首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Enriched atmospheric CO2 alters the quantity and quality of plant production, but how such effects vary among plant genotypes is poorly known. We evaluated the independent and interactive effects of CO2 and nutrient availability on growth, allocation and phytochemistry of six aspen (Populus tremuloides Michx.) genotypes. One-year-old trees, propagated from root cuttings, were grown in CO2-controlled glasshouses for 64 days, then harvested. Foliage was analyzed for levels of water, nitrogen, starch, phenolic glycosides and condensed tannins. Of seven plant growth/allocation variables measured, four (biomass production, stem growth, relative growth rate and root:shoot ratio) exhibited marginally to highly significant CO2 2 genotype interactions. CO2 enrichment stimulated growth of some genotypes more than others, and this interaction was itself influenced by soil nutrient availability. In addition, enriched CO2 increased the magnitude of the among-genotype variance for four of the growth/allocation variables. Of six foliar chemical constituents analyzed, CO2-mediated responses of two (the phenolic glycoside tremulacin and condensed tannins) varied among genotypes. Moreover, enriched CO2 increased the magnitude of among-genotype variance for four of the chemical variables. Given the importance of these growth and chemical characteristics to the biological fitness of aspen, this research suggests that projected atmospheric CO2 increases are likely to alter the genetic structures and evolutionary trajectories of aspen populations.  相似文献   

2.
Chronic atmospheric nitrogen deposition affects the cycling of carbon (C) and nitrogen (N) in forest ecosystems, and thereby alters the stable C isotopic abundance of plant and soil. Three successional stages, disturbed, rehabilitated and mature forests were studied for their responses to different nitrogen input levels. N-addition manipulative experiments were conducted at low, medium and high N levels. To study the responses of C cycling to N addition, the C concentration and 13C natural abundances for leaf, litter and soil were measured. Labile organic carbon fractions in mineral soils were measured to quantify the dynamics of soil organic C (SOC). Results showed that three-year continuous N addition did not significantly increase foliar C and N concentration, but decreased C/N ratio and enriched 13C in N-rich forests. In addition, N addition significantly decreased microbial biomass C, and increased water soluble organic C in surface soils of N-rich forests. This study suggests that N addition enhances the water consumption per unit C assimilation of dominant plant species, restricts SOC turnover in N-poor forests at early and medium successional stages (thus favored SOC sequestration), and vice versa for N-rich mature forests.  相似文献   

3.
The impact of atmospheric pollution, including nitrogen deposition, on bracken fern herbivores has never been studied. Bracken fern is globally distributed and has a high potential to accumulate nitrogen in plant tissue. We examined the response of bracken fern and its herbivores to N fertilization at a high and low pollution site in forests downwind of Los Angeles, California. Foliage from the high pollution site had higher total N and nitrate than the low pollution site. Bracken fern biomass, foliar N and herbivore abundance were all affected by fertilization treatments. Biomass and herbivore responses were greatest during a year of high precipitation. N additions at the low pollution site were primarily associated with decreased fern biomass, and with transient impacts on herbivore abundance. N additions significantly affected bracken fern and its herbivores at the high pollution site where foliar N and nitrate decreased in response to N addition treatments, while biomass and herbivore abundance increased. High atmospheric deposition and fertilization were both associated with increased herbivore richness. Herbivore abundance was most impacted by fertilization during the early expansion of fern fronds. The most abundant chewing herbivore, a sawfly, was positively associated with plant nitrogen at the low pollution site, but negatively associated with plant nitrogen at the high pollution site, where concentrations of both total N and nitrate were high. While overall growth and herbivore impacts in this xeric location were limited, the variable response we observed associated with rainfall, may indicate impacts could be larger in more mesic environments.  相似文献   

4.
Costs of defense are thought to maintain genetic variations in the expression of defense within plant populations. As with many plant species, aspen exhibits considerable variation in allocation to secondary metabolites. This study examined the independent and interactive effects of genotype, soil fertility and belowground competition on defensive chemistry and growth in trembling aspen (Populus tremuloides). Four aspen genotypes were grown with high and low soil fertility, and with and without root competition. Physiological, morphological and allocational determinants of growth were measured to identify growth-defense tradeoffs. Nutrient limitation and competition decreased growth, leaf mass ratio, leaf nitrogen concentration and photosynthesis, and increased root : shoot ratio and leaf condensed tannin concentrations. The competition treatment also resulted in increased leaf phenolic glycoside (PG) concentrations. Aspen growth was negatively correlated with PG concentrations under low fertility with competition. The relationship between growth and its major determinants was also negatively related to foliar condensed tannins expressed as a proportion of tree mass, indicating an additional indirect cost of allocation to secondary metabolites.  相似文献   

5.
Aims Fire and atmospheric nitrogen (N) deposition have the potential to influence growth and productivity of forest canopy. However, their impacts on photosynthesis and growth traits of understory plants in forests remain largely unexplored. This study was conducted to examine the effects of burning and N addition on foliar N content, net photosynthesis and growth traits of three dominant shrub species (Vitex negundo,Lindera glaucaandSymplocos chinensis) in a temperate forest in Central China.  相似文献   

6.
Bansal S  Nilsson MC  Wardle DA 《Oecologia》2012,169(3):661-672
In the long-term absence of rejuvenating disturbances, forest succession frequently proceeds from a maximal biomass phase to a retrogressive phase characterized by reduced nutrient availability [notably nitrogen (N) and phosphorus (P)] and net primary productivity. Few studies have considered how retrogression induces changes in ecophysiological responses associated with photosynthetic carbon (C) gain, and only for trees. We tested the hypothesis that retrogression would negatively impact photosynthetic C gain of four contrasting species, and that this impact would be greater for vascular plants (i.e., trees and shrubs) than for non-vascular plants (i.e., mosses). We used a 5,000-year-old chronosequence of forested islands in Sweden, where retrogression occurs in the long-term absence of lightning-ignited wildfires. Despite fundamental differences in plant form and ecological niche among species, vascular plants and mosses showed similar ecophysiological responses to retrogression. The most common effects of retrogression were reductions in photosynthesis and respiration per unit foliar N, increases in foliar N, δ(13)C and δ(15)N, and decreases in specific leaf areas. In contrast, photosynthesis per unit mass or area generally did not change along the chronosequence, but did vary many-fold between vascular plants and mosses. The consistent increases in foliar N without corresponding increases in mass- or area-based photosynthesis suggest that other factor(s), such as P co-limitation, light conditions or water availability, may co-regulate C gain in retrogressive boreal forests. Against our predictions, traits of mosses associated with C and N were generally highly responsive to retrogression, which has implications for how mosses influence ecosystem processes in boreal forests.  相似文献   

7.
Altitudinal patterns in host suitability for forest insects   总被引:4,自引:0,他引:4  
Conspecific trees growing at high and low-elevations encounter different growing conditions and may vary in their suitability as hosts for herbivorous insects. Mountain tree populations may be more resistant to herbivory if low temperatures constrain growth more than they constrain photosynthesis, resulting in increased secondary metabolism (temperature hypothesis). Alternatively, mountain trees may be fertilized by atmospheric nitrogen deposition and become more palatable to insects (atmospheric deposition hypothesis). We evaluated these two hypotheses by comparing high- and low-elevation trees with insect bioassays and analyses of foliar nitrogen and condensed tannin. Contrary to the temperature hypothesis, high-elevation foliage had higher leaf nitrogen (six of six tree species) and allowed higher growth rates of Lymantria dispar larvae (five of six tree species). The nitrogen deposition hypothesis was broadly supported by measurements from two mountains showing that high-elevation trees tended to have higher leaf nitrogen, lower leaf tannins, and support higher insect growth performance than conspecific trees from lower elevations. The deposition hypothesis was further supported by fertilization studies showing that simulated atmospheric nitrogen deposition changed the foliar chemistry of valley trees to resemble that of high-elevation trees. Predictions that the altitudinal gradient in foliar chemistry and host suitability should be steepest on mountains receiving more deposition were largely not supported, but interpretations are complicated by lack of replication among mountains. In the northeastern United States, increased host suitability of high-elevation trees seems sufficient to influence the population dynamics and community composition of herbivores. Atmospheric nitrogen deposition offers a promising hypothesis to explain and predict some important spatial patterns in herbivory. Received: 21 September 1997 / Accepted: 12 June 1998  相似文献   

8.
We examined how performance of Operophtera brumata (Lepidoptera) larvae was affected by nitrogen (N) fertilization of boreal forest understorey vegetation. We monitored larval densities on Vaccinium myrtillus plants for a period of 7 years in a field experiment. Preliminary results indicated that the N effect on larval densities was weak. To examine if this was due to indirect interactions with a plant pathogen, Valdensia heterodoxa, that share the same host plant, or due to top-down effects of predation, we performed both a laboratory feeding experiment (individual level) and a bird exclusion experiment (population level) in the field. At the individual level, altered food plant quality (changes in plant concentration of carbon, N, phenolics, or condensed tannins) due to repeated infection by the pathogen had no effect on larval performance, but both survival to the adult stage and adult weight were positively affected by N fertilization. Exclusion of insectivorous birds increased the frequency of larval damage on V. myrtillus shoots, indicating higher larval densities. This effect was stronger in fertilized than in unfertilized plots, indicating higher bird predation in fertilized plots. Predation may thus explain the lack of fertilization effect on larval densities in the field experiment. Our results suggest that top-down effects are more important for larval densities than bottom-up effects, and that bird predation may play an important role in population regulation of O. brumata in boreal forests.Electronic Supplementary Material Supplementary material is available for this article at  相似文献   

9.
Summary Garrigue plant species growing on a calcareous substrate in southern France had higher foliar N levels than the same species growing on a relatively lower nutrient siliceous substrate (maquis). However maquis species had significantly higher foliar levels of P, more water, higher phenolic concentrations and larger leaf areas. The cumulative amount of insect damage on garrigue and maquis plants was similar, presumably due to different nutritional advantages in each case. Soil fertilization signifincantly elevated N levels in Q. coccifera, increased total leaf areas, decreased condensed tannin levels, and these leaves showed significantly more insect damage. Some effects of burning on Q. coccifera are also described. In these shrublands, fertilization may render leaf material more nutritional for herbivores by increasing nitrogen content and decreasing condensed tannin concentration, although very heavy grazing pressure may increase levels of leaf phenolics.  相似文献   

10.
The well-known deceleration of nitrogen (N) cycling in the soil resulting from addition of large amounts of foliar condensed tannins may require increased fine-root growth in order to meet plant demands for N. We examined correlations between fine-root production, plant genetics, and leaf secondary compounds in Populus angustifolia, P. fremontii, and their hybrids. We measured fine-root (<2mm) production and leaf chemistry along an experimental genetic gradient where leaf litter tannin concentrations are genetically based and exert strong control on net N mineralization in the soil. Fine-root production was highly correlated with leaf tannins and individual tree genetic composition based upon genetic marker estimates, suggesting potential genetic control of compensatory root growth in response to accumulation of foliar secondary compounds in soils. We suggest, based on previous studies in our system and the current study, that genes for tannin production could link foliar chemistry and root growth, which may provide a powerful setting for external feedbacks between above- and belowground processes.  相似文献   

11.
1. Four Lotus corniculatus genotypes differing in cyanoglycoside and condensed tannin concentrations were grown in either low (350 ppm) or high (700 ppm) atmospheric CO2 environments. Larval performance, consumption and conversion efficiency of Polyommatus icarus feeding on this plant material were measured.
2. Plants grown under elevated CO2 contained less cyanoglycosides, more condensed tannins and more starch than control plants. However, water concentration, nitrogen and protein as well as nitrogen concentration in relation to carbon concentration did not differ between CO2 treatments.
3. The four genotypes differed significantly in condensed tannins, cyanoglucoside, leaf water and leaf nitrogen but no genotype–CO2 interaction was detected, except for total phenolics and condensed tannins in which two plant genotypes showed stronger increases under elevated CO2 than the other two.
4. Larvae of P . icarus consumed more plant material and used and converted it more efficiently from plants grown at high atmospheric CO2.
5. Larvae developed significantly faster and were significantly heavier when fed plant material grown under elevated CO2. The observed difference in mass disappeared in the pupal and adult stages. However, lipid concentration of adults from the elevated CO2 treatment was marginally significantly higher than of controls.
6. It is concluded that the higher carbohydrate concentration of L . corniculatus plants grown at elevated CO2 renders leaves more suitable and better digestible to P . icarus . Furthermore, differences in allelochemicals might influence the palatability of L . corniculatus leaves for this specialist on Fabaceae.  相似文献   

12.
(1) Increased atmospheric nitrogen deposition has shifted plant dominance from ericaceous plants to grass species. To elucidate the reduced competitiveness of heather, we tested the hypothesis that additions of nitrogen reduce the concentrations of phenolics and condensed tannins in ericaceous leaves and retard mycorrhizal colonisation in ericaceous plants. We also tested the negative effects of reduced light intensity on carbon-based secondary compounds and mycorrhizal colonisation in ericaceous plants. (2) We performed a field inventory at three heathland sites in the Netherlands varying in nutrient supply and light intensity. Leaves of ericaceous plants and grasses were collected and analysed for concentrations of tannins, phenolics and nutrients. Similarly, we took root samples to record mycorrhizal colonisation and soil samples to measure the soil mineralisation. In addition, we conducted two-factorial experiments with Calluna vulgaris plants, in which we varied fertiliser and shade levels under greenhouse and field conditions. (3) The field inventory revealed that nitrogen addition and shading both negatively affected the concentration of total phenolics. The total phenolics and condensed tannin concentrations were positively correlated (< 0.001), but in the field experiment, the condensed tannins were not significantly affected by the treatments. Our results provide the first evidence that the carbon nutrient balance can be used to predict the amount of total phenolics in the dwarf shrub C. vulgaris. (4) In the field experiments, shading of plants resulted in significantly less mycorrhizal colonisation. Only in the greenhouse experiment did addition of nitrogen negatively affect mycorrhizal colonisation. (5) Our results imply that increased atmospheric nitrogen deposition can depress the tannin concentrations in ericaceous plants and the mycorrhizal colonisation in roots, thereby reducing the plants’ competitiveness with respect to grasses. Additionally, if ericaceous plants are shaded by grasses that have become dominant due to increased nitrogen supply, these effects will be intensified and competitive replacement will be accelerated.  相似文献   

13.
Plant adaptations for defense against herbivory vary both among species and among genotypes. Moreover, numerous forms of within-plant variation in defense, including ontogeny, induction, and seasonal gradients, allow plants to avoid expending resources on defense when herbivores are absent. We used an 18-year-old cottonwood common garden composed of Populus fremontii, Populus angustifolia, and their naturally occurring F1 hybrids (collectively referred to as ??cross types??) to quantify and compare the relative influences of three hierarchical levels of variation (between cross types, among genotypes, and within individual genotypes) on univariate and multivariate phytochemical defense traits. Within genotypes, we evaluated ontogeny, induction (following cottonwood leaf beetle herbivory), and seasonal variation. We compared the effect sizes of each of these sources of variation on the plant defense phenotype. Three major patterns emerged. First, we observed significant differences in concentrations of defense phytochemicals among cross types, and/or among genotypes within cross types. Second, we found significant genetic variation for within-plant differences in phytochemical defenses: (a) based on ontogeny, levels of constitutive phenolic glycosides were nearly three times greater in the mature zone than in the juvenile zone within one cottonwood cross type, but did not significantly differ within another cross type; (b) induced levels of condensed tannins increased up to 65?% following herbivore damage within one cottonwood cross type, but were not significantly altered in another cross type; and (c) concentrations of condensed tannins tended to increase across the season, but did not do so across all cross types. Third, our estimates of effect size demonstrate that the magnitude of within-plant variation in a phytochemical defense can rival the magnitude of differences in defense among genotypes and/or cross types. We conclude that, in cottonwood and likely other plant species, multiple forms of within-individual variation have the potential to substantially influence ecological and evolutionary processes.  相似文献   

14.
Osier TL  Lindroth RL 《Oecologia》2006,148(2):293-303
Although genetic variability and resource availability both influence plant chemical composition, little is known about how these factors interact to modulate costs of resistance, expressed as negative correlations between growth and defense. We evaluated genotype × environment effects on foliar chemistry and growth of quaking aspen (Populus tremuloides) by growing multiple aspen genotypes under variable conditions of light and soil nutrient availability in a common garden. Foliage was analyzed for levels of nitrogen, phenolic glycosides and condensed tannins. Bioassays of leaf quality were conducted with fourth-stadium gypsy moth (Lymantria dispar) larvae. Results revealed strong effects of plant genotype, light availability and nutrient availability; the importance of each factor depended upon compound type. For example, tannin concentrations differed little among genotypes and across nutrient regimes under low light conditions, but markedly so under high light conditions. Phenolic glycoside concentrations, in contrast, were largely determined by genotype. Variation in phenolic glycoside concentrations among genotypes was the most important factor affecting gypsy moth performance. Gypsy moth biomass and development time were negatively and positively correlated, respectively, with phenolic glycoside levels. Allocation to phenolic glycosides appeared to be costly in terms of growth, but only under resource-limiting conditions. Context-dependent trade-offs help to explain why costs of allocation to resistance are often difficult to demonstrate.  相似文献   

15.
Summary Many species of Eucalyptus, one of the dominant genera in Australian forests and woodlands, contain high levels of tannins and other phenols and are also heavily damaged by grazing insects. These phenols do not appear to affect insect attack because a wide range of concentrations of condensed tannins and other phenols in leaves of 13 Eucalyptus sp. influenced neither feeding rates of Paropsis atomaria larvae, nor their nitrogen use efficiencies. We discuss reasons why tannins may not appreciably reduce the availability of nitrogen (N) to these insects. Performance was directly related to leaf N concentration, and growth rates, N gains, and N use efficiencies all increased as leaf N content increased, although absolute feeding rates remained constant. These relationships differ from those found in insects feeding on other plants, and we suggest that the low N contents common in Eucalyptus leaves may be responsble. We propose that the extensive damage observed in many eucalypts is in part related to the high feeding rates maintained by individual larvae.To whom offprint requests shouid be sent  相似文献   

16.
The carbon/nutrient balance hypothesis suggests that leaf carbon to nitrogen ratios influence the synthesis of secondary compounds such as condensed tannins. We studied the effects of rising atmospheric carbon dioxide on carbon to nitrogen ratios and tannin production. Six genotypes of Populus tremuloides were grown under elevated and ambient CO2 partial pressure and high- and low-fertility soil in field open-top chambers in northern lower Michigan, USA. During the second year of exposure, leaves were harvested three times (June, August, and September) and analyzed for condensed tannin concentration. The carbon/nutrient balance hypothesis was supported overall, with significantly greater leaf tannin concentration at high CO2 and low soil fertility compared to ambient CO2 and high soil fertility. However, some genotypes increased tannin concentration at elevated compared to ambient CO2, while others showed no CO2 response. Performance of lepidopteran leaf miner (Phyllonorycter tremuloidiella) larvae feeding on these plants varied across genotypes, CO2, and fertility treatments. These results suggest that with rising atmospheric CO2, plant secondary compound production may vary within species. This could have consequences for plant–herbivore and plant–microbe interactions and for the evolutionary response of this species to global climate change.  相似文献   

17.
How plants respond to long-term nutrient enrichment can provide insights into physiological and evolutionary constraints in various ecosystems. The present study examined foliar concentrations after fertilization—to determine if nutrient accumulation responses of the most abundant species in a plant community reflect differences in N and P uptake and storage. Using a chronosequence in the Hawaiian Islands that differs in N and P availability, it was shown that after fertilization, plants increase foliar P to a much greater degree than foliar N, as indicated by response ratios. In addition, foliar P responses after fertilization were more variable and largely driving the observed changes in N:P values. Across species, both inorganic and organic P increased but neither form of N increased significantly. This pattern of P accumulation was consistent across 13 species of varying life forms and occurred at both the N-limited and P-limited site, although its magnitude was larger at the P-limited site. Foliar P accumulation after nutrient enrichment may indicate nutrient storage and may have evolved to be a general strategy to deal with uncertainties in P availability. Storage of P complicates interpretations of N:P values and the determination of nutrient limitation.  相似文献   

18.

Aims

Reclamation following oil sands mining in northeastern Alberta (Canada) creates adverse reforestation soil conditions, including extreme pH values. We elucidated pH tolerance limits of boreal plant species and how pH affects nutrient uptake in these plants.

Methods

We measured growth, gas exchange, and foliar nutrient concentration of 15 common northern boreal forest plants after eight weeks exposure to root zone pH ranging from 5.0 to 9.0. Cluster analyses were used to group these species based on their pH responses.

Results

Based on their growth and gas exchange responses to pH, the 15 plant species could be divided into five groups, each of which contained species that commonly co-occur in particular boreal forest site types. For the foliar nutrient responses to pH, the 15 species could be grouped into only two categories; both showed decreases in foliar N, P, Fe and Zn concentration with increasing pH, with a more pronounced effect on the group that included trembling aspen, paper birch and chokecherry.

Conclusions

The evidence of differential adaptation to pH by habitat type suggests the importance of soil pH as a factor affecting boreal plant species distribution and could be helpful for selection of species suitable for reclamation of sites with altered soil pH.
  相似文献   

19.
The foliar stable N isotope ratio (δ15N) can provide integrated information on ecosystem N cycling. Here we present the δ15N of plant and soil in four remote typical tropical rainforests (one primary and three secondary) of southern China. We aimed to examine if (1) foliar δ15N in the study forests is negative, as observed in other tropical and subtropical sites in eastern Asia; (2) variation in δ15N among different species is smaller compared to that in many N-limited temperate and boreal ecosystems; and (3) the primary forest is more N rich than the younger secondary forests and therefore is more 15N enriched. Our results show that foliar δ15N ranged from ?5.1 to 1.3 ‰ for 39 collected plant species with different growth strategies and mycorrhizal types, and that for 35 species it was negative. Soil NO3 ? had low δ15N (?11.4 to ?3.2 ‰) and plant NO3 ? uptake could not explain the negative foliar δ15N values (NH4 + was dominant in the soil inorganic-N fraction). We suggest that negative values might be caused by isotope fractionation during soil NH4 + uptake and mycorrhizal N transfer, and by direct uptake of atmospheric NH3/NH4 +. The variation in foliar δ15N among species (by about 6 ‰) was smaller than in many N-limited ecosystems, which is typically about or over 10 ‰. The primary forest had a larger N capital in plants than the secondary forests. Foliar δ15N and the enrichment factor (foliar δ15N minus soil δ15N) were higher in the primary forest than in the secondary forests, albeit differences were small, while there was no consistent pattern in soil δ15N between primary and secondary forests.  相似文献   

20.
Understanding nutrient limitation of net primary productivity (NPP) is critical to predict how plant communities will respond to environmental change. Foliar nutrients, especially nitrogen and phosphorus concentrations ([N] and [P]) and their ratio, have been used widely as indicators of plant nutritional status and have been linked directly to nutrient limitation of NPP. In tropical systems, however, a high number of confounding factors can limit the ability to predict nutrient limitation —as defined mechanistically by NPP responses to fertilization— based on the stoichiometric signal of the plant community. We used a long-term full factorial N and P fertilization experiment in a lowland tropical wet forest in Costa Rica to explore how tissue (foliar, litter and root) [N] and [P] changed with fertilization, how different tree size classes and taxa influenced the community response, and how tissue nutrients related to NPP. Consistent with NPP responses to fertilization, there were no changes in community-wide foliar [N] and [P], two years after fertilization. Nevertheless, litterfall [N] increased with N additions and root [P] increased with P additions. The most common tree species (Pentaclethra macroloba) had 9 % higher mean foliar [N] with NP additions and the most common palm species (Socratea exohrriza) had 15% and 19% higher mean foliar [P] with P and NP additions, respectively. Moreover, N:P ratios were not indicative of NPP responses to fertilization, either at the community or at the taxa level. Our study suggests that in these diverse tropical forests, tissue [N] and [P] are driven by the interaction of multiple factors and are not always indicative of the nutritional status of the plant community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号