首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Migraine is a common neurovascular brain disorder that is manifested in recurrent episodes of disabling headache. The aim of the present study was to compare the prevalence and heritability of migraine across six of the countries that participate in GenomEUtwin project including a total number of 29,717 twin pairs. Migraine was assessed by questionnaires that differed between most countries. It was most prevalent in Danish and Dutch females (32% and 34%, respectively), whereas the lowest prevalence was found in the younger and older Finnish cohorts (13% and 10%, respectively). The estimated genetic variance (heritability) was significant and the same between sexes in all countries. Heritability ranged from 34% to 57%, with lowest estimates in Australia, and highest estimates in the older cohort of Finland, the Netherlands, and Denmark. There was some indication that part of the genetic variance was non-additive, but this was significant in Sweden only. In addition to genetic factors, environmental effects that are non-shared between members of a twin pair contributed to the liability of migraine. After migraine definitions are homogenized among the participating countries, the GenomEUtwin project will provide a powerful resource to identify the genes involved in migraine.  相似文献   

2.
Twin cohorts provide a unique advantage for investigations of the role of genetics and environment in the etiology of variation in common complex traits by reducing the variance due to environment, age, and cohort differences. The GenomEUtwin (http://www.genomeutwin.org) consortium consists of eight twin cohorts (Australian, Danish, Dutch, Finnish, Italian, Norwegian, Swedish, and United Kingdom) with the total resource of hundreds of thousands of twin pairs. We performed quantitative trait locus (QTL) analysis of one of the most heritable human complex traits, adult stature (body height) using genome-wide scans performed for 3,817 families (8,450 individuals) derived from twin cohorts from Australia, Denmark, Finland, Netherlands, Sweden, and United Kingdom with an approximate ten-centimorgan microsatellite marker map. The marker maps for different studies differed and they were combined and related to the sequence positions using software developed by us, which is publicly available (https://apps.bioinfo.helsinki.fi/software/cartographer.aspx). Variance component linkage analysis was performed with age, sex, and country of origin as covariates. The covariate adjusted heritability was 81% for stature in the pooled dataset. We found evidence for a major QTL for human stature on 8q21.3 (multipoint logarithm of the odds 3.28), and suggestive evidence for loci on Chromosomes X, 7, and 20. Some evidence of sex heterogeneity was found, however, no obvious female-specific QTLs emerged. Several cohorts contributed to the identified loci, suggesting an evolutionarily old genetic variant having effects on stature in European-based populations. To facilitate the genetic studies of stature we have also set up a website that lists all stature genome scans published and their most significant loci (http://www.genomeutwin.org/stature_gene_map.htm).  相似文献   

3.
Stroke is one of the leading causes of severe disability and death in the world. In the present article we outline possibilities and limitations for future stroke research within the GenomEUtwin. The combined sample of twins born before 1958 from Denmark, Finland, and Sweden, and available for follow-up into the second millennium for non-fatal and fatal stroke events through national inpatient and death registers exceeds 70,000 twin pairs. This sample size will enable the study of genetic influences on stroke and major stroke subtypes. Large samples of twins in GenomEUtwin have been followed up repeatedly through interviews and questionnaires concerning a variety of exposures and potential risk factors for stroke. We briefly outline how this information can be combined with the health register information for epidemiologic and genetic epidemiologic studies of stroke. We also present the number of twin pairs concordant and discordant for stroke in Denmark, Finland and Sweden, and time lags between events for twins concordant for stroke. This information illustrates that the number of affected sib pairs for linkage studies is relatively limited, but the sample sizes are promising for association studies.  相似文献   

4.
Despite the decline in coronary heart disease in many European countries, the disease remains an enormous public health problem. Although we know a great deal about environmental risk factors for coronary heart disease, a heritable component was recognized a long time ago. The earliest and best known examples of how our genetic constitution may determine cardiovascular risk relate to lipoprotein(a), familial hypercholesterolaemia and apolipoprotein E. In the past 20 years a fair number of polymorphisms assessed singly have shown strong associations with the disease but most are subject to poor repeatability. Twins constitute a compelling natural experiment to establish the genetic contribution to coronary heart disease and its risk factors. GenomEUtwin, a recently funded Framework 5 Programme of the European Community, affords the opportunity of comparing the heritability of risk factors in different European Twin Registries. As an illustration we present the heritabilities of systolic and diastolic blood pressure, based on data from over 4000 twin pairs from six different European countries and Australia. Heritabilities for systolic blood pressure are between 52 and 66% and for diastolic blood pressure between 44 and 66%. There is no evidence of sex differences in heritability estimates and very little to no evidence for a significant contribution of shared family environment. A non-twin based prospective case/cohort study of coronary heart disease and stroke (MORGAM) will allow hypotheses relating to cardiovascular disease, generated in the twin cohorts, to be tested prospectively in adult populations. Twin studies have also contributed to our understanding of the life course hypothesis, and GenomEUtwin has the potential to add to this.  相似文献   

5.
There is an intense search for longevity genes in both animal models and humans. Human family studies have indicated that a modest amount of the overall variation in adult lifespan (approximately 20–30%) is accounted for by genetic factors. But it is not known if genetic factors become increasingly important for survival at the oldest ages. We study the genetic influence on human lifespan and how it varies with age using the almost extinct cohorts of Danish, Finnish and Swedish twins born between 1870 and 1910 comprising 20,502 individuals followed until 2003–2004. We first estimate mean lifespan of twins by lifespan of co-twin and then turn to the relative recurrence risk of surviving to a given age. Mean lifespan for male monozygotic (MZ) twins increases 0.39 [95% CI (0.28, 0.50)] years for every year his co-twin survives past age 60 years. This rate is significantly greater than the rate of 0.21 (0.11, 0.30) for dizygotic (DZ) males. Females and males have similar rates and these are negligible before age 60 for both MZ and DZ pairs. We moreover find that having a co-twin surviving to old ages substantially and significantly increases the chance of reaching the same old age and this chance is higher for MZ than for DZ twins. The relative recurrence risk of reaching age 92 is 4.8 (2.2, 7.5) for MZ males, which is significantly greater than the 1.8 (0.10, 3.4) for DZ males. The patterns for females and males are very similar, but with a shift of the female pattern with age that corresponds to the better female survival. Similar results arise when considering only those Nordic twins that survived past 75 years of age. The present large population based study shows genetic influence on human lifespan. While the estimated overall strength of genetic influence is compatible with previous studies, we find that genetic influences on lifespan are minimal prior to age 60 but increase thereafter. These findings provide a support for the search for genes affecting longevity in humans, especially at advanced ages.  相似文献   

6.
The aim of this study was to explore, in a large and non-censored twin cohort, the nature (i.e., additive versus non-additive) and magnitude (i.e., heritability) of genetic influences on inter-individual differences in human longevity. The sample comprised all identified and traced non-emigrant like-sex twin pairs born in Denmark during the period 1870–1900 with a zygosity diagnosis and both members of the pairs surviving the age of 15 years. A total of 2872 pairs were included. Age at death was obtained from the Danish Central Person Register, the Danish Cause-of-Death Register and various other registers. The sample was almost non-censored on the date of the last follow-up (May 1, 1994), all but 0.6% had died, leaving a total of 2872 pairs for analysis. Proportions of variance attributable to genetic and environmental factors were assessed from variance-covariance matrices using the structural equation model approach. The most parsimonious explanation of the data was provided by a model that included genetic dominance (non-additive genetic effects caused by interaction within gene loci) and non-shared environmental factors (environmental factors that are individual-specific and not shared in a family). The heritability of longevity was estimated to be 0.26 for males and 0.23 for females. The small sex-difference was caused by a greater impact of non-shared environmental factors in the females. Heritability was found to be constant over the three 10-year birth cohorts included. Thus, longevity seems to be only moderately heritable. The nature of genetic influences on longevity is probably non-additive and environmental influences non-shared. There is no evidence for an impact of shared (family) environment.  相似文献   

7.
The Danish Twin Registry is the oldest national twin register in the world, initiated in 1954 by ascertainment of twins born from 1870 to 1910. During a number of studies birth cohorts have been added to the register, and by the recent addition of birth cohorts from 1931 to 1952 the Registry now comprizes 127 birth cohorts of twins from 1870 to 1996, with a total of more than 65,000 twin pairs included. In all cohorts the ascertainment has been population-based and independent of the traits studied, although different procedures of ascertainment have been employed. In the oldest cohorts only twin pairs with both twins surviving to age 6 have been included while from 1931 all ascertained twins are included. The completeness of the ascertainment after adjustment for infant mortality is high, with approximately 90% ascertained up to 1968, and complete ascertainment of all liveborn twin pairs since 1968. The Danish Twin Registry is used as a source for large studies on genetic influence on aging and age-related health problems, normal variation in clinical parameters associated with the metabolic syndrome and cardiovascular diseases, and clinical studies of specific diseases. The combination of survey data with data obtained by linkage to national health related registers enables follow-up studies both of the general twin population and of twins from clinical studies.  相似文献   

8.
In this issue of Twin Research, we describe different facets of a European Community funded effort, GenomEUtwin, which capitalises on eight of the world's largest and best characterised twin registers and a multi-national population cohort, MORGAM. This international study, reaching beyond the geographical borders of Europe, is based on linkage and association strategies designed to identify genetic contributors to health and disease using integrated expertise of participating groups in genetics, epidemiology and biostatistics. By merging information from numerous epidemiological and genetic databases, GenomEUtwin will create an intellectual and technical infrastructure for future genetic epidemiological studies aiming to define genetic and life style risks for common human diseases.  相似文献   

9.
In animal models, single-gene mutations in genes involved in insulin/IGF and target of rapamycin signalling pathways extend lifespan to a considerable extent. The genetic, genomic and epigenetic influences on human longevity are expected to be much more complex. Strikingly however, beneficial metabolic and cellular features of long-lived families resemble those in animals for whom the lifespan is extended by applying genetic manipulation and, especially, dietary restriction. Candidate gene studies in humans support the notion that human orthologues from longevity genes identified in lower species do contribute to longevity but that the influence of the genetic variants involved is small. Here we discuss how an integration of novel study designs, labour-intensive biobanking, deep phenotyping and genomic research may provide insights into the mechanisms that drive human longevity and healthy ageing, beyond the associations usually provided by molecular and genetic epidemiology. Although prospective studies of humans from the cradle to the grave have never been performed, it is feasible to extract life histories from different cohorts jointly covering the molecular changes that occur with age from early development all the way up to the age at death. By the integration of research in different study cohorts, and with research in animal models, biological research into human longevity is thus making considerable progress.  相似文献   

10.
Survival records of longevity experiments are a key component in research on aging. However, surprisingly there have been very few cross‐study analyses, besides comparisons of median lifespans or similar summary information. Here, we use a large set of full survival data from various studies to address questions in aging, which are beyond the scope of individual studies. We characterize survival differences between female and male flies of different genetic Drosophila strains, showing significant differences between strains. We further analyse the variation in survival of control cohorts recorded under highly similar conditions within different Drosophila strains. We found that overall transgenic constructs of the UAS/GAL4 expression system which should have no effect (e.g. a GAL4 construct alone) extend lifespan significantly in the w1118 strain. Using a large data set comprised of various studies, we found no evidence for larger lifespan extensions being associated with shorter lifespans of the control in Drosophila. This demonstrates that lifespan extending treatments are not purely rescuing weak backgrounds.  相似文献   

11.
Body mass index (BMI), a simple anthropometric measure, is the most frequently used measure of adiposity and has been instrumental in documenting the worldwide increase in the prevalence of obesity witnessed during the last decades. Although this increase in overweight and obesity is thought to be mainly due to environmental changes, i.e., sedentary lifestyles and high caloric diets, consistent evidence from twin studies demonstrates high heritability and the importance of genetic differences for normal variation in BMI. We analysed self-reported data on BMI from approximately 37,000 complete twin pairs (including opposite sex pairs) aged 20-29 and 30-39 from eight different twin registries participating in the GenomEUtwin project. Quantitative genetic analyses were conducted and sex differences were explored. Variation in BMI was greater for women than for men, and in both sexes was primarily explained by additive genetic variance in all countries. Sex differences in the variance components were consistently significant. Results from analyses of opposite sex pairs also showed evidence of sex-specific genetic effects suggesting there may be some differences between men and women in the genetic factors that influence variation in BMI. These results encourage the continued search for genes of importance to the body composition and the development of obesity. Furthermore, they suggest that strategies to identify predisposing genes may benefit from taking into account potential sex specific effects.  相似文献   

12.
Behaviors related to fertility constitute primary candidates for investigating the relevance of evolutionary influences and biological dispositions on contemporary human behaviors. Using female Danish twin cohorts born 1870-1968, we document important transformations in the relative contributions of "nurture" and "nature" to within-cohort variations in early and complete fertility, and we point toward a systematic relation between the socioeconomic context of cohorts and the relevance of genetic and shared environmental factors. This transformation is most striking for early fertility where genetic factors strengthen over time and are consistent with up to 50 percent of the variation in early fertility in most recent cohorts. Understanding this emerging relevance of genetic factors is of central importance because early fertility constitutes an important determinant of complete fertility levels in low-fertility societies, and because teenage motherhood and early childbearing are often associated with negative life-cycle consequences. Moreover, our results emphasize the need for socially and contextually informed analyses of nature and nurture that allow both factors to influence human reproductive behavior over time.  相似文献   

13.
We developed a new statistical framework to find genetic variants associated with extreme longevity. The method, informed GWAS (iGWAS), takes advantage of knowledge from large studies of age-related disease in order to narrow the search for SNPs associated with longevity. To gain support for our approach, we first show there is an overlap between loci involved in disease and loci associated with extreme longevity. These results indicate that several disease variants may be depleted in centenarians versus the general population. Next, we used iGWAS to harness information from 14 meta-analyses of disease and trait GWAS to identify longevity loci in two studies of long-lived humans. In a standard GWAS analysis, only one locus in these studies is significant (APOE/TOMM40) when controlling the false discovery rate (FDR) at 10%. With iGWAS, we identify eight genetic loci to associate significantly with exceptional human longevity at FDR < 10%. We followed up the eight lead SNPs in independent cohorts, and found replication evidence of four loci and suggestive evidence for one more with exceptional longevity. The loci that replicated (FDR < 5%) included APOE/TOMM40 (associated with Alzheimer’s disease), CDKN2B/ANRIL (implicated in the regulation of cellular senescence), ABO (tags the O blood group), and SH2B3/ATXN2 (a signaling gene that extends lifespan in Drosophila and a gene involved in neurological disease). Our results implicate new loci in longevity and reveal a genetic overlap between longevity and age-related diseases and traits, including coronary artery disease and Alzheimer’s disease. iGWAS provides a new analytical strategy for uncovering SNPs that influence extreme longevity, and can be applied more broadly to boost power in other studies of complex phenotypes.  相似文献   

14.
Database infrastructure has become a critical component for competitive life sciences research and discovery. The explosion of data requires that the data are properly loaded, accessed, managed, queried, analyzed, and shared with others. The key purpose of the population-based twin cohorts housed at different institutions in Europe is to gather an extremely large quantity of information from their twin populations, and share it. Longitudinal research over a long period of time, hopefully generations, demands completely new methods and systems to handle the gathering of information and storing. These cohorts bring to the fore problems concerning the need for a standardization of research data and a computer and storage strategy. In the following we describe the preliminary strategy being implemented in the Database Core of GenomEUtwin.  相似文献   

15.
Multiallelic short tandem repeat polymorphisms, or microsatellites, are useful markers in genome wide scans to identify chromosomal regions containing genes underlying disease loci. The biallelic single nucleotide polymorphism (SNP) can be used to fine map previously identified large candidate regions or to test functional candidate genes by association analysis. In the GenomEUtwin project the population based impact of susceptibility genes for six multifactorial traits will be studied. A genome wide panel of informative human microsatellite markers will be analyzed by fluorescent capillary electrophoresis in well characterized twin and population samples. Contrary to microsatellites, selection of the most informative panels of SNPs is hampered by imperfect data on the allele frequencies and population distribution of SNPs markers in the databases. Therefore, selection of SNPs requires a substantial amount of bioinformatics, and, the SNPs need to be validated experimentally in the relevant populations prior to genotyping large sample sets. In the GenomEUtwin project, large scale genotyping of SNPs will be performed using the SNPstreamUHT and MassARRAY genotyping systems that are based on the primer extension reaction principle combined with fluorescent and mass spectrometric detection, respectively. Production of the genotyping data will be a joint effort by GenomEUtwin partners at the University of Helsinki, the National Public Health Institute in Helsinki, Finland and Uppsala University, Sweden. All genotyping data will be stored in a common database established specifically for the GenomEUtwin project, from where it can be accessed by the twin research centres that provided the samples for genotyping.  相似文献   

16.
17.
18.
An emerging body of data suggests that lipid metabolism has an important role to play in the aging process. Indeed, a plethora of dietary, pharmacological, genetic, and surgical lipid‐related interventions extend lifespan in nematodes, fruit flies, mice, and rats. For example, the impairment of genes involved in ceramide and sphingolipid synthesis extends lifespan in both worms and flies. The overexpression of fatty acid amide hydrolase or lysosomal lipase prolongs life in Caenorhabditis elegans, while the overexpression of diacylglycerol lipase enhances longevity in both C. elegans and Drosophila melanogaster. The surgical removal of adipose tissue extends lifespan in rats, and increased expression of apolipoprotein D enhances survival in both flies and mice. Mouse lifespan can be additionally extended by the genetic deletion of diacylglycerol acyltransferase 1, treatment with the steroid 17‐α‐estradiol, or a ketogenic diet. Moreover, deletion of the phospholipase A2 receptor improves various healthspan parameters in a progeria mouse model. Genome‐wide association studies have found several lipid‐related variants to be associated with human aging. For example, the epsilon 2 and epsilon 4 alleles of apolipoprotein E are associated with extreme longevity and late‐onset neurodegenerative disease, respectively. In humans, blood triglyceride levels tend to increase, while blood lysophosphatidylcholine levels tend to decrease with age. Specific sphingolipid and phospholipid blood profiles have also been shown to change with age and are associated with exceptional human longevity. These data suggest that lipid‐related interventions may improve human healthspan and that blood lipids likely represent a rich source of human aging biomarkers.  相似文献   

19.
Aging is a phenomenon that results in steady physiological deterioration in nearly all organisms in which it has been examined, leading to reduced physical performance and increased risk of disease. Individual aging is manifest at the population level as an increase in age-dependent mortality, which is often measured in the laboratory by observing lifespan in large cohorts of age-matched individuals. Experiments that seek to quantify the extent to which genetic or environmental manipulations impact lifespan in simple model organisms have been remarkably successful for understanding the aspects of aging that are conserved across taxa and for inspiring new strategies for extending lifespan and preventing age-associated disease in mammals.The vinegar fly, Drosophila melanogaster, is an attractive model organism for studying the mechanisms of aging due to its relatively short lifespan, convenient husbandry, and facile genetics. However, demographic measures of aging, including age-specific survival and mortality, are extraordinarily susceptible to even minor variations in experimental design and environment, and the maintenance of strict laboratory practices for the duration of aging experiments is required. These considerations, together with the need to practice careful control of genetic background, are essential for generating robust measurements. Indeed, there are many notable controversies surrounding inference from longevity experiments in yeast, worms, flies and mice that have been traced to environmental or genetic artifacts1-4. In this protocol, we describe a set of procedures that have been optimized over many years of measuring longevity in Drosophila using laboratory vials. We also describe the use of the dLife software, which was developed by our laboratory and is available for download (http://sitemaker.umich.edu/pletcherlab/software). dLife accelerates throughput and promotes good practices by incorporating optimal experimental design, simplifying fly handling and data collection, and standardizing data analysis. We will also discuss the many potential pitfalls in the design, collection, and interpretation of lifespan data, and we provide steps to avoid these dangers.  相似文献   

20.
Twin studies show that genetic differences account for about a quarter of the variance in adult human lifespan. Common polymorphisms that have a modest effect on lifespan have been identified in one gene, APOE, providing hope that other genetic determinants can be uncovered. However, although variants with substantial beneficial effects have been proposed to exist and several candidates have been put forward, their effects have yet to be confirmed. Human studies of longevity face numerous theoretical and logistical challenges, as the determinants of lifespan are extraordinarily complex. However, large-scale linkage studies of long-lived families, longitudinal candidate-gene association studies and the development of analytical methods provide the potential for future progress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号