首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 165 毫秒
1.
车八岭山地常绿阔叶林冰灾后土壤节肢动物群落的多样性   总被引:6,自引:0,他引:6  
2008年初车八岭山地常绿阔叶林受到中国南方80年一遇的冰灾的重创。为了揭示灾后林冠开度的梯度对土壤节肢动物多样性与分布的影响, 在受冰灾影响的车八岭山地常绿阔叶林设置2 ha固定样地, 按照冠层受损程度选取17个20 m×20 m的样方, 用半球面影像技术获取林冠开度, 并分凋落物层、0–10 cm和10–20 cm的矿质土层采集凋落物及土壤样品, 分析土壤节肢动物多样性。利用双向聚类分析(two-way cluster analysis)对凋落物层的土壤节肢动物和样地进行聚类, 以典范对应分析(canonical correspondence analysis)研究冠层开度、土壤有机质、电导率以及自然含水量与0–10 cm表土层土壤节肢动物的关系。结果表明土壤节肢动物的多度、丰富度和多样性随土壤层的加深而下降, 具有明显的表聚性; 林冠开度与凋落物层的土壤节肢动物类群数量呈负相关; 甲螨亚目、中气门亚目和前气门亚目动物对光照的适应范围广; 膜翅目、鞘翅目幼虫、综合纲和伪蝎目动物具有明显的避光性; 土壤节肢动物类群的分布与林冠开度、土壤自然含水量、电导率和有机质关系密切。因此可以推论, 冰灾对车八岭山地常绿阔叶林冠层的破坏及土壤因子的变化会进一步影响土壤节肢动物群落的组成和分布。本项研究还表明, 土壤节肢动物群落能有效地表征它们所栖息的生态系统的特点, 可用于监测冰灾后森林恢复和演替动态。而双向聚类分析和典范对应分析对于揭示土壤节肢动物的空间异质性及其与环境因子的相互关系具有理想的效果。  相似文献   

2.
The population changes, distribution and composition of litter and soil Acari and Collembola from three north Queensland rainforests are described based on samples collected on six occasions at approximately 3-monthly intervals. Numbers of Acari and Collembola collected from litter were lower in the north Queensland rainforests than those reported from rainforests outside Australia: however, numbers of Acari and Collembola in the soil were similar to numbers in rainforest soils elsewhere. Cryptostigmata were the most abundant group of Acari in the litter and 0–4 cm soil layer, comprising 41–55% and 42–55% of the total Acari in the litter and 0–4 cm soil layers respectively. Most of the Acari and Collembola are located in the 0–4 cm soil layer at each site (53–75%), with the litter layer containing the smallest proportion (3–20%). Most of the groups of Acari and Collembola examined show little evidence of seasonal vertical migration between the litter and soil to 8 cm. Minimum numbers of Acari and Collembola in the litter occurred in the dry season and maximum numbers occurred in the wet season. Seasonal fluctuations in numbers of Cryptostigmata appear to be influenced by the periodic saturation of the soil during the wet season.  相似文献   

3.
Foundation species provide habitat and modify the availability of resources to other species. In nature, multiple foundation species may occur in mixture, but little is known on how their interactions shape the community assembly of associated species. Lichens provide both structural habitat and resources to a variety of associated organisms and thereby serve as foundation species. In this study, we use mat-forming lichens and their associated micro-arthropods as a miniature ecosystem to study potential synergies between foundation species diversity and the abundance and functional diversity of higher trophic levels. We created lichen patches with monocultures and mixtures of up to four species, and extracted Collembola (identified to species level), Oribatida, Mesostigmata, Pseudoscorpiones, and Araneae with Tullgren apparatuses after 106 days of incubation within a natural lichen mat. We found that different lichen species supported different arthropod abundances. For 19 out of a total of 55 lichen mixtures and arthropod groups, we found non-additive, synergistic effects on arthropod abundance, although the specific lichen mixture causing synergistic effects differed with arthropod group. In addition, synergistic effects on arthropod abundance were more common for arthropod groups at lower trophic levels. The functional diversity of lichen mixtures explained patterns in Collembola abundance, but in the opposite direction than hypothesized because synergistic responses were more frequent in functionally similar lichen mixtures. Finally, we found few effects of lichen mixture identity or diversity on the functional diversity of Collembola communities. When applied to large-scale ecosystems, our results suggest that understanding interactions between coexisting foundation species and identifying those species that drive synergistic effects of foundation species on consumer biota, is likely to be of importance to biodiversity conservation and restoration efforts.  相似文献   

4.
Yang Z  Yang XD 《应用生态学报》2011,22(11):3011-3020
By using line transect method, an investigation was conducted on the floor litter and soil arthropod community in a mid mountain wet evergreen broad-leaved forest, a mossy dwarf forest, and a Populus bonatii forest in Ailao Mountain of Yunnan in April (dry and hot season), June (rainy season), and December (dry and cold season), 2005. In both dry and rainy seasons, the existing floor litter mass, C storage, and C/N ratio in the three forests all increased in the order of mossy dwarf forest > P. bonatii forest > evergreen broad-leaved forest, but the N storage had less difference. In the floor litter layer of the forests, Acari and Collembola were the dominant groups of soil arthropod community, while Diptera larvae, Coleoptera, ants, and Homoptera were the common groups. The Sorenson coefficients of soil arthropod community in the three forests were extremely great. No significant differences were observed in the soil arthropod density (ind x m(-2)) in the floor litter layer among the three forests, but the relative density (ind x g(-1)) of soil arthropods was higher in the evergreen broad-leaved forest and P. bonatii forest than in the mossy dwarf forest. In the three forests, the density of soil arthropods was significantly higher in dry season than in rainy season, but the Shannon diversity index had less difference. There were significant positive correlations between the existing floor litter mass and the individual density (ind x m(-2)) and dominant groups of soil arthropod communities in dry and hot season (April), but negative correlations between the existing floor litter mass and the relative density (ind x g(-1)) of soil arthropod communities and Acari in dry and cold season (December). The individual densities of Collembola and Coleoptera also had positive correlations with the N storage of the existing floor litter mass in the three forests. It was considered that the floor litter and the development of soil arthropod community in the litter layer of the subtropical forests in Ailao Mountain had a close relation with the vegetation structure of the forests, and the individual density and the diversity of the soil arthropod community were controlled by the floor litter, whereas the environmental factors such as temperature and moisture in the forests also had obvious effects on the seasonal dynamics of the individual density of the soil arthropods.  相似文献   

5.
Seasonal fluctuations of soil and litter microarthropod populations in a pine,Pinus kesiya Royle plantation of North Eastern India were investigated between November 1976 and November 1977. Three major groups were recognized: (a) Collembola, (b) Acarina and (c) miscellaneous. Collembola was the most abundant group and was dominated byIsotoma trispinata (MacGillivray). The total microarthropod density ranged from 26,800 per m2 to 145,200 per m2. Collembola densities ranged from 10,000 to 121,200 per m2, Acarina densities ranged from 8,800 to 41,600 per m2, and the miscellaneous group ranged from 1,200 to 6,400 per m2. Soil moisture was positively correlated with total arthropod, Collembola and Acarina densities. Soil temperature was positively correlated only with Acarina. Densities of Collembola and Acarina were negatively correlated.The work described in this paper was carried out while the author was at the Department of Zoology, North Eastern Hill University, Shillong, Mehgalaya (India).It was presented at the Ninth International Biometeorological Congress, 23rd Sptember–1st October, 1981, Osnabrück and Stuttgart-Hohenheim, FRG.  相似文献   

6.
A quantitative study of the soil and litter fauna of three South Australian low open forests was made for two years. The soil and vegetation of the sites were similar but the mean annual rainfall of the areas differed; 635, 690 and 1050 mm/y, respectively for the ‘dry’, ‘medium’ and ‘wet’ sites. Monthly samples were taken of litter, and the upper 0–4 cm and lower 4–8 cm soil layers, and the method used to estimate the numbers of active animals is also described. Mean annual population densities of Collembola and Acari were greatest at the medium site (9.5 and 48.6 × 103/m2, respectively) and least at the dry site (4.9 and 35.1 × 103/m2, respectively) and values are discussed in relation to site organic carbon content. Over all the sites, between 11–21, 67–75 and 10–15% of the collembolan populations, and 10–13, 66–72 and 16–21% of the acarine populations inhabited the litter layer and upper and lower soil layers respectively. Isotomidae were the most abundant collembolan family in each level at each site, but the overall proportion of Entomobryidae increased from the dry to wet site. Prostigmata were the most abundant acarine order in each level at two sites. Cryptostigmata were dominant in the litter layer of the wet site, and their overall proportion increased from the dry to wet site. Seasonal density changes were similar on all sites with minima in the summer and maxima in the winter months. The results obtained here combined with those from other published investigations indicate a trend of faunal population change over various ecosystems in Australia. Prostigmatid mites and iso-tomid Collembola dominate at arid sites. As sites become less arid and the amount of soil organic matter increases, the proportion of cryptostigmatid and mesostigmatid mites increases, and other groups of Collembola, particularly Entomobryidae, become more frequent.  相似文献   

7.
Seasonal changes in abundances of major soil micro-arthropods were assessed at aPinus pumila scrub in an alpine range of central Japan during a period with no snow coverage. The total abundance showed a peak in late August, reaching no less than 140 000 m−2, which was comparable to that in an evergreen coniferous plantation in the cool-temperate zone. Collembola was the most dominant group of soil micro-arthropods, comprising about 50% of the total, followed by oribatid mites (Acari [O]) occupying 20%. Annual mean air temperature was no more than 2.1 °C and the daily fluctuation in temperature was less in soil layers. The thickness of the A0 layer reached 9–10 cm and soil organic matter accumulation was estimated to be 45–58 ton dry weight ha−1. The large amount of litterfall and organic matter accumulation in the soil, comparable to those of sub-alpine evergreen coniferous forests, and a lower decomposition rate due to severe environmental conditions, suggest the relative importance of litter processing by soil micro-arthropods such as Collembola and Acari, especially in alpine regions.  相似文献   

8.
施用有机肥和林下抚育(植被去除)是人工林重要的管理措施;土壤节肢动物物种丰富,是土壤生态系统的重要组成成分,对环境变化敏感,可以作为森林管理的指示生物。人工林植被去除和施肥管理影响土壤性质、资源输入量及微生物多样性,从而影响土壤节肢动物多样性,但是相关研究还十分缺乏。以沿海地区杨树人工林为对象,研究了施用有机肥和林下植被去除对土壤节肢动物的数量和多样性的影响。结果表明,有机肥和植被去除管理对不同土壤层土壤节肢动物的数量和多样性指标影响不一致。有机肥增加0-10 cm深度土壤节肢动物总数量、蜱螨目数量,降低土壤节肢动物群落物种丰富度、均匀度和Shannon多样性指数;植被去除减少0-10 cm深度土壤节肢动物总数量和弹尾目数量,降低均匀度指数。两种处理对10-20 cm深度土壤节肢动物群落的数量和各多样性指标影响不显著。总体来说(0-20 cm),有机肥处理土壤节肢动物的数量显著增加,优势类群前气门亚目(Prostigmata)的数量增长为对照的4倍,但是土壤节肢动物群落的均匀度和Shannon多样性指数显著降低,这可能是土壤节肢动物优势类群前气门亚目密度急剧增加,而物种丰富度没有变化所导致;此外,施用有机肥增加了土壤有机质、总氮、有效磷的含量,降低土壤pH值,并且与前气门亚目密度显著相关。林下植被去除没有影响0-20 cm深度土壤节肢动物的数量和各多样性指标。  相似文献   

9.
A quantitative study was made of the micro-arthropod fauna in the litter and two soil layers at three South Australian forest sites (designated ‘dry’ medium’ and ‘wet’) using data taken at monthly intervals over 2 years. This study examined variations in density estimates of the major taxonomic groups of Acarina and Collembola that were associated with sample depth, site and season. There were substantial differences in the proportions of variation attributed to layer, site and seasonal effects. Most variation was associated with layer differences, being greatest in the acarine Prostigmata and in the collembolan Onychiuridae. Only the acarine Astigmata had slightly more variation between sites than between layers. Seasonal variation exceeded site variation in all collembolan groups except the Entomobryidae. In the acarine groups estimated ratios of seasonal to site variation were 6.1, 1.6, 1.0 and 0.4 for the Mesostigmata, Prostigmata, Cryptostigmata and Astigmata, respectively. Some variations due to inconsistencies in the above patterns were significant statistically but were small compared with variations associated with the seasonal, layer and site effects. Densities of all animals had marked seasonal variation which was broadly similar to that of rainfall in the warm temperate, mediterranean type climate of the region. Minimum density and activity occurred in about the last week in January, a period of maximum temperature and low soil moisture content; maxima were usually about 7 months later. This contrasts with warm and cool temperate areas of Australia with summer rainfall, where peak densities have been recorded in summer. The Mesostigmata, Astigmata, Podundae and Onychiuridae patterns of seasonal variation did not differ significantly with layer or site differences. The remaining groups had significant differences with layers and sites, the former being larger. Density minima and maxima were generally later going from litter to lower soil, about 2.5–8 weeks for density maxima and 0–4 weeks for minima. Groups with significant lags showed reduced amplitude in their seasonal variation with increased depth. There was little seasonal variation in the relative proportions of all animal groups.  相似文献   

10.
Sugarcane farmers can utilise a soil conservation technique called green cane trash blanketing, a form of mulching that can increase plant productivity through a number of channels, e.g., via altering soil physical, chemical and biological characteristics, and influence soil arthropod assemblages. Predatory mites (Mesostigmata) are important components of soil communities because they can control populations of other soil-dwelling pest species. Our aim was to characterise mulch-influenced predatory Mesostigmata community assemblages in sugarcane soils in Queensland, Australia. We found that application of a mulch layer significantly increased the abundance of Mesostigmata, and oribatid mites and collembolans, in soils. Furthermore, we observed that the assemblages of Mesostigmata in soil covered by mulch were significantly different to those in bare soil; and the assemblages of Mesostigmata changed over time. The assemblages of Mesostigmata, but not Oribatida or collembolans, were significantly different in soil under mulch depending on whether the mulch was freshly laid, or decomposing. Our results show that the use of mulch, specifically the green cane trash blanket, can increase overall microarthropod abundance including Mesostigmata. This is likely due to increased habitat complexity and changing resource availability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号