sugar signalling are not only critical for plant growth and development, but are also important for stress responses. However, how sugar homeostasis is involved in plant defence against pathogen attack in the model crop rice remains largely unknown. In this study, we observed that the grains of gif1, a loss‐of‐function mutant of the cell wall invertase gene GRAIN INCOMPLETE FILLING 1 (GIF1), were hypersusceptible to postharvest fungal pathogens, with decreased levels of sugars and a thinner glume cell wall in comparison with the wild‐type. Interestingly, constitutive expression of GIF1 enhanced resistance to both the rice bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. The GIF1‐overexpressing (GIF1‐OE) plants accumulated higher levels of glucose, fructose and sucrose compared with the wild‐type plants. More importantly, higher levels of callose were deposited in GIF1‐OE plants during pathogen infection. Moreover, the cell wall was much thicker in the infection sites of the GIF1‐OE plants when compared with the wild‐type plants. We also found that defence‐related genes were constitutively activated in the GIF1‐OE plants. Taken together, our study reveals that sugar homeostasis mediated by GIF1 plays an important role in constitutive and induced physical and chemical defence.  相似文献   

9.
High temperature impairs rice (Oryza sativa) grain filling by inhibiting the deposition of storage materials such as starch, resulting in mature grains with a chalky appearance, currently a major problem for rice farming in Asian countries. Such deterioration of grain quality is accompanied by the altered expression of starch metabolism‐related genes. Here we report the involvement of a starch‐hydrolyzing enzyme, α‐amylase, in high temperature‐triggered grain chalkiness. In developing seeds, high temperature induced the expression of α‐amylase genes, namely Amy1A, Amy1C, Amy3A, Amy3D and Amy3E, as well as α‐amylase activity, while it decreased an α‐amylase‐repressing plant hormone, ABA, suggesting starch to be degraded by α‐amylase in developing grains under elevated temperature. Furthermore, RNAi‐mediated suppression of α‐amylase genes in ripening seeds resulted in fewer chalky grains under high‐temperature conditions. As the extent of the decrease in chalky grains was highly correlated to decreases in the expression of Amy1A, Amy1C, Amy3A and Amy3B, these genes would be involved in the chalkiness through degradation of starch accumulating in the developing grains. The results show that activation of α‐amylase by high temperature is a crucial trigger for grain chalkiness and that its suppression is a potential strategy for ameliorating grain damage from global warming.  相似文献   

10.
选用2个品质类型和成熟期不同的新疆主栽小麦品种‘新春11号’和‘新春39号’,分别进行花后灌浆早期高温(花后5~8d,32℃,T_1)和中期高温(花后15~18d,38℃,T_2)处理,分析花后高温对小麦籽粒发育及淀粉晶体的影响。结果显示:(1)T_1处理明显降低了两品种籽粒长度和粒重,而T_2处理显著影响籽粒宽度和厚度;高温处理虽然降低了籽粒灌浆速率,但两品种灌浆最大峰值出现时间均在花后18d。(2)T_1处理对小麦籽粒A型淀粉粒形态的影响较大,中熟品种‘新春11号’的A型淀粉粒表面在花后10d时可观察到微孔,在花后15~20d时其粒径明显小于同期对照,在花后20~25d时淀粉粒表面压痕增多且A、B型淀粉粒表面出现明显缢缩;而早熟品种‘新春39号’淀粉粒形态和粒径大小受花后高温的影响相对较小。(3)两品种在不同高温处理下,其淀粉粒晶体特性衍射峰出现的位置相同,但淀粉粒的尖峰强度不同,表明高温胁迫不影响淀粉粒的晶体类型,但可能改变了淀粉粒内部的层状结构。研究表明,花后早期高温不仅对小麦籽粒外部形态有较大的影响,同时也影响到籽粒内部淀粉粒的形态和晶体的特性。  相似文献   

11.
Hirose T  Terao T 《Planta》2004,220(1):9-16
To elucidate the roles of the isogenes encoding starch synthase (EC 2.4.1.21) in rice (Oryza sativa L.), a comprehensive expression analysis of the gene family was conducted. Extensive searches for starch synthase genes were done in the databases of both the whole genome and full-length cDNAs of rice, and ten genes were revealed to comprise the starch synthase gene family. Multi-sequence alignment analysis of the starch synthase proteins from rice and other plant species suggested that they were grouped into five classes, soluble starch synthase I (SSI), SSII, SSIII, SSIV and granule-bound starch synthase (GBSS). In rice, there was one gene for SSI, three for SSII and two each for SSIII, IV and GBSS. The expression pattern of the ten genes in the developing caryopsis was examined by semi-quantitative RT–PCR analysis. Based on the temporal expression patterns, the ten genes could be divided into three groups: (i) early expressers (SSII-2, III-1, GBSSII), which are expressed in the early stage of grain filling; (ii) late expressers (SSII-3, III-2, GBSSI), which are expressed in the mid to later stage of grain filling; and (iii) steady expressers (SSI, II-1, IV-1, IV-2), which are expressed relatively constantly during grain filling. Within a caryopsis, the three gene groups spatially share their expression, i.e. early expressers in the pericarp, the late expressers in the endosperm and the steady expressers in both tissues. In addition, this grouping was reflected in the expression pattern of various rice tissues: expression in non-endosperm, endosperm or all tissues examined. The implications in this spatio-temporal work sharing of starch synthesis isogenes are discussed.Abbreviations DAF Days after flowering - GBSS Granule-bound starch synthase - SS Soluble starch synthase  相似文献   

12.
To compare the differences in physiology and metabolism between phosphoenolpyruvate carboxylase (PEPC) transgenic rice and its control, untransformed wild rice, dry matter accumulation, soluble sugar, starch and protein contents and enzyme activities were determined in different plant parts during flowering. Results revealed that PEPC transgenic rice had higher dry weights for leaf, stem and sheath as well as panicle than the untransformed wild rice did, with the largest increase in the panicle. Soluble sugar and protein content in the grains of PEPC transgenic rice were significantly enhanced while starch content changed less. PEPC transgenic rice exhibited high levels of PEPC activity, manifesting in high net photosynthetic rates during flowering. Moreover, transgenic rice with high PEPC expression levels also had elevated levels of the enzymes such as sucrose-p-synthase and sucrose synthase, which may confer a higher capacity to assimilate CO2 into sucrose. Little increase in grain starch content was observed in transgenic plants due to the stable activities of starch synthase and Q enzyme. However, the PEPC transgenic rice plant induced the activities of nitrate reductase, glutamate oxaloacetate transaminase, glutamate pyruvate transaminase, glutamine synthetase, and asparagine synthase to high levels, as compared with the untransformed rice plant. PEPC activity was correlated with protein content in grains and the enzymes of nitrogen metabolism, suggesting that high PEPC activity in transgenic rice might be able to redirect carbon and nitrogen flow by regulating some enzymes related to carbon or nitrogen metabolisms. These results may help to understand how the C3 plants possessing a C4-like photosynthesis pathway worked by expression of PEPC.  相似文献   

13.
14.
15.
16.
The rice Waxy (Wx) gene encodes granule‐bound starch synthase 1 (EC 2.4.1.242), OsGBSS1, which is responsible for amylose synthesis in rice seed endosperm. In this study, we determined the functional contribution of eight amino acids on the activity of OsGBSS1 by introducing site‐directed mutated Wx gene constructs into the wx mutant glutinous rice. The eight amino acid residues are suspected to play roles in OsGBSS1 structure maintenance or function based on homologous enzyme sequence alignment and homology modelling. Both OsGBSS1 activity and amylose content were analysed in homozygous transgenic lines carrying the mutated OsGBSS1 (Wx) genes. Our results indicate that mutations at diverse sites in OsGBSS1 reduces its activity by affecting its starch‐binding capacity, its ADP‐glucose‐binding capability or its protein stability. Our results shed new light on the structural basis of OsGBSS1 activity and the mechanisms of OsGBSS1 activity on amylose synthesis in vivo. This study also demonstrates that it is feasible to finely modulate amylose content in rice grains by modifying the OsGBSS1 activity.  相似文献   

17.
The possible relationship between the levels of ethylene and 1-aminocylopropane-1-carboxylic acid (ACC) in the grains and the quality of rice (Oryza sativa L.) were investigated by using 12 rice cultivars. The results showed that both the ethylene evolution rate and ACC content in grains during the grain filling period correlated negatively with head rice production and positively with chalky kernels, chalky size, and chalkiness. The levels of ethylene and ACC were not significantly correlated with alkali spreading value and amylose content. Application of ethephon, an ethylene-releasing agent, or ACC to panicles at the early grain filling stage significantly reduced the rates of brown rice, milled rice, and head rice, and significantly increased the percentage of chalky kernels, chalky size, and chalkiness. Application of aminoethoxyvinylglycine, an inhibitor of ACC synthase, had the opposite effect. Chalkiness appears to be a senescence related phenomenon which is stimulated by ethylene. The results suggest that ethylene and ACC in grains play an important role in regulating rice quality, and that grain appearance and milling quality would be improved though the reduction of ethylene and ACC in grains during grain filling.  相似文献   

18.
Grain filling is a crucial process that affects yield in rice (Oryza sativa L.). Auxin biosynthesis and signaling are closely related to rice yield; therefore, it is important to understand the effects of auxin biosynthesis on rice grain filling to improve crop yield. In this study, we used physiological and molecular strategies to identify the roles of auxin in rice grain filling. Exogenous application of auxin (IAA) or auxin analogues (2, 4-D) to young spikelets and flag leaves improved the seed-setting rate and yield per spike. Furthermore, real-time quantitative PCR assays confirmed that nine members of the OsYUCCA family of auxin biosynthetic genes were upregulated during grain filling, implication that auxin biosynthesis plays a major role in grain development. The specific expression of either Arabidopsis AtYUCCA1 or OsYUCCA2 in the endosperm or leaves resulted in increased expression of OsIAA genes and auxin content of seeds, as well as increased grain filling and seed-setting rate. This result establishes that the auxin content in grains and leaves is important for grain development. Our findings further highlight the potential applications for improving rice yield by elevating targeted gene expression in specific tissues.  相似文献   

19.
【目的】籽粒大小是影响藜麦产量、商品性和加工特性的重要因素,考察灌浆期大小粒型藜麦籽粒表型、灌浆特性和淀粉合成酶活性的差异,为大粒型藜麦品种的选育提供理论指导。【方法】选择千粒重大于5.0 g和小于3.0 g的藜麦材料各两份,在青海省农林科学院种质资源创新试验基地进行田间试验,比较自灌浆期始7 d、14 d、21 d和28 d籽粒表型、灌浆特性和淀粉合成酶活性等在大小粒型藜麦间的差异。【结果】(1)大小粒型藜麦籽粒面积、周长、直径、粒长、粒宽表型性状随着生育时期均极显著增大,且粒型间存在显著差异,并以籽粒面积和周长差异最大,大粒型藜麦显著高于小粒型藜麦9.12%~11.54%和21.49~23.92%。(2)灌浆期间大粒型藜麦百粒干重始终显著高于同期小粒型藜麦,平均增幅在21.23%~31.04%;大小粒型藜麦灌浆速率随生育期均先上升后下降,均符合“慢-快-慢”的变化规律,但达到峰值时间和峰高明显不同,大粒型峰值出现早而高,小粒型则低而迟。(3)淀粉分支酶(SBE)、蔗糖合成酶(SS)、可溶性淀粉合成酶(SSS)和ADPG焦磷酸化酶(AGP)在大小粒型藜麦籽粒灌浆期呈现不同的变化趋势,SBE和SS活性表现为小粒型藜麦强于大粒型藜麦,而SSS和AGP活性则表现为大粒型藜麦强于小粒型藜麦。【结论】藜麦籽粒灌浆期间4种淀粉合成酶活性的差异,致使淀粉合成积累量和灌浆速率峰值的不同,进而形成籽粒表型性状的差异,而SSS和AGPase是影响藜麦籽粒大小形成的关键酶。  相似文献   

20.
Liangyoupeijiu is a two-parental-line, and Shanyou63 is a three-parental-line hybrid rice (Oryza sativa L.). Although both belong to the indica subspecies, they have obvious differences with respect to morphology, physiology and grain quality. Variations in endosperm protein compositions were studied by comparing the 2-D electrophoresis (2-DE) maps for these two cultivars of hybrid rice. After matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF/MS) analysis, a 21-kDa precursor of 19- kDa globulin was identified as the major storage protein for both cultivars. Some isoforms of peroxiredoxin and seed maturation protein were found to only exist in Shanyou63, whereas aldose reductase and starch granule-bound starch synthase were only detected in Liangyoupeijiu. These data might provide a foundation for further comparative studies of these two cultivars of hybrid rice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号