首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diazepam is one of the most prescribed benzodiazepines. The purpose of the present research was to optimize the formulation of orodispersible tablets of diazepam. Orodispersible tablets of diazepam were prepared using different types of superdisintegrants (Ac-Di-Sol, sodium starch glycolate, and crospovidone (CP)) and different types of subliming agents (camphor and ammonium bicarbonate (AB)) at different concentrations and two methods of tablets preparations (wet granulation and direct compression methods). The formulations were evaluated for flow properties, wetting time, hardness, friability, content uniformity, in vivo disintegration time (DT), release profiles, and buccal absorption tests. All formulations showed satisfactory mechanical strength except formula F5 which contains camphor and formula F9 which is prepared by direct compression method. The results revealed that the tablets containing CP as a superdisintegrant have good dissolution profile with shortest DT. The optimized formula F7 is prepared using 10% CP as a superdisintegrant and 20% AB as a subliming agent by wet granulation method which shows the shortest DT and good dissolution profile with acceptable stability. This study helps in revealing the effect of formulation processing variables on tablet properties. It can be concluded that the orodispersible tablets of diazepam with better biopharmaceutical properties than conventional tablets could be obtained using formula F7.  相似文献   

2.
The purpose of this study was to develop a dosage form that was easy to administer and provides rapid release of the drug roxithromycin, using modified polysaccharides as rapidly disintegrating excipients. Modified polysaccharides co grinded treated agar (C-TAG) and co grinded treated guar gum (C-TGG) were prepared by subjecting pure polysaccharides namely agar and guar gum respectively to sequential processes of wetting, drying and co grinding with mannitol (1:1). The modified polysaccharides were characterized by Scanning Electron Microscopy and Diffuse Reflectance Spectroscopy and evaluated for particle size distribution, derived properties, swelling index and biodegradability. Optimization studies based on 22 factorial designs, with friability and disintegration time as response parameters were used to formulate orodispersible tablets of roxithromycin and evaluated for wetting time, water absorption ratio and in vitro drug release at salivary pH 6.4 and physiological pH 7.4. Results indicated that lower levels of modified polysaccharides namely C-TAG in F3 and C-TGG in F7 and higher levels of microcrystalline cellulose, exhibited least disintegration times without friability concerns. In vitro release of optimized formulations F3 and F7, both at salivary pH and physiological pH was found to be more than 90% within 30 min as compared to 27.82% at the same time point of conventional formulation. Stability studies carried out as per ICH Q1A guidelines suggested the formulations to be stable for a period of 6 months. Thus the approach of using modified polysaccharides as fast disintegrating excipient can be used to formulate a stable orodispersible formulation.  相似文献   

3.
The purpose of this work was to develop novel taste masked mouth-dissolving tablets of tramadol that overcomes principle drawback of such formulation which is inadequate mechanical strength. Tramadol is an opioid analgesic used for the treatment of moderate to severe pain. Mouth-dissolving tablets offer substantial advantages like rapid onset of action, beneficial for patients having difficulties in swallowing and in conditions where access to water is difficult. The crucial aspect in the formulation of mouth-dissolving tablets is to mask the bitter taste and to minimize the disintegration time while maintaining a good mechanical strength of the tablet. Mouth-dissolving tablets of tramadol are not yet reported in the literature because of its extreme bitter taste. In this work, the bitter taste of Tramadol HCl was masked by forming a complex with an ion exchange resin Tulsion335. The novel combination of a superdisintegrant and a binder that melts near the body temperature was used to formulate mechanically strong tablets that showed fast disintegration. A 32 full factorial design and statistical models were applied to optimize the effect of two factors, i.e., superdisintegrant (crospovidone) and a mouth-melting binder (Gelucire 39/01). It was observed that the responses, i.e., disintegration time and percent friability were affected by both the factors. The statistical models were validated and can be successfully used to prepare optimized taste masked mouth-dissolving tablets of Tramadol HCl with adequate mechanical strength and rapid disintegration.  相似文献   

4.
Late SG  Banga AK 《AAPS PharmSciTech》2010,11(4):1627-1635
The objective of this work was to apply response surface approach to investigate main and interaction effects of formulation parameters in optimizing novel fast disintegrating tablet formulation using β cyclodextrin as a diluent. The variables studied were diluent (β cyclodextrin, X 1), superdisintegrant (Croscarmellose sodium, X 2), and direct compression aid (Spray dried lactose, X 3). Tablets were prepared by direct compression method on B2 rotary tablet press using flat plain-face punches and characterized for weight variation, thickness, disintegration time (Y 1), and hardness (Y 2). Disintegration time was strongly affected by quadratic terms of β cyclodextrin, croscarmellose sodium, and spray-dried lactose. The positive value of regression coefficient for β cyclodextrin suggested that hardness increased with increased amount of β cyclodextrin. In general, disintegration of tablets has been reported to slow down with increase in hardness. However in the present study, higher concentration of β cyclodextrin was found to improve tablet hardness without increasing the disintegration time. Thus, β cyclodextrin is proposed as a suitable diluent to achieve fast disintegrating tablets with sufficient hardness. Good correlation between the predicted values and experimental data of the optimized formulation validated prognostic ability of response surface methodology in optimizing fast disintegrating tablets using β cyclodextrin as a diluent.  相似文献   

5.
The purpose of the present investigation was to increase the solubility and dissolution rate of rofecoxib by the preparation of its solid dispersion with polyvinyl pyrrolidone K30 (PVP K30) using solvent evaporation method. Drug-polymer interactions were investigated using differential scanning calorimetry (DSC), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). For the preparation of rofecoxib mouth dissolve tablets, its 1∶9 solid dispersion with PVP K30 was used with various disintegrants and sublimable materials. In an attempt to construct a statistical model for the prediction of disintegration time and percentage friability, a 32 randomized full and reduced factorial design was used to optimize the influence of the amounts of superdisintegrant and subliming agent. The obtained results showed that dispersion of the drug in the polymer considerably enhanced the dissolution rate. The drug-to-carrier ratio was the controlling factor for dissolution improvement. FTIR spectra revealed no chemical incompatibility between the drug and PVP K30. As indicated from XRD and DSC data, rofecoxib was in the amorphous form, which explains the better dissolution rate of the drug from its solid dispersions. Concerning the optimization study, the multiple regression analysis revealed that an optimum concentration of camphor and a higher percentage of crospovidone are required for obtaining rapidly disintegrating tablets. In conclusion, this investigation demonstrated the potential of experimental design in understanding the effect of the formulation variables on the quality of mouth dissolve tablets containing solid dispersion of a hydrophobic drug.  相似文献   

6.
The aim of this study was to develop benzydamine hydrochloride-loaded orodispersible films using the modification of a solvent casting method. An innovative approach was developed when the drying process of a small-scale production was used based on a heated inert base for casting the film. During this process, two types of film-forming maltodextrins for rapid drug delivery were used. They were plasticized with two different polyols (xylitol and sorbitol). Superdisintegrant Kollidon® CL-F was tested as an excipient that can induce faster disintegration of the prepared films. The influence of the formulation parameters (dextrose equivalent of film-forming maltodextrins, a type of plasticizer, and the presence of superdisintegrant) on the disintegration time, mechanical properties, and moisture content of films was statistically evaluated using a multivariate data analysis. Orodispersible films containing maltodextrin with lower dextrose equivalent value showed better mechanical properties (tensile strength ranged from 886.6?±?30.2 to 1484.2?±?226.9 N cm?2), lower moisture content (0.5?±?0.0 to 1.2?±?0.2%), and shorter disintegration time (17.6?±?2.9 to 27.8?±?2.8 s). Films plasticized with xylitol showed shorter disintegration time (17.6?±?2.9 to 29.2?±?3.8 s) than films containing sorbitol (23.8?±?2.9 to 31.7?±?3.9 s). With the addition of superdisintegrant Kollidon® CL-F, a significant influence on disintegration time was not observed. The modified solvent casting method shows great promise in a small-scale laboratory production of orodispersible films, e.g., in a pharmacy lab.  相似文献   

7.
The purpose of this research was to develop mouth dissolve tablets of nimesulide. Granules containing nimesulide, camphor, crospovidone, and lactose were prepared by wet granulation technique. Camphor was sublimed from the dried granules by exposure to vacuum. The porous granules were then compressed. Alternatively, tablets were first prepared percentage friability, wetting time, and disintegration time. In the investigation, a 32 full factorial design was used to investigate the joint influence of 2 formulation variables: amount of camphor and crospovidone. The results of multiple linear regression analysis revealed that for obtaining a rapidly disintegrating dosage form, tablets should be prepared using an optimum concentration of camphor and a higher percentage of crospovidone. A contour plot is also presented to graphically represent the effect of the independent variables on the disintegration time and percentage friability. A checkpoint batch was also prepared to prove the validity of the evolved mathematical model. Sublimation of camphor from tablets resulted in superior tablets as compared with the tablets prepared from granules that were exposed to vacuum. The systematic formulation approach helped in understanding the effect of formulation processing variables.  相似文献   

8.
Valsartan orodispersible tablets have been developed at 40-mg dose, with the intention of facilitating administration to patients experiencing problems with swallowing and hopefully, improving its poor oral bioavailability. Work started with selecting drug compatible excipients depending on differential scanning calorimetric analysis. A 33 full factorial design was adopted for the optimization of the tablets prepared by freeze-drying technique. The effects of the filler type, the binder type, and the binder concentration were studied. The different tablet formulas were characterized for their physical properties, weight variation, disintegration time, surface properties, wetting properties, and in vitro dissolution. Amongst the prepared 27 tablet formulas, formula number 6 (consisting of 4:6 valsartan:mannitol and 2% pectin) was selected to be tested in vivo. Oral bioavailability of two 40 mg valsartan orodispersible tablets was compared to the conventional commercial tablets after administration of a single dose to four healthy volunteers. Valsartan was monitored in plasma by high-performance liquid chromatography. The apparent rate of absorption of valsartan from the prepared tablets (C max = 2.879 μg/ml, t max = 1.08 h) was significantly higher than that of the conventional tablets (C max = 1.471 μg/ml, t max = 2.17 h), P ≤ 0.05. The relative bioavailability calculated as the ratio of mean total area under the plasma concentration–time curve for the orodispersible tablets relative to the conventional ones was 135%. The results of the in vivo study revealed that valsartan orodispersible tablets would be advantageous with regards to improved patient compliance, rapid onset of action, and increase in bioavailability.  相似文献   

9.
The study aim was concerned with formulation and evaluation of bioadhesive buccal drug delivery of tizanidine hydrochloride tablets, which is extensively metabolized by liver. The tablets were prepared by direct compression using bioadhesive polymers such as hydroxylpropyl methylcellulose K4M, sodium carboxymethyl cellulose alone, and a combination of these two polymers. In order to improve the permeation of drug, different permeation enhancers like beta-cyclodextrin (β-CD), hydroxylpropyl beta-cyclodextrin (HP-β-CD), and sodium deoxycholate (SDC) were added to the formulations. The β-CD and HP-β-CD were taken in 1:1 molar ratio to drug in formulations. Bioadhesion strength, ex vivo residence time, swelling, and in vitro dissolution studies and ex vivo permeation studies were performed. In vitro release of optimized bioadhesive buccal tablet was found to be non-Fickian. SDC was taken in 1%, 2%, and 3% w/w of the total tablet weight. Stability studies in natural saliva indicated that optimized formulation has good stability in human saliva. In vivo mucoadhesive behavior of optimized formulation was performed in five healthy male human volunteers and subjective parameters were evaluated.  相似文献   

10.
Orodispersible film (ODF) technology offers new possibilities for drug delivery by providing the advantages of oral delivery coupled with the enhanced onset of action and convenience to special patient categories such as pediatrics and geriatrics. In this study, mosapride (MOS) was formulated in an ODF preparation that can be used for treatment of patients who suffer from gastrointestinal disorders, especially difficulty in swallowing due to gastroesophageal reflux disease. Poloxamer 188 was used to solubilize MOS to allow its incorporation into the film matrix. The films were prepared by solvent-casting method using different polymer ratios of maltodextrin and hydroxypropyl methylcellulose and plasticizer levels of glycerol and propylene glycol. A D-optimal design was utilized to study the effect of polymer ratio, plasticizer type, and level on film mechanical properties, disintegration time, and dissolution rate. Statistical analysis of the experimental design showed that the increase of maltodextrin fraction and plasticizer level conferred optimum attributes to the prepared films in terms of film elasticity, film disintegration time, and MOS release rate. The ODF formulations were further tested for moisture sorption capacity, with formulations containing a higher ratio of maltodextrin and percent plasticizer showing more moisture uptake. The optimum film composition was also tested in vivo for film palatability and disintegration time. An optimized mosapride orodispersible film formulation was achieved that could be of benefit to patients suffering from gastrointestinal disorders.  相似文献   

11.
Directly compressible co-processed excipient systems facilitate orodispersible tablets (ODTs) manufacturing. Despite several excipient systems available, it is reported that the incorporation of high drug dose into the tablet mass may negatively affect both disintegration and mechanical properties. Therefore the influence of drug properties on the quality of orodispersible tablets was investigated. Fast dissolving tablet matrix was made of a co-processed excipient system F-Melt. Two grades of F-Melt that differed in composition, particle shape, and specific surface area were used to form tablet matrix. Ibuprofen, diclofenac sodium, and diltiazem hydrochloride were chosen as model drugs of different physicochemical properties such as solubility, particle size, and shape. Ninety formulations containing 12.5, 25, or 50 wt% of the model drug and F-Melt type C or M were prepared by direct compression. The quality of tablets was examined on the base of disintegration time, wetting time, mechanical resistance and texture analysis. The results showed that F-Melt grade, drug solubility, and its dose had an influence on the quality of tablets. From ninety formulations prepared, only four batches containing F-Melt type C and 12.5 wt% of ibuprofen, diclofenac sodium, or diltiazem hydrochloride could be classified as ODTs. Their disintegration time ranged from 41 to 144 s. In the case of F-Melt type M, tablets disintegrating within 101 s of friability below 1% could be prepared only if 12.5 wt% of diclofenac sodium was incorporated into the tablet mass.Key words: diclofenac sodium, diltiazem hydrochloride, direct compression, F-Melt, ibuprofen, ODTs  相似文献   

12.
Zolpidem tartrate is a non-benzodiazepine analogue of imidazopyridine of sedative and hypnotic category. It has a short half-life with usual dosage regimen being 5 mg, two times a day, or 10 mg, once daily. The duration of action is considered too short in certain circumstances. Thus, it is desirable to lengthen the duration of action. The formulation design was implemented by preparing extended-release tablets of zolpidem tartrate using the biphasic delivery system technology, where sodium starch glycolate acts as a superdisintegrant in immediate-release part and hydroxypropyl methyl cellulose as a release retarding agent in extended-release core. Tablets were prepared by direct compression. Both the core and the coat contained the drug. The pre-compression blends were evaluated for angle of repose, bulk density, and compressibility index. The tablets were evaluated for thickness, hardness, weight variation test, friability, and in vitro release studies. No interaction was observed between zolpidem tartrate and excipients from the Fourier transform infrared spectroscopy and differential scanning calorimetry analysis. The results of all the formulations prepared were compared with reference product Stilnoct®. Optimized formulations showed release patterns that match the United States Pharmacopeia (USP) guidelines for zolpidem tartrate extended-release tablets. The mechanism of drug release was studied using different mathematical models, and the optimized formulation has shown Fickian diffusion. Accelerated stability studies were performed on the optimized formulation.KEY WORDS: biphasic delivery system technology, hydroxypropyl methyl cellulose, modified release, sodium starch glycolate, zolpidem tartrate  相似文献   

13.
Orally disintegrating tablets (ODTs) are challenged by the need for simple technology to ensure good mechanical strength coupled with rapid disintegration. The objective of this work was to evaluate microwave-assisted development of ODTs based on simple direct compression tableting technology. Placebo ODTs comprising directly compressible mannitol and lactose as diluents, super disintegrants, and lubricants were prepared by direct compression followed by exposure to >97% relative humidity and then microwave irradiation for 5 min at 490 W. Placebo ODTs with hardness (>5 kg/cm2) and disintegration time (<60 s) were optimized. Palatable ODTs of Lamotrigine (LMG), which exhibited rapid dissolution of LMG, were then developed. The stability of LMG to microwave irradiation (MWI) was confirmed. Solubilization was achieved by complexation with beta-cyclodextrin (β-CD). LMG ODTs with optimal hardness and disintegration time (DT) were optimized by a 23 factorial design using Design Expert software. Taste masking using sweeteners and flavors was confirmed using a potentiometric multisensor-based electronic tongue, coupled with principal component analysis. Placebo ODTs with crospovidone as a superdisintegrant revealed a significant increase in hardness from ~3 to ~5 kg/cm2 and a decrease in disintegration time (<60 s) following microwave irradiation. LMG ODTs had hardness >5 kg/cm2, DT?<?30s, and rapid dissolution of LMG, and good stability was optimized by DOE and the design space derived. While β-CD complexation enabled rapid dissolution and moderate taste masking, palatability, which was achieved including flavors, was confirmed using an electronic tongue. A simple step of humidification enabled MWI-facilitated development of ODTs by direct compression presenting a practical and scalable advancement in ODT technology.  相似文献   

14.
The purpose of this research was to mask the intensely bitter taste of ondansetron HCl and to formulate a rapiddisintegrating tablet (RDT) of the taste-maske drug. Taste masking was done by complexing ondansetron HCl with aminoalkyl methacrylate copolymer (Eudragit EPO) in different ratios by the precipitation method. Drug-polymer complexes (DPCs) were tested for drug content, in vitro taste in simulated salivary fluid (SSF) of pH 6.2, and molecular property. Complex that did not release drug in SSF was considered taste-masked and selected for formulation RDTs. The complex with drug-polymer ratio of 8∶2 did not show drug release in SSF; therefore, it was selected. The properties of tablets such as tensile strength, wetting time, water absorption ratio, in vitro disintegration time, and disintegration in the oral cavity were investigated to elucidate the wetting and disintegration characteristics of tablets. Polyplasdone XL-10 7% wt/wt gave the minimum disintegration time. Tablets of batch F4 containing spray-dried mannitol and microcrystalline cellulose in the ratio 1∶1 and 7% wt/wt Polyplasdone XL-10 showed faster disintegration, within 12.5 seconds, than the marketed tablet (112 seconds). Good correlation between in vitro disintegration behavior and in the oral cavity was recognized. Taste evaluation of RDT in human volunteers revealed considerable taste masking with the degree of bitterness below threshold value (0.5) ultimately reaching to 0 within 15 minutes, whereas ondansetron HCl was rated intensely bitter with a score of 3 for 10 minutes. Tablets of batch F4 also revealed rapid drug release (t90, 60 seconds) in SGF compared with marketed formulation (t90, 240 seconds;P<.01). Thus, results conclusively demonstrated successful masking of taste and rapid disintegration of the formulated tablets in the oral cavity. Published: June 22, 2007  相似文献   

15.
The aim of this study was to evaluate the effect of increasing epinephrine load on the characteristics of fast-disintegrating sublingual tablets for the potential emergency treatment of anaphylaxis. Four tablet formulations, A, B, C, and D, containing 0%, 6%, 12%, and 24% of epinephrine bitartrate, respectively, and microcrystalline cellulose:low-substituted hydroxypropyl cellulose (9∶1), were prepared by direct compression, at a range of compression forces. Tablet weight variation, content uniformity, hardness, disintegration time, wetting time, and friability were measured for each formulation at each compression force. All 4 tablet formulations at each compression force were within the United States Pharmacopeia (USP) limits for weight variation and content uniformity. A linear increase in compression force resulted in an exponential increase in hardness for all formulations, a linear increase in disintegration and wetting times of A, and an exponential increase in disintegration and wetting times of B, C, and D. At a mean±SD hardness of ≥2.3±0.2 kg, all tablet formulations passed the USP friability test. At a mean±SD hardness of ≤3.1±0.2 kg, all tablet formulations resulted in disintegration and wetting times of <10 seconds and <30 seconds, respectively. Tablets with drug loads from 0% to 24% epinephrine can be formulated with hardness, disintegration times, and wetting times suitable for sublingual administration.  相似文献   

16.
Khan FN  Dehghan MH 《AAPS PharmSciTech》2011,12(4):1077-1086
Oral bioavailability of atorvastatin calcium (ATC) is very low (only 14%) due to instability and incomplete intestinal absorption and/or extensive gut wall extraction. When ATC is packed in the form of tablets, powders, etc., it gets destabilized as it is exposed to the oxidative environment, which is usually present during the production process, the storage of the substance, and the pharmaceutical formulation. Therefore, stabilized gastro-retentive floating tablets of ATC were prepared to enhance bioavailability. Water sorption and viscosity measurement studies are performed to get the best polymer matrix for gastro-retention. A 32 factorial design used to prepare optimized formulation of ATC. The selected excipients such as docusate sodium enhanced the stability and solubility of ATC in gastric media and tablet dosage form. The best formulation (F4) consisting of hypromellose, sodium bicarbonate, polyethylene oxide, docusate sodium, mannitol, crosscarmellose sodium, and magnesium stearate, gave floating lag time of 56 ± 4.16 s and good matrix integrity with in vitro dissolution of 98.2% in 12 h. After stability studies, no significant change was observed in stability, solubility, floating lag time, total floating duration, matrix integrity, and sustained drug release rates, as confirmed by DSC and powder X-ray diffraction studies. In vivo pharmacokinetic study performed in rabbits revealed enhanced bioavailability of F4 floating tablets, about 1.6 times compared with that of the conventional tablet (Storvas® 80 mg tablet). These results suggest that the gastric resident formulation is a promising approach for the oral delivery of ATC for improving bioavailability.Key words: atorvastatin calcium, bioavailibility, floating tablets, gastro-retention, stabilization  相似文献   

17.
The purpose of the work was to investigate correlation between disintegration and dissolution for immediate release tablets containing a high solubility drug and to identify formulations where disintegration test, instead of the dissolution test, may be used as the acceptance criteria based on International Conference on Harmonization Q6A guidelines. A statistical design of experiments was used to study the effect of filler, binder, disintegrating agent, and tablet hardness on the disintegration and dissolution of verapamil hydrochloride tablets. All formulation variables, i.e., filler, binder, and disintegrating agent, were found to influence tablet dissolution and disintegration, with the filler and disintegrating agent exerting the most significant influence. Slower dissolution was observed with increasing disintegration time when either the filler or the disintegrating agent was kept constant. However, no direct corelationship was observed between the disintegration and dissolution across all formulations due to the interactions between different formulation components. Although all tablets containing sodium carboxymethyl cellulose as the disintegrating agent, disintegrated in less than 3 min, half of them failed to meet the US Pharmacopeia 30 dissolution criteria for the verapamil hydrochloride tablets highlighting the dependence of dissolution process on the formulation components other than the disintegrating agent. The results identified only one formulation as suitable for using the disintegration test, instead of the dissolution test, as drug product acceptance criteria and highlight the need for systematic studies before using the disintegration test, instead of the dissolution test as the drug acceptance criteria. The opinions expressed in this work are only of authors and do not necessarily reflect the policy and statements of the FDA.  相似文献   

18.
Summary and Conclusion  Coprocessed superdisintegrant consisting of crospovidone and SSG exhibited good flow and compression characteristics. Cefixime trihydrate and ibuprofen tablets containing coprocessed superdisintegrant exhibited quick disintegration and improved drug dissolution. Publshed: February 2, 2007  相似文献   

19.
Famotidine is a potent H2-receptor antagonist most commonly used by elderly patients. Orodispersible tablets (ODT) are gaining popularity over conventional tablets due to their convenience and suitability for patients having dysphagia. The purpose of this study is to prepare famotidine ODT using the economic direct-compression method.A 32 full factorial design was used to evaluate the influence of different excipients on the properties and in vitro dissolution of famotidine ODT. Two factors were studied for their qualitative effects, namely, disintegrants and diluents. Disintegrants were studied in three levels viz. Ac-Di-Sol, sodium starch glycolate (Primojel) and low-substituted hydroxypropyl cellulose (L-HPC). Fillers were studied in three levels viz. mannitol, spray dried lactose and Avicel PH 101. The ODTs were prepared by direct compression and were evaluated for hardness, drug content, uniformity of weight, in vitro disintegration time, oral disintegration time, wetting time and in vitro dissolution. Maximum dissolution and minimum oral disintegration time (11.4 s) were observed in F7 prepared using L-HPC and mannitol. Furthermore, in human volunteers it showed significant increase in bioavailability compared to Servipep® with mean AUC(0–∞) 117.1 ng/ml and 82.71 ng/ml, respectively, and its relative bioavailability was 141.57%. Hence, ODT (F7) could possibly be used to overcome the drawbacks of conventional famotidine tablets in elderly patients with significant increase in oral bioavailability.  相似文献   

20.
The purpose of this research was to develop and evaluate buccal mucoadhesive controlled release tablets of lercanidipine hydrochloride using polyethylene oxide and different viscosity grades of hydroxypropyl methylcellulose individually and in combination. Effect of polymer type, proportion and combination was studied on the drug release rate, release mechanism and mucoadhesive strength of the prepared formulations. Buccal mucoadhesive tablets were made by direct compression and were characterized for content uniformity, weight variation, friability, surface pH, thickness and mechanism of release. In order to estimate the relative enhancement in bioavailability one optimized formulation was evaluated in rabbits. Further, placebo tablets were also evaluated for acceptability in human subjects. Results indicated acceptable physical characteristics of designed tablets with good content uniformity and minimum weight variation. Drug release and mucoadhesive strength were found to depend upon polymer type, proportion and viscosity. The formulations prepared using poly ethylene oxide gave maximum mucoadhesion. The release mechanism of most formulations was found to be of anomalous non-Fickian type. In vivo studies of selected formulation in rabbits demonstrated significant enhancement in bioavailability of lercanidipine hydrochloride relative to orally administered drug. Moreover, in human acceptability studies of placebo formulations, the designed tablets adhered well to the buccal mucosa for more than 4 h without causing any discomfort. It may be concluded that the designed buccoadhesive controlled release tablets have the potential to overcome the disadvantage of poor and erratic oral bioavailability associated with the presently marketed formulations of lercanidipine hydrochloride.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号