首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
BACKGROUND: A flow cytometric measurement (FCM) technique has been developed to size DNA fragments. Individual fragments of a restriction digest of genomic DNA, stained with an intercalating dye, are passed through an ultrasensitive cytometer. The measured fluorescence intensity from each fragment is proportional to the fragment length. METHODS: The isolation of bacterial genomic DNA and digestion by restriction enzymes were performed inside an agarose plug. Rare cutting enzymes were employed to produce a manageable number of DNA fragments. Electroelution was used to move the DNA fragments from the agarose plug into a solution containing polyamines to protect the DNA from shear-induced breakage. The DNA was stained with the bisintercalating dye thiazole orange homodimer and introduced into our ultrasensitive flow cytometer. A histogram of the fluorescence intensities (fingerprint) was constructed. RESULTS: Gram-positive Bacillus globigii and gram-negative bacteria Escherichia coli and Erwinia herbicola were distinguished by the fingerprint pattern of restriction fragments of their genomic DNA. DNA sizes determined by FCM are in good agreement with pulsed-field gel electrophoresis (PFGE) analysis. Flow cytometry requires only picogram quantities of purified DNA and takes less than 10 min for data collection and analysis. When the total sample preparation time is included, the analysis times for PFGE and FCM are similar ( approximately 3 days). CONCLUSIONS: FCM is an attractive technique for the identification of bacterial species. It is more sensitive and potentially much faster than PFGE.  相似文献   

2.
Rapid DNA fingerprinting of pathogens by flow cytometry   总被引:2,自引:0,他引:2  
BACKGROUND: A new method for rapid discrimination among bacterial strains based on DNA fragment sizing by flow cytometry is presented. This revolutionary approach combines the reproducibility and reliability of restriction fragment length polymorphism (RFLP) analysis with the speed and sensitivity of flow cytometry. METHODS: Bacterial genomic DNA was isolated and digested with a rare-cutting restriction endonuclease. The resulting fragments were stained stoichiometrically with PicoGreen dye and introduced into an ultrasensitive flow cytometer. A histogram of burst sizes from the restriction fragments (linearly related to fragment length in base pairs) resulted in a DNA fingerprint that was used to distinguish among different bacterial strains. RESULTS: Five different strains of gram-negative Escherichia coli and six different strains of gram-positive Staphylococcus aureus were distinguished by analyzing their restriction fragments with DNA fragment sizing by flow cytometry. Fragment distribution analyses of extracted DNA were approximately 100 times faster and approximately 200,000 times more sensitive than pulsed-field gel electrophoresis (PFGE). When sample preparation time is included, the total DNA fragment analysis time was approximately 8 h by flow cytometry and approximately 24 h by PFGE. CONCLUSIONS: DNA fragment sizing by flow cytometry is a fast and reliable technique that can be applied to the discrimination among species and strains of human pathogens. Unlike some polymerase chain reaction (PCR)-based methods, sequence information about the bacterial strains is not required, allowing the detection of unknown, newly emerged, or unanticipated strains.  相似文献   

3.
A flow cytometry-based, ultrasensitive fluorescence detection technique is used to size individual DNA fragments up to 167 kb in length. Application of this technology to the sizing of P1 artificial chromosomes (PACs) in both linear and supercoiled forms is described. It is demonstrated that this method is well suited to characterizing PAC/BAC clones and will be very useful for the analysis of large insert libraries. Fluorescence bursts are recorded as individual, dye stained DNA fragments pass through a low power, focused, continuous laser beam. The magnitudes of the fluorescence bursts are linearly proportional to the lengths of the DNA fragments. The histograms of the burst sizes are generated in <3 min with <1 pg of DNA. Results on linear fragments are consistent with those obtained by pulsed-field gel electrophoresis. In comparison with pulsed-field gel electrophoresis, sizing of large DNA fragments by this approach is more accurate, much faster, requires much less DNA, and is independent of the DNA conformation.  相似文献   

4.
Large, fluorescently stained restriction fragments of lambda phage DNA are sized by passing individual fragments through a focused continuous wave laser beam in an ultrasensitive flow cytometer at a rate of 60 fragments per second. The size of the fluorescence burst emitted by each stained DNA fragment, as it passes through the laser beam, is measured in one millisecond. One hundred sixty four seconds of fluorescence burst data allow linear sizing of DNA with an accuracy of better than two percent over a range of 10 to 50 kbp. This corresponds to analyzing less than 1 pg of DNA. Sizing of DNA fragments by this approach is much faster, requires much less DNA, and can potentially analyze large fragments with better resolution and accuracy than with gel-based electrophoresis.  相似文献   

5.
Analysis of the entire Agrobacterium tumefaciens C58 genome by pulsed-field gel electrophoresis (PFGE) reveals four replicons: two large molecules of 3,000 and 2,100 kb, the 450-kb cryptic plasmid, and the 200-kb Ti plasmid. Digestion by PacI or SwaI generated 12 or 14 fragments, respectively. The two megabase-sized replicons, used as probes, hybridize with different restriction fragments, showing that these replicons are two independent genetic entities. A 16S rRNA probe and genes encoding functions essential to the metabolism of the organism were found to hybridize with both replicons, suggesting their chromosomal nature. In PFGE, megabase-sized circular DNA does not enter the gel. The 2.1-Mb chromosome always generated an intense band, while the 3-Mb band was barely visible. After linearization of the DNA by X-irradiation, the intensity of the 3-Mb band increased while that of the 2.1-Mb remained constant. This suggests that the 3-Mb chromosome is circular and that the 2.1-Mb chromosome is linear. To confirm this hypothesis, genomic DNA, trapped in an agarose plug, was first submitted to PFGE to remove any linear DNA present. The plug was then recovered, and the remaining DNA was digested with either PacI or SwaI and then separated by PFGE. The fragments corresponding to the small chromosome were found to be absent, while those corresponding to the circular replicon remained, further proof of the linear nature of the 2.1-Mb chromosome.  相似文献   

6.
Pulsed field gel electrophoresis (PFGE) is a technique for the fractionation of high-molecular-weight DNA ranging from 10 kb to 10 Mb by electrophoresis in agarose gel with an electric field that alternates (pulsates) in two directions. This technology plays a key role in modern genomics, as it allows manipulations with DNA of whole chromosomes or their large fragments. In this review, we discuss (1) the theory behind PFGE; (2) different instruments based on the principle of pulsed field, as well as their advantages and limitations; (3) factors affecting the DNA mobility in PFGE gel; and (4) practical applications of the technique.  相似文献   

7.
B G Cocks  L E Pyle    L R Finch 《Nucleic acids research》1989,17(16):6713-6719
A physical map is presented for the 900 kilobase pair genome of Ureaplasma urealyticum 960T, locating 29 sites for 6 restriction endonucleases. The large restriction fragments were separated and sized by pulsed-field agarose gel electrophoresis (PFGE). Their locations on the map were determined by probing Southern blots of digests with individual fragments isolated from other digests and by correlating the products of double digestions and partial digestions. An end-labelling technique was used to detect small fragments not readily observed by PFGE. Two loci for rRNA genes have been determined by probing with cloned DNA.  相似文献   

8.
B Birren  E Lai 《Nucleic acids research》1994,22(24):5366-5370
Pulsed field gel electrophoresis (PFGE) is capable of resolving a wide size range of DNA molecules which would all co-migrate in conventional agarose gels. We describe pulsed field gel conditions which permit DNA fragments of up to 250 kilobases (kb) to be separated in only 3.5 h. The separations, which employ commercially available gel boxes, are achieved using conditions which deviate significantly from traditional pulsed field conditions. PFGE separations have been thought to require reorientation angles greater than 90 degrees to be effective. However, reorientation angles of 90 degrees and even less will resolve DNA fragments a few hundred kb and smaller approximately 5 x faster than with standard pulsed field conditions. The mobility of DNA fragments separated with 90 degrees reorientation angles is switch time-dependent, as is seen for DNA run with the commonly used reorientation angle of 120 degrees. With DNA fragments of several hundred kb and smaller, higher field strengths may be used, resulting in still greater increases in separation speed. The conditions described allow DNA from large insert bacterial clones, such as those using cosmid, Fosmid, P1, bacterial artificial chromosome (BAC), or P1-derived artificial chromosome (PAC) vectors, to be prepared, digested and analyzed on gels within a single working day.  相似文献   

9.
Specimens for pulsed-field gel electrophoresis (PFGE) are formed using a plug mold. We report a technique which uses a disposable polyethylene pipette to prepare our specimen plug. We also report a convenient technique to handle portions of the plug used for the typical PFGE manipulations.  相似文献   

10.
BACKGROUND: Previous reports have demonstrated accurate DNA fragment sizing of linear DNA fragments, from 564 to approximately 4 x 10(5) bp, in a flow system. B-phycoerythrin (B-PE), commonly used in conventional cytometric applications that require high-sensitivity, was the first fluorophore detected in flow at the single-molecule level. METHODS: Dilute solutions of stained DNA fragments or B-PE were analyzed in a simplified, compact flow system, with enhanced performance and lower cost, utilizing a solid-state laser and a single-photon sensing avalanche photodiode detector (SSAPD). Extensive data processing and display software, developed specifically for the photon-counting data stream, extracts correlated height, width, and area features from bursts of photons due to discrete molecules passing through the sensing region in the flow channel. RESULTS: DNA fragment sizing in flow has now been demonstrated for SYTOX-orange-stained fragments ranging in size over 3.4 orders of magnitude, from 125 to 5 x 10(5) bp. For Lambda bacteriophage DNA (lambda DNA; 48.5 kbp) a CV of 1.2 % has been achieved. Analysis of a femtomolar B-PE solution demonstrates that the bursts of photons from individual molecules can be baseline-resolved with 0.5 mW of laser power at a signal to noise ratio (SNR) of approximately 30, with approximately 100 photons detected from each molecule. CONCLUSIONS: A compact, low-power, high-sensitivity system detects DNA fragments as small as 125 bp or individual B-PE molecules in a flowing liquid stream. Demonstrated linearity, sensitivity, and resolution indicate that <1.0 mW of laser power is optimal, permitting further miniaturization of the system and additional cost reduction. Comprehensive analytical software exploits the standard cytometric paradigm of multiple 2D graphs and gating to extract features from classes of individually analyzed biomolecules. This complete system is thus poised to engage high-sensitivity applications not amenable to conventional flow cytometric instrumentation.  相似文献   

11.
We have employed a pulsed field gel electrophoresis and Alu hybridization approach for identification of large restriction fragments on chromosome 6 and 22. This technique allows large portions of selected human chromosomes to be visualized as discrete hybridization signals. Somatic cell hybrid DNA which contains chromosome 6 or chromosome 22 was restricted with either Notl or Mlul. The restriction fragments were separated by pulsed field gel electrophoresis (PFGE) and hybridized against an Alu repetitive sequence (Blur 8). The hybridization signals result in a fingerprint-like pattern which is unique for each chromosome and each restriction enzyme. In addition, a continuous pattern of restriction fragments was demonstrated by gradually increasing puls times. This approach will also be suitable to analyze aberrant human chromosomes retained in somatic cell hybrids and can be used to analyze flow sorted human chromosomes. To this end, our method provides a valuable alternative to standard cytogenetic analysis.  相似文献   

12.
DNA fragmentation of 50 kb is observed in apoptotic human lymphocytes as measured with pulsed field gel electrophoresis (PFGE). Standard PFGE assay involves embedding of cells into agarose blocks followed by lysis in the presence of proteinase K. In this study, we modified the PFGE protocol by omitting the proteinase K. In this study, we modified the PFGE assay by omitting the proteinase K and changing lysis solution according to the method of anomalous viscosity time dependence (AVTD). The conditions of PFGE were adjusted aiming to compress apoptotic fragments, increasing sensitivity and the number of samples that could be loaded on the same gel. Lymphocytes were irradiated with gamma-rays and apoptotic fragmentation of DNA was determined by PFGE using standard lysis with proteinase K and lysis protocol from AVTD method. Both protocols of lysis resulted in the same pattern of DNA fragments. The yield of radiation-induced apoptotic fragmentation was higher with the AVTD protocol of lysis. The novel PFGE protocol is simple and relatively non-expensive, requires only 7 h running time and gives a possibility to analyse simultaneously up to 69 samples in the same gel. The sensitivity of our protocol provides reproducible detection of 50 kb fragmentation after irradiation of human lymphocytes with 5 cGy of gamma-rays. In 2 of 6 donors tested, this DNA fragmentation was detected at dose on 2 cGy. The novel protocol can be used for quantification of 50 kb apoptotic fragments induced by different agents including low dose ionising radiations, chemicals and electromagnetic fields.  相似文献   

13.
B Ely  C J Gerardot 《Gene》1988,68(2):323-333
The restriction enzyme DraI cleaves the Caulobacter crescentus genome into at least 35 fragments which have been resolved in agarose gels using pulsed-field-gradient gel electrophoresis (PFGE). When digests were performed using DNA from strains containing Tn5 insertion mutations, altered band migrations were observed. Using PFGE with the appropriate pulse times, size differences as small as 2% could be resolved in large fragments. Using this approach, we have constructed a partial physical map of the genome which correlates well with the C. crescentus genetic map and have shown the size of the genome to be approx. 3800 kb. Using hybridization with cloned genes, we have determined the map locations of five previously unmapped genes. In addition, we have shown that PFGE can be used to rapidly determine the map locations of new insertion mutations or the sizes of deletion mutations.  相似文献   

14.
Abstract Pulsed-field gel electrophoresis (PFGE) was applied to characterize Rhizobium bacteria isolated from the root nodules of Acacia senegal and Prosopis chilensis trees growing in Sudan and Keya. For the electrophoresis, the total DNA of 42 isolates, embedded in agarose, was digested by a rare-cutting restriction endonuclease, Xba I. The PFGE run resulted in good resolution of the DNA fragments and gave the strains distinctive fingerprint patterns. The patterns were analysed visually and using automated clustering analysis, which divided the strains into groups resembling the results generated by numerical taxonomy. However, several strains had unique banding patterns, which indicates that these strains are genetically very diverse.  相似文献   

15.
The orientation of agarose gels in pulsed electric fields has been studied by the technique of transient electric birefringence. The unidirectional electric fields ranged from 2 to 20 V/cm in amplitude and 1 to 100 s in duration, values within the range typically used for pulsed field gel electrophoresis (PFGE). Agarose gels varying in concentration from 0.3 to 2.0% agarose were studied. The sign of the birefringence varied randomly from one gel to another, as described previously [J. Stellwagen & N. C. Stellwagen (1989), Nucleic Acids Research, Vol. 17, 1537–1548]. The sign and amplitude of the birefringence also varied randomly at different locations within each gel, indicating that agarose gels contain multiple subdomains that orient independently in the electric field. Three or four relaxation times of alternating sign were observed during the decay of the birefringence. The various relaxation times, which range from 1 to ~ 120 s, can be attributed to hierarchies of aggregates that orient in different directions in the applied electric field. The orienting domains range up to ~ 22 μm in size, depending on the pulsing conditions. The absolute amplitude of the birefringence of the agarose gels increased approximately as the square of the electric field strength. The measured Ker constants are ~ 5 orders of magnitude larger than those observed when short, high-voltage pulses are applied to agarose gels. The increase in the Kerr constants in the low-voltage regime parallels the increase in the relaxation times in low-voltage electric fields. Birefringence saturation saturation curves in both the low- and high-voltage regimes can be fitted by theoretical curves for permanent dipole orientation. The apparent permanent dipole moment increase approximately as the 1.6 power of fiber length, consistent with the presence of overlapping agarose helices in the large fiber bundles orienting in low-voltage electric fields, the optical factor is approximately independent of fiber length. Therefore, the marked increase in the Kerr constants observed in the low-voltage regime is due to the large increase in the electrical orientation factor, which is due in turn to the increased length of the fiber bundles and domains orienting in low-voltage electric fields. Since the size of the fiber bundles and domains approximates the size of the DNA molecules being separated by PFGE, the orientation of the agarose matrix in the applied electric field may facilitate the migration of large DNA molecules during PFGE. © 1994 John Wiley & Sons, Inc.  相似文献   

16.
A method to enrich large size DNA fragments obtained by digestion with rare cutting restriction endonucleases was developed and applied for the isolation of a 150 kb SfiI fragment containing the beta-globin gene cluster. The digested DNA is rendered single stranded at the ends by diffusing a strand specific exonuclease into an agarose plug containing DNA. The plug is melted and solution hybridization is then performed with a bridge RNA containing specific sequences from the end of a desired fragment linked to a common probe sequence. The common probe sequence is annealed to a biotinylated RNA and the resulting tripartite hybrid is retained onto a solid matrix containing avidin and specifically released by ribonuclease action. Enrichments of greater than 350 fold have been achieved consistently. Such directed purification of large DNA fragments without cloning can considerably expedite mapping and gene localization in a complex genome and facilitate the construction of sublibraries from defined regions of the genome.  相似文献   

17.
C B Zintz  D C Beebe 《BioTechniques》1991,11(2):158-162
A rapid, simple method is described for performing sequential amplifications of purified products produced by the PCR. After the initial amplification, an aliquot of the reaction is run on a low melting point agarose gel. A Pasteur pipet is used to punch out a gel plug from the amplified band. The DNA in this plug is then used directly as the template for a second round of amplification. Relatively large amounts of agarose can be tolerated without noticeable effects on amplification. Use of a composite gel made from agarose and linear polyacrylamide increases the ease and utility of this technique. These gels are simple to cast, easier to handle and permit several replicate plugs to be obtained from a single band. This method is well suited to experiments which use "nested" primers to increase the sensitivity and specificity of amplification or any method in which PCR amplification follows DNA purification by electrophoresis in LMP agarose gels.  相似文献   

18.
Accurate measurement of single DNA fragments by DNA fragment sizing flow cytometry (FSFC) depends upon precise, stoichiometric DNA staining by the intercalating dye molecules. In this study, we determined the binding characteristics of a commercially available 532 nm wavelength-excitable dye and used this information to develop a universal DNA staining protocol for DNA FSFC using a compact frequency-doubled Nd:YAG laser excitation source. Among twelve 532 nm wavelength-excitable nucleic acid staining dyes tested, SYTOX Orange stain showed the highest fluorescence intensity along with a large fluorescence enhancement upon binding to double-stranded DNA ( approximately 450-fold). Furthermore, using SYTOX Orange stain, accurate fragment-size-distribution histograms were consistently obtained without regard to the staining dye to base pair (dye/bp) ratio. A model describing two binding modes, intercalation (primary, yielding fluorescence) and external binding (secondary, involving fluorescence quenching), was proposed to interpret the performance of the dyes under different dye/bp ratios. The secondary equilibrium dissociation constant was found to be the most critical parameter in determining the sensitivity of each fluorophore to the staining dye/bp ratio. The measurements of both equilibrium dissociation constants provided us with a theoretical framework for developing a universal protocol which was successfully demonstrated over a wide range of DNA concentrations on a compact flow cytometer equipped with a frequency-doubled, diode-pumped, solid-state Nd:YAG laser for rapid and sensitive DNA fragment sizing.  相似文献   

19.
Pulsed-field gel electrophoresis (PFGE) of linearized, full-length chromosomal DNA was used to estimate the genome sizes of three species of sulfate-reducing bacteria. Genome sizes of Desulfovibrio desulfuricans, Desulfovibrio vulgaris, and Desulfobulbus propionicus were estimated to be 3.1, 3.6, and 3.7 Mb, respectively. These values are double the genome sizes previously determined for two Desulfovibrio species by two-dimensional agarose gel electrophoresis of DNA cut with restriction enzymes. PFGE of full-length chromosomal DNA could provide a generally applicable method to rapidly determine bacterial genome size and organization. Received: 1 October 1996 / Accepted: 5 November 1996  相似文献   

20.
Interpolation algorithms can be developed to size unknown single-stranded (ss) DNA fragments based on their electrophoretic mobilities, when they are compared with the mobilities of standard fragments of known sizes; however, sequence-specific anomalous electrophoretic migration can affect the accuracy and precision of the called sizes of the fragments. We used the anomalous migration of ssDNA fragments to optimize denaturation conditions for capillary electrophoresis. The capillary electrophoretic system uses a refillable polymer that both coats the capillary wall to suppress electro-osmotic flow and acts as the sieving matrix. The addition of 8 M urea to the polymer solution, as in slab gel electrophoresis, is insufficient to fully denature some anomalously migrating ssDNA fragments in this capillary electrophoresis system. The sizing accuracy of these fragments is significantly improved by the addition of 2-pyrrolidinone, or increased capillary temperature (60 degrees C). the effect of these two denaturing strategies is additive, and the best accuracy and precision in sizing results are obtained with a combination of chemical and thermal denaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号