首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Formycin B, a C-nucleoside analog of inosine, is not catabolized by human erythrocytes and mouse P388 leukemia cells and is only very inefficiently phosphorylated in these cells. This relative inertness allows the measurement of its transport into and out of the cells uncomplicated by metabolic conversions. We have measured the zero-trans and equilibrium exchange flux of formycin B in these cells by rapid kinetic techniques. The Michaelis-Menten constants and maximum velocities for formycin B transport in both types of cell were similar to those previously reported for uridine and thymidine. Nevertheless, the differential mobility of the substrate-loaded and empty carrier of human erythrocytes was less for formycin B than uridine as substrate. Formycin B influx was inhibited by other nucleosides in accordance with their affinities for the carrier, but unaffected by purines. The inhibition of formycin B influx by nitrobenzylthioinosine and dipyridamole was also identical to that observed with uridine as substrate (IC50 = 10 and 30 nM, respectively). Formycin B accumulated in both types of cell to 30-40% higher concentrations than were present in the medium. This concentrative accumulation was not due to active transport, metabolism or partitioning into membrane lipids. It seems to reflect binding of formycin B to intracellular components, but does not interfere significantly with measurements of its transport.  相似文献   

2.
The human erythrocyte membrane carriers for hexoses and nucleosides have several structural features in common. In order to assess functional similarities, the effects of adenosine derivatives on hexose transport and cytochalasin B binding sites were studied. Adenosine inhibited zero-trans uptake of 3-O-methylglucose half-maximally at 5 mM, while more hydrophobic adenosine deaminase-resistant derivatives were ten- to 20-fold more potent transport inhibitors. However, degradation of adenosine accounted for very little of this difference in potency. Hexose transport was rapidly inhibited by N6-(L-2-phenylisopropyl)adenosine at 5 degrees C in a dose-dependent fashion (EC50 = 240 microM), to lower the transport Vmax without affecting the Km. A direct interaction with the carrier protein was further indicated by the finding that N6-(L-2-phenylisopropyl)adenosine competitively inhibited [3H]cytochalasin B binding to erythrocytes (Ki = 143 microM) and decreased [3H]cytochalasin B photolabeling of hexose carriers in erythrocyte ghosts. The cross-reactivity of adenosine and several of its derivatives with the hexose carrier suggests further homologies between the carriers for hexoses and nucleosides, possibly related to their ability to transport hydrophilic molecules through the lipid core of the plasma membrane.  相似文献   

3.
The transport of nucleosides by LLC-PK1 cells, a continuous epithelial cell line derived from pig kidney, was characterised. Uridine influx was saturable (apparent Km approximately 34 microM at 22 degrees C) and inhibited by greater than 95% by nitrobenzylthioinosine (NBMPR), dilazep and a variety of purine and pyrimidine nucleosides. In contrast to other cultured animal cells, the NBMPR-sensitive nucleoside transporter in LLC-PK1 cells exhibited both a high affinity for cytidine (apparent Ki approximately 65 microM for influx) and differential 'mobility' of the carrier (the kinetic parameters of equilibrium exchange of formycin B are greater than those for formycin B influx). An additional minor component of sodium-dependent uridine influx in LLC-PK1 cells became detectable when the NBMPR-sensitive nucleoside transporter was blocked by the presence of 10 microM NBMPR. This active transport system was inhibited by adenosine, inosine and guanosine but thymidine and cytidine were without effect, inhibition properties identical to the N1 sodium-dependent nucleoside carrier in bovine renal outer cortical brush-border membrane vesicles (Williams and Jarvis (1991) Biochem. J. 274, 27-33). Late proximal tubule brush-border membrane vesicles of porcine kidney were shown to have a much reduced Na(+)-dependent uridine uptake activity compared to early proximal tubule porcine brush-border membrane vesicles. These results, together with the recent suggestion of the late proximal tubular origin of LLC-PK1 cells, suggest that in vivo nucleoside transport across the late proximal tubule cell may proceed mainly via a facilitated-diffusion process.  相似文献   

4.
Glyceraldehyde-3-phosphate dehydrogenase was found to bind in vitro to purified, human erythrocyte glucose transporter reconstituted into vesicles. Mild tryptic digestion of the glucose transporter totally inactivated the binding, suggesting that the cytoplasmic domain of the transporter is involved in the binding to glyceraldehyde-3-phosphate dehydrogenase. The binding was abolished in the presence of antisera raised against the purified glucose transporter, further supporting specificity of this interaction. The binding was reversible with a dissociation constant (Kd) of 3.3 x 10(-6) M and a total capacity (Bt) of approximately 30 nmol/mg of protein indicating a stoichiometry of one enzyme-tetramer per accessible transporter. The binding was sensitive to changes in pH showing an optimum at around pH 7.0. KCl and NaCl inhibited the binding in a simple dose-dependent manner with Ki of 40 and 20 mM, respectively. The binding was also inhibited by NAD+ with an estimated Ki of 3 mM. ATP, on the other hand, enhanced the binding by up to 3-fold in a dose-dependent manner with an apparent Ka of approximately 6 mM. The binding was not affected by D-glucose or cytochalasin B. The binding did not affect either the glucose or cytochalasin B in binding affinities or the transport activity of the transporter. However, the enzyme was inactivated totally upon binding to the transporter. Based on these findings, we suggest that a significant portion of glyceraldehyde-3-phosphate dehydrogenase in human erythrocytes exists as an inactive form via an ATP-dependent, reversible association with glucose transporter, and that this association may exert regulatory intervention on nucleotide metabolism in vitro.  相似文献   

5.
Glucose influx into bovine erythrocytes was found to be significantly increased upon infection with the parasite, Babesia bovis. The influx of glucose into the infected cells over 4 min was not saturable at high concentrations of glucose (240 mM), nor was it affected by established inhibitors of mammalian glucose transport, such as cytochalasin B and phloretin (0.1-100 microM). Glucose uptake into the parasitized cells was, however, inhibited by phloridzin (phloretin-2-beta-glucoside) at concentrations over the range of 10-500 microM. Further inhibition of glucose uptake by adenosine (2.5-15 mM) was found to occur in B. bovis-infected bovine erythrocytes, suggesting an interaction of adenosine with the new or altered component of glucose transport in the parasitized cells.  相似文献   

6.
Glucose inhibitable cytochalasin B binding to erythrocyte membranes has been used as a marker of the glucose transporter. Glucose transport and cytochalasin B binding in rabbit erythrocytes differ from those activities found in human erythrocytes. We evaluated the uptake of 3-0-methylglucose and found similar Km (4.81 +/- 1.20 mM (SEM) and 6.59 +/- 0.72 mM) though significantly different Vmax (5.2 +/- 0.7 nM . min-1/10(9) cells and 234 +/- 13 nM X min -1/10(9) cells, p less than 0.001) for rabbit and human erythrocytes, respectively. Equilibrium binding of cytochalasin B to human erythrocyte membranes demonstrates a high affinity cytochalasin B binding site (Kd 38.6 +/- 22.7 nM) which is displaced by glucose. No comparable glucose inhibitable cytochalasin B site exists for rabbit erythrocyte membranes. Photoaffinity labeling of cytochalasin B confirms the presence of a glucose inhibitable cytochalasin B binding site in human, but not rabbit erythrocyte membranes. Cytochalasin B binding is a useful method in the identification of the glucose transporter in human cells, but the technique may be less useful in other species.  相似文献   

7.
Glucose transporter (GLUT)1 has become an attractive target to block glucose uptake in malignant cells since most cancer cells overexpress GLUT1 and are sensitive to glucose deprivation. Methylxanthines are natural compounds that inhibit glucose uptake; however, the mechanism of inhibition remains unknown. Here, we used a combination of binding and glucose transport kinetic assays to analyze in detail the effects of caffeine, pentoxifylline, and theophylline on hexose transport in human erythrocytes. The displacement of previously bound cytochalasin B revealed a direct interaction between the methylxanthines and GLUT1. Methylxanthines behave as noncompetitive blockers (inhibition constant values of 2-3 mM) in exchange and zero-trans efflux assays, whereas mixed inhibition with a notable uncompetitive component is observed in zero-trans influx assays (inhibition constant values of 5-12 mM). These results indicate that methylxanthines do not bind to either exofacial or endofacial d-glucose-binding sites but instead interact at a different site accessible by the external face of the transporter. Additionally, infinite-cis exit assays (Sen-Widdas assays) showed that only pentoxifylline disturbed d-glucose for binding to the exofacial substrate site. Interestingly, coinhibition assays showed that methylxanthines bind to a common site on the transporter. We concluded that there is a methylxanthine regulatory site on the external surface of the transporter, which is close but distinguishable from the d-glucose external site. Therefore, the methylxanthine moiety may become an attractive framework for the design of novel specific noncompetitive facilitative GLUT inhibitors.  相似文献   

8.
The aim of the present study was to test if the transport of all nucleosides in rat renal brush border membranes occurs via a common carrier or if specific carriers exist for various groups of nucleosides. We measured the inward transport of radiolabeled nucleosides into brush border vesicles. The effect of unlabeled nucleosides present inside of the vesicles (trans-stimulation) or outside of the vesicles (cis-inhibition) was studied. Uphill influx of a nucleoside into the vesicles could be driven by the efflux of another nucleoside (trans-stimulation) if they were both purines or both pyrimidines but not if one nucleoside was a purine and the other one a pyrimidine. Thus, there exist a carrier that transports various purine nucleosides, and a carrier that transports various pyrimidine nucleosides, but the tested purine nucleosides and the tested pyrimidine nucleosides do not appear to be transported by the same carrier. Uridine and thymidine were similarly potent for the inhibition of cytidine transport whereas uridine was much more potent than thymidine for the inhibition of adenosine transport. This suggests that cytidine and adenosine can use different carriers. Preincubation of the vesicles with N-ethylmaleimide resulted in a marked decrease of the rate of transport of purine nucleosides but it had little effect on the transport of pyrimidine nucleosides. These data are best explained by the presence in the renal brush border membrane of two carriers, one for purine nucleosides, the other one for pyrimidine nucleosides.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The effect of forskolin, an activator of adenylate cyclase, was investigated on glucose transport in human erythrocytes. Forskolin was found to be a potent inhibitor of 3-O-methylglucose (3-O-MG) influx in human erythrocytes. The inhibition of 3-O-MG transport was instantaneous and reversible. The inhibitory effect of forskolin was concentration-dependent, having an IC50 value of 7.5 microM. Forskolin caused a decrease in Vmax of carrier-mediated 3-O-MG transport from 35.32 to 1.56 mumol/ml of cell X min in the presence of 50 microM forskolin. Inhibition of influx was not reversed at high concentrations of 3-O-MG. In addition, forskolin inhibited the influx of other carbohydrates including galactose, ribose, and fructose. In contrast, forskolin was without effect on adenosine transport. To unravel the underlying mechanism responsible for the inhibitory action of forskolin, the possible involvement of cyclic AMP in controlling glucose transport was examined. Erythrocytes treated with 50 microM forskolin exhibited an increase in cyclic AMP content from the basal levels of 258 fmol/ml of cell to 334 fmol/ml of cell within 10 s after forskolin exposure. However, erythrocytes in which cyclic AMP was allowed to accumulate in excess of 10,000 times the basal level, by means of preincubation with exogenous cyclic AMP, displayed 3-O-MG transport indistinguishable from that of cyclic AMP-poor control cells. In view of the finding that cyclic AMP plays no discernible role in the erythrocyte 3-O-MG transport, it is suggested that the forskolin inhibition is mediated by a mechanism other than by stimulating adenylate cyclase activity. Moreover, forskolin appears to directly inactivate the 3-O-MG transport system since glucose-sensitive cytochalasin B binding to erythrocyte membranes is virtually abolished by 50 microM forskolin.  相似文献   

10.
Androgenic steroids, which are potent inhibitors of facilitated hexose transport in human erythrocytes, were tested as possible natural photolabels of the hexose carrier protein. Androstenedione, which inhibited 3-O-methylglucose uptake half-maximally at 30-50 microM (EC50), was the most potent inhibitor of the photolabile steroids tested. It appeared to interact directly with the carrier, since it (1) inhibited equilibrium [3H]cytochalasin B binding to high affinity D-glucose-sensitive sites in both intact cells (EC50 = 63 microM) and protein-depleted ghosts (EC50 = 61 microM), (2) inhibited cytochalasin B photolabeling of the band 4.5 carrier region in electrophoretic gels of protein-depleted ghosts (EC50 = 50 microM), and (3) underwent photoincorporation into the same gel region in a D-glucose- and cytochalasin B-sensitive fashion. However, Dixon plots for inhibition of both cytochalasin B binding and transport were upward-curving, indicating the binding of more than one molecule of androstenedione to the carrier. The photoincorporation of androstenedione into band 4.5 protein was both time- and concentration-dependent, and not associated with damage to unlabeled carrier. It probably occurred by activation of the alpha, beta-unsaturated ketone on the steroid rather than indirectly by photoactivation of a group on the carrier protein, as occurs with cytochalasin B. Although androstenedione may bind to more than one region of the carrier, as well as to other non-carrier proteins, tryptic digestion of photolabeled ghosts produced a labeled Mr = 18,000-20,000 fragment, the labeling of which was inhibited by cytochalasin B, and which had an electrophoretic mobility similar to the major labeled tryptic fragment in cytochalasin B-labeled ghosts. These data suggest that androstenedione interacts directly with the hexose carrier and that it or other similar naturally photolabile steroids may serve as useful probes for structural dissection of the carrier protein.  相似文献   

11.
This study examines inhibitions of human erythrocyte D-glucose uptake at ice temperature produced by maltose and cytochalasin B. Maltose inhibits sugar uptake by binding at or close to the sugar influx site. Maltose is thus a competitive inhibitor of sugar uptake. Cytochalasin B inhibits sugar transport by binding at or close to the sugar efflux site and thus acts as a noncompetitive inhibitor of sugar uptake. When maltose is present in the uptake medium, Ki(app) for cytochalasin B inhibition of sugar uptake increases in a hyperbolic manner with increasing maltose. When cytochalasin B is present in the uptake medium, Ki(app) for maltose inhibition of sugar uptake increases in a hyperbolic manner with increasing cytochalasin B. High concentrations of cytochalasin B do not reverse the competitive inhibition of D-glucose uptake by maltose. These data demonstrate that maltose and cytochalasin B binding sites coexist within the glucose transporter. These results are inconsistent with the simple, alternating conformer carrier model in which maltose and cytochalasin B binding sites correspond to sugar influx and sugar efflux sites, respectively. The data are also incompatible with a modified alternating conformer carrier model in which the cytochalasin B binding site overlaps with but does not correspond to the sugar efflux site. We show that a glucose transport mechanism in which sugar influx and sugar efflux sites exist simultaneously is consistent with these observations.  相似文献   

12.
J M May 《FEBS letters》1988,241(1-2):188-190
Depletion of ATP is known to inhibit glucose transport in human erythrocytes, but the kinetic mechanism of this effect is controversial. Selective ATP depletion of human erythrocytes by 10 micrograms/ml A23187 in the presence of extracellular calcium inhibited 3-O-methylglucose influx noncompetitively and efflux competitively. ATP depletion also decreased the ability of either equilibrated 3-O-methylglucose or extracellular maltose to inhibit cytochalasin B binding in intact cells, whereas neither total high-affinity cytochalasin B binding nor its Kd was affected. Under the one-site model of hexose transport these data indicate that ATP depletion decreases both the affinity of the inward-facing glucose carrier for substrate and its ability to reorient outwardly in intact cells.  相似文献   

13.
Because of similarities in the physical and molecular properties of the nucleoside and sugar transporters of human erythrocytes and the photoaffinity labeling of the sugar transporter by 8-azidoadenosine (Jarvis et al. (1986) J. Biol. Chem. 261, 11077-11085), we have directly compared the equilibrium exchange of uridine and 3-O-methylglucose in these cells as measured by rapid kinetic techniques under identical experimental conditions. Both the Michaelis-Menten constant and maximum velocity were about 100-fold higher for 3-O-methylglucose exchange than for uridine exchange so that the first order rate constants for both transporters were about the same. When calculated on the basis of the number of nucleoside and sugar carriers per red cell estimated by equilibrium binding of nitrobenzylthioinosine and cytochalasin B, respectively, the turnover numbers for the sugar and nucleoside carriers with 3-O-methylglucose and uridine, respectively, as substrates were quite similar. Various sugars up to concentrations of 108 mM had no effect on the exchange of 500 microM uridine or adenosine, and uridine up to a concentration of 50 mM had no effect on the exchange of 10 mM 3-O-methylglucose. Adenosine, on the other hand, inhibited 3-O-methylglucose exchange in a concentration dependent manner, though not very effectively (IC50 approximately equal to 3 mM). Both uridine and 3-O-methylglucose exchange were inhibited in a concentration dependent manner by cytochalasin B, phloretin and dipyridamole, but cytochalasin B and phloretin were 100-times more effective in inhibiting 3-O-methylglucose than uridine exchange, whereas the opposite was the case for the inhibition by dipyridamole.  相似文献   

14.
The demonstrated in vitro and in vivo activity of 3'-azido-3'-deoxythymidine (N3dThd) against the infectivity and the cytopathic effect of human immunodeficiency virus has prompted an investigation of the mechanism by which this nucleoside analogue permeates the cell membrane. As with the transport of thymidine, the influx of N3dThd into human erythrocytes and lymphocytes was nonconcentrative during short incubation times (less than 5 min) which did not allow significant metabolism of this nucleoside. However, in contrast with thymidine transport, the initial velocity of N3dThd influx was strictly a linear function of nucleoside concentration (0.5-10 mM), without evidence of saturability; insensitive to micromolar concentrations of potent inhibitors of nucleoside transport (dipyridamole, 6-[(4-nitrobenzyl)thio]-9-beta-D-ribofuranosylpurine, and dilazep); insensitive to a 1000-fold excess of other nucleosides (thymidine, uridine, 2-chloroadenosine); and relatively insensitive to temperature, with Q10 values (37-27 degrees C) of 1.4 and 2.7 for N3dThd and thymidine, respectively, determined in erythrocytes. Although the above results indicate that N3dThd permeates the cell membrane chiefly by nonfacilitated diffusion and not via the nucleoside transporter, millimolar concentrations of this nucleoside analogue were observed to inhibit both zero-trans influx of thymidine and efflux of thymidine from [3H]thymidine-loaded erythrocytes. The partition coefficients (1-octanol:0.1 M sodium phosphate, pH 7.0) of N3dThd and thymidine were determined to be 1.26 and 0.064, respectively. The unusual ability of N3dThd to diffuse across cell membranes independently of the nucleoside transport system may be attributed to the considerable lipophilicity imparted to this molecule by the replacement of the 3'-hydroxyl group of thymidine with an azido moiety.  相似文献   

15.
Treatment of intact human erythrocytes with trypsin had no effect upon either the rate of hexose transport or the binding of cytochalasin B to the transport system. In contrast, proteolysis of inside-out vesicles prepared from human erythrocyte membranes inactivated both hexose transport and cytochalasin B binding. When purified hexose transporter, reconstituted into phospholipid vesicles of undetermined size, was treated with trypsin, approx. 50% of the cytochalasin B binding activity was lost. This loss correlated with a decrease in the amount of the transporter polypeptide, as assayed by gel electrophoresis. These results show that the orientation of the transporter can be established through trypsin treatment in conjunction with cytochalasin B binding. Small unilamellar vesicles containing transporter were prepared by sonication of larger species and by a cycle of cholate solubilization and removal of the detergent. In the former case, the transporter orients almost randomly, whereas in the latter approx. 75% of the transporters have the cytoplasmic domain extemal.  相似文献   

16.
2',3'-dideoxycytidine permeation of the human erythrocyte membrane   总被引:1,自引:0,他引:1  
The mechanism by which 2,3'-dideoxycytidine, an inhibitor of HIV-I infectivity, permeates the cell membrane was investigated. The influx of ddCyd into human erythrocytes was nonconcentrative. The initial velocity of both ddCyd influx and efflux was, in contrast to compounds that permeate the cell membrane via the nucleoside transporter, a linear function of nucleoside concentration in the 1 microM to 10 mM range and relatively insensitive to temperature. Furthermore, potent inhibitors of nucleoside transporter and other nucleosides were found to inhibit ddCyd influx only partially or not at all suggesting that ddCyd permeates the human erythrocyte membrane predominantly by nonfacilitated diffusion. This unusual characteristic seems to be due to the lack of 3'-hydroxyl moiety of ddCyd which appears to be an important determinant for the nucleoside carrier specificity rather than to lipid solubility itself. As far as permeation of the cell membrane is concerned ddCyd shares these properties with 2',3'-dideoxythymidine and 3'-azido-3'-deoxythymidine.  相似文献   

17.
Lidoflazine strongly inhibited the equilibrium exchange of uridine in human erythrocytes (Ki approximately 16 nM). Uridine zero-trans influx was similarly inhibited by lidoflazine in cultured HeLa cells (IC50 approximately to 80 nM), whereas P388 mouse leukemia and Novikoff rat hepatoma cells were three orders of magnitude more resistant (IC50 greater than 50 microM). Uridine transport was also inhibited by nifedipine, verapamil, diltiazem, prenylamine and trifluoperazine, but only at similarly high concentrations in both human erythrocytes and the cell lines. IC50 values ranged from about 10 microM for nifedipine and about 20 microM for verapamil to more than 100 microM for diltiazem, prenylamine and trifluoperazine. The concentrations required for inhibition of nucleoside transport are several orders higher than those blocking Ca2+ channels. Lidoflazine competitively inhibited the binding of nitrobenzylthioinosine to high-affinity sites in human erythrocytes, but did not inhibit the dissociation of nitrobenzylthioinosine from these sites on the transporter as is observed with dipyridamole and dilazep.  相似文献   

18.
In isolated rat adipocytes, basal as well as insulin-stimulated 3-O-methylglucose transport was inhibited nearly completely (maximal inhibition: 95%) by the nucleoside transport inhibitors dipyridamole (IC50 = 5 microM), nitrobenzylthioguanosine (20 microM), nitrobenzylthioinosine (35 microM) and papaverine (130 microM). Transport kinetics in the presence of 10 microM dipyridamole revealed a significant increase in the transport Km value of 3-O-methylglucose (3.45 +/- 0.6 vs 2.36 +/- 0.29 mM in the controls) as well as a decrease in the Vmax value (4.84 +/- 0.95 vs 9.03 +/- 1.19 pmol/s per microliter lipid in the controls). Half-maximally inhibiting concentrations of dipyridamole were one order of magnitude higher than those inhibiting nucleoside (thymidine) uptake (0.48 microM). The inhibitory effect of dipyridamole (5 microM) reached its maximum within 30 s. The agent failed to affect insulin's half-maximally stimulating concentration (0.075 nM) indicating that it did not interfere with the mechanism by which insulin stimulates glucose transport. Further, dipyridamole fully suppressed the glucose-inhibitable cytochalasin B binding (IC50 = 1.65 +/- 0.05 microM). The data indicate that nucleoside transport inhibitors reduce glucose transport by a direct interaction with the transporter or a closely related protein. It is suggested that glucose and nucleoside transporters share structural, and possibly functional, features.  相似文献   

19.
ATP regulation of the human red cell sugar transporter   总被引:4,自引:0,他引:4  
Purified human red blood cell sugar transport protein intrinsic tryptophan fluorescence is quenched by D-glucose and 4,6-ethylidene glucose (sugars that bind to the transport), phloretin and cytochalasin B (transport inhibitors), and ATP. Cytochalasin B-induced quenching is a simple saturable phenomenon with Kd app of 0.15 microM and maximum capacity of 0.85 cytochalasin B binding sites per transporter. Sugar-induced quenching consists of two saturable components characterized by low and high Kd app binding parameters. These binding sites appear to correspond to influx and efflux transport sites, respectively, and coexist within the transporter molecule. ATP-induced quenching is also a simple saturable process with Kd app of 50 microM. Indirect estimates suggest that the ratio of ATP-binding sites per transporter is 0.87:1. ATP reduces the low Kd app and increases the high Kd app for sugar-induced fluorescence quenching. This effect is half-maximal at 45 microM ATP. ATP produces a 4-fold reduction in Km and 2.4-fold reduction in Vmax for cytochalasin B-inhibitable D-glucose efflux from inside-out red cell membrane vesicles (IOVs). This effect on transport is half-maximal at 45 microM ATP. AMP, ADP, alpha, beta-methyleneadenosine 5'-triphosphate, and beta, gamma-methyleneadenosine 5'-triphosphate at 1 mM are without effect on efflux of D-glucose from IOVs. ATP modulation of Km for D-glucose efflux from IOVs is immediate in onset and recovery. ATP inhibition of Vmax for D-glucose exit is complete within 5-15 min and is only partly reversed following 30-min incubation in ATP-free medium. These findings suggest that the human red cell sugar transport protein contains a nucleotide-binding site(s) through which ATP modifies the catalytic properties of the transporter.  相似文献   

20.
An iodinated photoaffinity label for the glucose transporter, 3-iodo-4-azidophenethylamido-7-O-succinyldeacetyl-forskolin (IAPS-forskolin), has been synthesized, purified, and characterized. The I50 for inhibition of 3-O-methylglucose transport in red blood cells by IAPS-forskolin was found to be 0.05 microM. The carrier free radioiodinated label is a highly specific photoaffinity label for the human erythrocyte glucose transporter. Photolysis of erythrocyte membranes (ghosts) and purified glucose transporter preparations with 1-2 nM [125I]IAPS-forskolin and analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed specific derivatization of a broad band with an apparent molecular mass of 40-70 kDa. Photoincorporation into erythrocyte membranes using 2 nM [125I]IAPS-forskolin was protected with D-glucose (I50 400 mM), cytochalasin B (I50 0.5 microM), and forskolin (I50 10 microM). No protection was observed with L-glucose (600 mM). Endo-beta-galactosidase digestion of [125I] IAPS-forskolin-labeled ghosts and purified transporter resulted in a dramatic sharpening of the specifically radiolabeled transporter to 40 kDa. Trypsinization of [125I]IAPS-forskolin-labeled ghosts and purified transporter reduced the specifically radiolabeled transporter to a sharp peak at 18 kDa. [125I]IAPS-forskolin will be a useful tool to study the structural aspects of the glucose transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号