共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
L. J. BARBADILLO D. BAUWENS F. BARAHONA and M. J. SANCHEZ-HERRÁIZ 《Journal of Zoology》1995,236(1):83-93
We hypothesized that the presence of the forked hemipenes, and associated musculature, at the base of the tail in male lizards should constrain the capacity to autotomize the tail. Thus, this hypothesis predicts that the non-autotomous base of the tail should be longer in male than in female lizards. We tested this hypothesis in four species oflacertid lizards. Males have on average one to two non-autotomous vertebrae more than females, and the sexual difference in length of the non-autotomous tail base remains constant over the entire body size range. In addition, the first functional autotomy plane in males is usually located on, or is distal to, the vertebrae from which two hemipenial muscles take origin. These observations support the view that functional demands of the male intromittent organs impose constraints on the abilities of tail autotomy. In a natural population of Lacerta vivipara , the proportion of tail breaks that occurred at very short distances from the base was highest in females, indicating that the small sexual difference in length of the non-autotomous tail part is of functional significance. Total length of the tail was largest in males. This can be interpreted as a compensation for the decline in autotomy capacities at the tail base, such that the length of the autotomous part remains similar in both sexes. 相似文献
3.
Tail autotomy is one of the main anti-predator mechanisms of lacertid lizards, but it has been predicted that it is only retained in its full capacity when its benefits exceed its costs (Arnold, 1988). To test this hypothesis, ease of tail shedding was examined in a number of continental and insular lacertid lizard populations, each of which showed a different shedding capacity. Tails are shed more easily in those continental and insular populations where there is a greater probability of predation. In insular populations not subjected to strong predation, the tail tends to be retained. The relationship of these findings to insular Mediterranean lizard populations and to the extinction of the Balearic lizard, Podarcis lilfordi are discussed. 相似文献
4.
Naya DE Veloso C Muñoz JL Bozinovic F 《Comparative biochemistry and physiology. Part A, Molecular & integrative physiology》2007,146(2):189-193
Lizard tail autotomy is considered an efficient anti-predator strategy that allows animals to escape from a predator attack. However, since the tail also is involved in many alternative functions, tailless animals must cope with several costs following autotomy. Here we explicitly evaluate the consequences of tail autotomy for two costs that have been virtually unexplored: 1. we test whether the anatomical change that occurs after tail loss causes a reduction in the role of the tail as a distraction mechanism to predators; 2. we analyzed whether tail synthesis comprises an energetically costly process in itself, by directly comparing the cost of maintenance before and after autotomy. We found that original tails displace further and at greater velocity than regenerated tails, indicating that the anti-predation responses of a lizard probably changes according to whether its tail is original or regenerated. With regard to the energetic cost of tail synthesis, we observed a significant increase in the standard metabolic rate, which rose 36% in relation to the value recorded prior to tail loss. This result suggests that the energetic cost of tail synthesis itself could be enough to affect lizard fitness. 相似文献
5.
SUSAN V. BRYANT A. d'A. BELLAIRS F.L.S. 《Zoological Journal of the Linnean Society》1967,46(310):297-305
Rates of tail regeneration in the Madeira wall lizard ( Lacerta dugesii ) and the slow-worm ( Anguis fragilis ) were studied.
L. dugesii regenerates very rapidly, the new tail sometimes attaining a maximum rate of growth of 2'6 mm a day during the fifth week after autotomy. By the twelfth week 90% of the original tail length has been replaced. Average regeneration rates of samples of lizards were reduced after repeated autotomies, but our investigation of this problem was probably complicated by another factor, the amount of tail lost, and is inconclusive.
The tip of the regenerate grows more rapidly than the rest; no elongation occurs at its cranial aspect.
Anguis , even when kept at 27°C, regenerates its tail very slowly, the best performance observed being a new tail of 5 mm after 14 weeks. The longest natural regenerate seen (16 mm) may have taken several years to produce in the wild.
The histological features of regeneration in Anguis are basically similar to those in other lizards. The new osteoderms are formed entirely in the subepidermal tissues but have a regular relationship with the scales. Some nerve fibres are regenerated with the ependymal tube.
The scales on the lizard's regenerating tail develop in a different manner from those in the lizard embryo and show suggestive resemblances to mammalian hairs. 相似文献
L. dugesii regenerates very rapidly, the new tail sometimes attaining a maximum rate of growth of 2'6 mm a day during the fifth week after autotomy. By the twelfth week 90% of the original tail length has been replaced. Average regeneration rates of samples of lizards were reduced after repeated autotomies, but our investigation of this problem was probably complicated by another factor, the amount of tail lost, and is inconclusive.
The tip of the regenerate grows more rapidly than the rest; no elongation occurs at its cranial aspect.
Anguis , even when kept at 27°C, regenerates its tail very slowly, the best performance observed being a new tail of 5 mm after 14 weeks. The longest natural regenerate seen (16 mm) may have taken several years to produce in the wild.
The histological features of regeneration in Anguis are basically similar to those in other lizards. The new osteoderms are formed entirely in the subepidermal tissues but have a regular relationship with the scales. Some nerve fibres are regenerated with the ependymal tube.
The scales on the lizard's regenerating tail develop in a different manner from those in the lizard embryo and show suggestive resemblances to mammalian hairs. 相似文献
6.
C López-García A Molowny F J Martínez-Guijarro J M Blasco-Ibá?ez J A Luis de la Iglesia A Bernabeu J M García-Verdugo 《Histology and histopathology》1992,7(4):725-746
The cerebral cortex of Squamate reptiles (lizards and snakes) may be regarded as an archicortex or "reptilian hippocampus". In lizards, one cortical area, the medial cortex, may be considered as a true "fascia dentata" on grounds of its anatomy, connectivity and cyto- chemo-architectonics of its main zinc-rich axonal projection. Moreover, its late ontogenesis and postnatal development support this view. In normal conditions, it shows delayed postnatal neurogenesis and growth during the lizard's life span. Remnant neuroblasts in the medial cortical ependyma of adult lizards seasonally proliferate. The late-produced immature neurocytes migrate to the medial cortex cell layer where they differentiate and give off zinc-containing axons directed to the rest of cortical areas. This results in a continuous growth of the medial cortex and its zinc-rich axonal projection. Perhaps the most important characteristic of the lizard medial cortex is that it can regenerate after having been almost completely destroyed. Recent experiments in our laboratory have shown that chemical lesion of its neurons (up to 95%) results in a cascade of events; first, those related with massive neuronal death and axonal-dendritic retraction and, secondly, those related with a triggered neuroblast proliferation and subsequent neo-histogenesis, and the regeneration of an almost new medial cortex that shows itself undistinguishable from a normal undamaged one. This is the only report to our knowledge that an amniote central nervous centre may regenerate by new neuron production and neo-histogenesis. Perhaps the medial cortex of lizards may be used as a model for neuronal regeneration and/or transplant experiments in mammals or even in primates. 相似文献
7.
Although the phenomenon of tail autotomy has traditionally been viewed in a purely adaptive light, functional constraints imposed by the locomotor system appear to have influenced the presence and extent of autotomy in lizards. Them. caudifemoralis longus is an unsegmented hind limb retractor that originates from the caudal vertebrae. It does not participate in autotomy and thus limits the proximal position of autotomic septa. Variation in the extent of the m. caudifemoralis is correlated with locomotor type. The muscle is large and originates from a long series of caudal vertebrae in fast moving lizards with powerful limb retraction, as exemplified by taxa capable of bipedal running. In slower lizards with sprawling postures, such as geckos, the m. caudifemoralis is small and restricted to the first few postsacral vertebrae. Autotomy is typically restricted or absent in the former lizards, while in the latter only the most proximal vertebrae are incapable of autotomy. In the evolution of existing patterns of caudal autotomy, functional demands intrinsic to the tail may be subservient to locomotor constraints imposed on the tail base by the m. caudifemoralis longus . 相似文献
8.
The costs of autotomy and regeneration in animals: a review and framework for future research 总被引:3,自引:0,他引:3
Many organisms have the ability to shed an appendage (autotomy)to escape a predator or fouled molting event. Despite its immediateadvantage on survivorship, autotomy can have important consequencesfor locomotion, foraging, survivorship, and/or reproduction.Thus, regeneration is a way that animals alleviate some of thecosts associated with losing an appendage. Like autotomy, however,appendage regeneration can have important consequences for avariety of aspects of fitness; in a wide range of amphibians,reptiles, fishes, and arthropods, the allocation of resourcesto regenerate a lost appendage negatively affects somatic orreproductive growth. Previous research into the costs associatedwith regeneration has provided a strong framework to explorehow trade-offs associated with regeneration may have influencedits evolution. However, all research to date describing thecosts and benefits associated with autotomy and regenerationhave compared individuals autotomizing and regenerating an appendagewith individuals that have never lost an appendage. I suggestthat for studies of the evolutionary significance of regeneration,an alternative comparison is between individuals experiencingautotomy without regeneration and individuals experiencing autotomywith regeneration. Future work in this direction promises newinsights into the evolution of regenerative tendencies, as wellas how regeneration may be influencing animal form and function. 相似文献
9.
I. Yu. Dolmatov 《Russian Journal of Marine Biology》2014,40(3):228-232
The features of asexual reproduction, autotomy, and regeneration in five species of holothurians from the Order Dendrochirotida which live in the Nha Trang Bay of the South China Sea were studied. In Colochirus robustus, the ability to perform fission was corroborated. It was shown that Cladolabes schmeltzii can redivide without completing its regeneration after a previous division. This process is similar to the fragmentation of other holothurians. The features of autotomy and regeneration in Colochirus quadrangularis, Ohshimella ehrenbergi and Massinium magnum were described for the first time. 相似文献
10.
11.
12.
13.
14.
15.
Basal tail constriction occurs in about two-thirds of the species of plethodontid salamanders. The constriction, which marks the site of tail autotomy, is a result of a reduction in length and diameter of the first caudal segment. Gross and microscopic anatomical studies reveal that many structural specializations are associated with basal constriction, and these are considered in detail. Areas of weakness in the skin at the posterior end of the first caudal segment, at the attachment of the musculature to the intermyotomal septum at the anterior end of the same segment, and between the last caudosacral and first caudal vertebrae precisely define the route of tail breakage. During autotomy the entire tail is shed, and a cylinder of skin one segment long closes over the wound at the end of the body. It is suggested that specializations described in this paper have evolved independently in three different groups of salamanders. Experiments and field observations reveal that, contrary to expectations, frequency of tail breakage is less in species with apparent provisions for tail autotomy than in less specialized species. The tail is a very important, highly functional organ in salamanders and it is suggested that selection has been for behavioral and structural adaptations for control of tail loss, rather than for tail loss per se. 相似文献
16.
Bull CM 《Behavioural processes》2000,51(1-3):7-20
Monogamy is relatively rarely reported in taxa other than birds. The reproductive system of many lizard species appears to involve multiple mating partners for both the male and the female. However, short-term monogamous relationships have been reported in some lizard species, either where the male defends a territory that is only occupied by a single adult female, or where males stay with females for a period of time after mating, apparently to guard against rival males. There are a few reported cases of more prolonged monogamous relationships in lizards, with the Australian sleepy lizard, Tiliqua rugosa, the best studied example. Adult males and females of this species form monogamous pairs for an extended period before mating each spring, and they select the same partner in successive years. The paper reviews possible functions of monogamy in this and other lizard species, and suggests that the additional perspective from studying lizards may enrich our overall understanding of monogamous behaviour. 相似文献
17.
G. Trevor Johnson 《BMJ (Clinical research ed.)》1954,1(4862):627-629
18.
Caudal nasal deviation 总被引:6,自引:0,他引:6
Caudal nasal deviation, manifested by a "crooked tip," asymmetric nostrils, and a deviated columella, is one of the most challenging deformities encountered in rhinoplasty. This entity is often ignored by rhinoplasty surgeons, on the basis of the assumption that correction of other segments of the deviated nose will improve the caudal nose. Failure to correct this imperfection (or, occasionally, deformity) invariably produces suboptimal results. The nasal structures involved in caudal nasal deviation, namely, the septum, the lower lateral cartilages, and the anterior nasal spine, must be evaluated for identification of the anatomical blocks that have a causative role in caudal nasal deviation. The specific structures with abnormalities related to this deformity are discussed, as are techniques for the correction of the deformities. These techniques significantly augment the surgeon's repertoire of methods for addressing the subtleties of caudal nasal deviation correction and achieving predictable results. 相似文献
19.
Members of the caudal gene family (in mice and humans: Cdx1, Cdx2, and Cdx4) have been studied during early development as regulators of axial elongation and anteroposterior patterning. In the adult, Cdx1 and Cdx2, but not Cdx4, have been intensively explored for their function in intestinal tissue homeostasis and the pathogenesis of gastrointestinal cancers. Involvement in embryonic hematopoiesis was first demonstrated in zebrafish, where cdx genes render posterior lateral plate mesoderm competent to respond to genes specifying hematopoietic fate, and compound mutations in cdx genes thus result in a bloodless phenotype. Parallel studies performed in zebrafish embryos and murine embryonic stem cells (ESCs) delineate conserved pathways between fish and mammals, corroborating a BMP/Wnt-Cdx-Hox axis during blood development that can be employed to augment derivation of blood progenitors from pluripotent stem cells in vitro. The molecular regulation of Cdx genes appears complex, as more recent data suggest involvement of non-Hox-related mechanisms and the existence of auto- and cross-regulatory loops governed by morphogens. Here, we will review the role of Cdx genes during hematopoietic development by comparing effects in zebrafish and mice and discuss their participation in malignant blood diseases. 相似文献
20.
The threat-sensitivity hypothesis predicts that prey species assess and adjust their behavior in accordance with the magnitude of the threat posed by a predator. A largely overlooked characteristic of a prey that will affect its sensitivity to predators is its history of autotomy. We studied threat-sensitive behavior to fish kairomones in larvae of Ischnura elegans damselflies, which had undergone autotomy, from a fishpond and from a fishless pond. In agreement with their higher perceived risk, larvae from the fishpond showed fewer rigid abdomen bends, foraged less and walked more slowly than larvae from the fishless pond. In line with their higher vulnerability to predators, larvae without lamellae spent less time foraging than larvae with lamellae. There was a decrease in swimming activity in the presence of fish kairomones except for larvae with lamellae from the fishless pond. This may reflect differences in vulnerability of larvae without lamellae between pond types. Such context-dependent responses in activity to kairomones should be kept in mind when evaluating the ability of a prey to recognize kairomones. 相似文献