首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 395 毫秒
1.
In order to examine physiological function of the SH2/SH3 region of phospholipase C-gamma (Z region), we independently expressed cDNA fragments corresponding to the SH2/SH3 region of PLC-gamma 1 and PLC-gamma 2 in Escherichia coli. Although these recombinant proteins were recovered in particulate fractions by centrifugation of cell extracts, they were successfully solubilized by guanidium hydrochloride and then purified to homogeneity by heparin column chromatography. The molecular mass of the proteins was 45 kDa (derived from PLC-gamma 1 and designated as rP45Z) and 38 kDa (derived from PLC-gamma 2 and designated as rP38Z), which was consistent with that as expected from inserted cDNA. We determined the effect of purified rP45Z or rP38Z on PIP2-hydrolyzing activity of either PLC-gamma 1 or PLC-gamma 2 and found that these proteins strongly suppressed the rate of PLC-dependent PIP2-hydrolysis. Furthermore, both rP45Z and rP38Z were phosphorylated at tyrosine residue by epidermal growth factor receptors and their inhibitory effect on PIP2-hydrolysis was significantly decreased by this phosphorylation. These results indicate that the Z region might be involved in autoregulation of PLC-gamma as intrinsic negative regulator.  相似文献   

2.
To examine the regulatory function of the src-related SH2 and SH3 (SH2/SH3) region of phospholipase C-gamma 2 (PLC-gamma 2), we expressed this region of rat PLC-gamma 2 cDNA in rat 3Y1 fibroblasts and isolated and characterized a number of clones (approximately 20 clones). An increase of endogenous tyrosine kinase activity was observed in all cell clones that highly expressed a translational product of the SH2/SH3 domain. Moreover, endogenous phosphatidylinositol 4,5-bisphosphate hydrolyzing activity was also enhanced in these clones, and PLC-gamma 1 seemed to be preferentially activated among endogenous PLC isozymes. Genistein, an inhibitor of tyrosine kinase, inhibited this activation of PLC-gamma 1, and tyrosine phosphorylation was observed on PLC-gamma 1 molecules, indicating the involvement of tyrosine kinases in the PLC-gamma 1 activation. These results suggest that the SH2/SH3 region of PLC-gamma would function as a multidirectional regulator which controls at least two major signaling pathways: tyrosine kinase and phosphatidylinositol 4,5-bisphosphate hydrolysis.  相似文献   

3.
Phospholipase C-gamma1 is a tightly regulated, multidomain protein that generates the second messengers inositol 1,4,5-trisphosphate and diacylglycerol. Kinetic analysis reveals that phospholipase C-gamma1 displays apparent allosteric behavior. A previous study determined that proteolytic cleavage of the SH domain region of phospholipase C-gamma1 yields an activated form of the enzyme (A. W. Fernald, G. A. Jones, and G. Carpenter Biochem. J. 302, 508, 1994). In this study, we show that activation of phospholipase C-gamma1 by proteolysis decreases both the cooperativity and the half-maximal value of the enzyme for substrate. Kinetic analysis revealed that the mole fraction of phosphatidylinositol 4,5-bisphosphate (PIP(2)) that resulted in half-maximal PIP(2) hydrolysis (S(0.5)) was lower for proteolyzed than uncleaved phospholipase C-gamma1 (0.08 mole fraction vs 0.18 mole fraction of PIP(2)). The cooperativity index was lower for proteolyzed than full-length phospholipase C-gamma1 (n = 2.5 vs n = 4). Kinetic analysis also revealed that the estimated dissociation constant was lower for phospholipase C-gamma1 that had been subjected to proteolysis (0.1 mM vs 1.0 mM PIP(2) for cleaved vs uncleaved phospholipase C-gamma1, respectively). It was previously hypothesized that activation of phospholipase C-gamma1 requires a conformational change that results in increased accessibility of substrate to the active site and that the SH domain of the enzyme is involved in the activation event. These experiments support the hypothesis that a portion of the protein covers the active site, allosterically inhibiting the enzyme, and that the removal of this "lid" domain activates the enzyme.  相似文献   

4.
The epidermal growth factor receptor (EGFR) ligands, epidermal growth factor (EGF), and transforming growth factor-alpha (TGFalpha) elicit differential postendocytic processing of ligand and receptor molecules, which impacts long-term cell signaling outcomes. These differences arise from the higher affinity of the EGF-EGFR interaction versus that of TGFalpha-EGFR in the acidic conditions of sorting endosomes. To determine whether EGFR occupancy in endosomes might also affect short-term signaling events, we examined activation of the phospholipase C-gamma1 (PLC-gamma1) pathway, an event shown to be essential for growth factor-induced cell motility. We found that EGF continues to stimulate maximal tyrosine phosphorylation of EGFR following internalization, while, as expected, TGFalpha stimulates markedly less. The resulting higher level of receptor activation by EGF, however, did not yield higher levels of phosphatidylinositol (4,5)-bisphosphate (PIP2) hydrolysis over those stimulated by TGFalpha. By altering the ratio of activated receptors between the cell surface and the internalized compartment, we found that only cell surface receptors effectively participate in PLC function. In contrast to PIP2 hydrolysis, PLC-gamma1 tyrosine phosphorylation correlated linearly with the total level of Tyr(P)-EGFR stimulated by either ligand, indicating that the functional deficiency of internal EGFR cannot be attributed to an inability to interact with and phosphorylate signaling proteins. We conclude that EGFR signaling through the PLC pathway is spatially restricted at a point between PLC-gamma1 phosphorylation and PIP2 hydrolysis, perhaps because of limited access of EGFR-bound PLC-gamma1 to its substrate in endocytic trafficking organelles.  相似文献   

5.
src homology region 2 and 3 (SH2 and SH3) domains are conserved noncatalytic regions originally described in cytoplasmic tyrosine kinases and subsequently identified in phospholipase C gamma 1 (PLC gamma 1), GTPase-activating protein of ras, and other signaling proteins. Although numerous studies indicate that SH2 domains promote protein-protein interactions by specific binding to tyrosine phosphorylated proteins, the function of SH3 domains is not known. The SH2 domain of PLC gamma 1 binds to certain tyrosine-phosphorylated growth factor receptors, and following phosphorylation on Tyr783 the enzymatic activity of PLC gamma 1 is enhanced, leading to phosphatidylinositol hydrolysis. To determine the functional role of the SH2 domain(s) on substrate phosphorylation in quantitative terms, we have expressed in Escherichia coli PLC gamma 1 constructs encoding the region containing Tyr783 and Tyr771, their two flanking SH2 domains and the SH3 domain, and five different deletion mutants of this region. These six proteins were purified and subjected to quantitative phosphorylation by the epidermal growth factor receptor (EGFR). Analysis of the kinetics of substrate phosphorylation revealed similar Vmax for the phosphorylation of the various mutant proteins. However, the affinity was enhanced for substrates containing SH2 domains: from S0.5 (average apparent Km) of 110 microM to S0.5 of 20 microM with the addition of a single SH2 domain and S0.5 of 3-4 microM for mutants containing two SH2 domains. The presence of the SH3 domain did not influence the apparent Km of substrate phosphorylation. These results demonstrate that the presence of the SH2 domain in PLC gamma 1 lowers the apparent Km (increases the affinity) of substrate phosphorylation by the EGFR, thereby facilitating PLC gamma 1 phosphorylation and activation.  相似文献   

6.
The effective resolution of human platelet cytosolic phosphoinositide-phospholipase C (PLC) revealed five distinct activity peaks by Q-Sepharose and heparin-Sepharose column chromatographies when assayed using phosphatidylinositol (PI) and phosphatidylinositol 4,5-bisphosphate (PIP2). The results of Western blotting analysis with various antibodies against PLC isozymes showed that peak-Ia (PLC-delta type), peak-Ib (PLC-gamma 1 type), and peak-IIc (PLC-beta type) and two unidentified activity peaks (PLC-IIa and PLC-IIb) were present in human platelet cytosol. A protein with guanosine 5'-3-O-(thio)triphosphate-binding activity was coeluted with the PLC-IIa and was purified to homogeneity. It exhibited 86- and 42-kDa polypeptide bands upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis which were identified as gelsolin and actin by immunostaining, respectively. Large amounts of gelsolin/actin (1:1) complex "gelsolin complex" were detected in the PLC-delta and PLC-gamma 1 fractions. The PLC-gamma 1 and the gelsolin complex were co-immunoprecipitated by the antibody raised against PLC-gamma 1. Furthermore, the partially purified bovine brain PLC-gamma 1 fraction also was found to be associated with the gelsolin complex and the association was released by the addition of 1% sodium cholate. This finding has prompted us to examine effects of the gelsolin complex and the free gelsolin on activities of the above PLC isoforms from platelet cytosol. The gelsolin complex did not affect the PIP2 hydrolyzing activities of all PLC isoforms. In contrast, the purified gelsolin inhibited distinctly PIP2 hydrolyses by PLC-Ia (delta), PLC-Ib (gamma 1), and PLC-IIa (unidentified), whereas the inhibitory effects for PLC-IIb (unidentified) and PLC-IIc (beta) were moderate. The inhibitory effect of gelsolin on PIP2-hydrolysis by PLC-gamma 1 was diminished by a large amount of PIP2 substrate. These results suggested that the inhibition of PLC by gelsolin is due to sequestration of substrate PIP2 by its competitive binding.  相似文献   

7.
Phospholipase C-gamma1 (PLC-gamma1) is a lipase that hydrolyzes PIP2 to generate two second messengers, IP3 and DAG. By using the yeast two-hybrid system, we identified the translational elongation factor-1alpha (EF-1alpha) as a binding protein of PLC-gamma1 from the human B-lymphocyte library. Direct interaction between EF-1alpha and PLC-gamma1 was confirmed by the in vitro binding experiment using purified PLC-gamma1. Furthermore, from the in vitro binding experiment, we could demonstrate that the carboxyl terminal region of EF-1alpha is involved in the interaction with PLC-gamma1, and that both SH2 and SH3 domains of PLC-gamma1 are required for the interaction with EF-1alpha. In vivo interaction between EF-1alpha and PLC-gamma1 was confirmed by the immunoprecipitation experiment using anti-EF-1alpha antibody. The interaction between EF-1alpha and PLC-gamma1 was enhanced by EGF-treatment. Taken together, we suggest that EF-1alpha might play a role in PLC-gamma1-mediated signal transduction.  相似文献   

8.
For studies of phospholipase C (PLC) activity in cell-free systems, 32P-labelled phosphatidylinositol 4,5-bisphosphate (PIP2) was prepared enzymatically by phosphorylating phosphatidylinositol 4-phosphate (PIP) in the presence of [gamma-32P]ATP using a PIP kinase partially purified from bovine retinae. PLC activity was determined by incubating membranes of DDT1 MF-2 cells with 32P-PIP2 and measuring remaining non-hydrolyzed substrate as well as accumulation of the hydrolysis product, inositol trisphosphate (IP3). Guanine nucleotides stimulated PIP2 hydrolysis and IP3 release. Additional increase in IP3 accumulation was observed with adrenaline plus guanine nucleotides.  相似文献   

9.
Several cytoplasmic tyrosine kinases contain a conserved, non-catalytic stretch of approximately 100 amino acids called the src homology 2 (SH2) domain, and a region of approximately 50 amino acids called the SH3 domain. SH2/SH3 domains are also found in several other proteins, including phospholipase C-gamma (PLC gamma). Recent studies indicate that SH2 domains promote association between autophosphorylated growth factor receptors such as the epidermal growth factor (EGF) receptor and signal transducing molecules such as PLC gamma. Because SH2 domains bind specifically to protein sequences containing phosphotyrosine, we examined their capacity to prevent tyrosine dephosphorylation of the EGF and other receptors with tyrosine kinase activity. For this purpose, various SH2/SH3 constructs of PLC gamma were expressed in Escherichia coli as glutathione-S-transferase fusion proteins. Our results show that purified SH2 domains of PLC gamma are able to prevent tyrosine dephosphorylation of the EGF receptor and other receptors with tyrosine activity. The inhibition of tyrosine dephosphorylation paralleled the capacity of various SH2-containing constructs to bind to the EGF receptor, suggesting that the tyrosine phosphatase and the SH2 domain compete for the same tyrosine phosphorylation sites in the carboxy-terminal tail of the EGF receptor. Analysis of the phosphorylation sites protected from dephosphorylation by PLC gamma-SH2 revealed substantial inhibition of dephosphorylation of Tyr992 at 1 microM SH2. This indicates that Tyr992 and its flanking sequence is the high-affinity binding site for SH2 domains of PLC gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Phosphoinositide-specific phospholipase C (PI-PLC) from human platelet cytosol was purified 190-fold to a specific activity of 0.68 mumol of phosphatidylinositol (PI) cleaved/min per mg of protein. It hydrolyses PI and phosphatidylinositol 4,5-bisphosphate (PIP2), but not phosphatidylcholine, phosphatidylserine or phosphatidylethanolamine. The enzyme exhibits an acid pH optimum of 5.5 and has a molecular mass of 98 kDa as determined by Sephacryl S-200 gel filtration. It required millimolar concentrations of Ca2+ for PI hydrolysis, whereas micromolar concentrations are optimal for PIP2 hydrolysis. Mg2+ could substitute for Ca2+ when PIP2, but not PI, was used as the substrate. EDTA was more effective than EGTA in inhibiting the basal PI-PLC activity towards PIP2. Sodium deoxycholate strongly inhibits the purified PI-PLC activity with either PI or PIP2 as substrate. Ras proteins, either alone or in the form of liposomes, have no effect on PI-PLC activity.  相似文献   

11.
It has recently been demonstrated that phosphatidylinositol 4,5-bisphosphate (PIP2) is localized at the cleavage furrow in dividing cells and its hydrolysis is required for complete cytokinesis, suggesting a pivotal role of PIP2 in cytokinesis. Here, we report that at least three mammalian isoforms of phosphoinositide-specific phospholipase C (PLC), PLCdelta1, PLCdelta3 and PLCbeta1, are localized to the cleavage furrow during cytokinesis. Targeting of the delta1 isoform to the furrow depends on the specific interaction between the PH domain and PIP2 in the plasma membrane. The necessity of active PLC in animal cell cytokinesis was confirmed using the specific inhibitors for PIP2 hydrolysis. These results support the model that activation of selected PLC isoforms at the cleavage furrow controls progression of cytokinesis through regulation of PIP2 levels: induction of the cleavage furrow by a contractile ring consisting of actomyosin is regulated by PIP2-dependent actin-binding proteins and formation of specific lipid domains required for membrane separation is affected by alterations in the lipid composition of the furrow.  相似文献   

12.
The effect of various detergents on polyphosphoinositide-specific phospholipase C activity in highly purified wheat root plasma membrane vesicles was examined. The plasma membrane-bound enzyme was solubilized in octylglucoside and purified 25-fold by hydroxylapatite and ion-exchange chromatography. The purified enzyme catalyzed the hydrolysis of phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) with specific activities of 5 and 10 mumol/min per mg protein, respectively. Phosphatidylinositol (PI) was not a substrate. Optimum activity was between pH 6-7 (PIP) and pH 6-6.5 (PIP2). The enzyme was dependent on micromolar concentrations of Ca2+ for activity, and millimolar Mg2+ further increased the activity. Other divalent cations (4 mM Ca2+, Mn2+ and Co2+) inhibited (PIP2 as substrate) or enhanced (PIP as substrate) phospholipase C activity.  相似文献   

13.
Phosphoinositide-specific phospholipase C-gamma1 (PLC-gamma1) has two pleckstrin homology (PH) domains, an N-terminal domain and a split PH domain. Here we show that pull down of NIH3T3 cell extracts with PLC-gamma1 PH domain-glutathione S-transferase fusion proteins, followed by matrix-assisted laser desorption ionization-time of flight-mass spectrometry, identified beta-tubulin as a binding protein of both PLC-gamma1 PH domains. Tubulin is a main component of microtubules and mitotic spindle fibers, which are composed of alpha- and beta-tubulin heterodimers in all eukaryotic cells. PLC-gamma1 and beta-tubulin colocalized in the perinuclear region in COS-7 cells and cotranslocated to the plasma membrane upon agonist stimulation. Membrane-targeted translocation of depolymerized tubulin by agonist stimulation was also supported by immunoprecipitation analyses. The phosphatidylinositol 4,5-bisphosphate (PIP(2)) hydrolyzing activity of PLC-gamma1 was substantially increased in the presence of purified tubulin in vitro, whereas the activity was not promoted by bovine serum albumin, suggesting that beta-tubulin activates PLC-gamma1. Furthermore, indirect immunofluorescent microscopy showed that PLC-gamma1 was highly concentrated in mitotic spindle fibers, suggesting that PLC-gamma1 is involved in spindle fiber formation. The effect of PLC-gamma1 in microtubule formation was assessed by overexpression and silencing PLC-gamma1 in COS-7 cells, which resulted in altered microtubule dynamics in vivo. Cells overexpressing PLC-gamma1 showed higher microtubule densities than controls, whereas PLC-gamma1 silencing with small interfering RNAs led to decreased microtubule network densities as compared with control cells. Taken together, our results suggest that PLC-gamma1 and beta-tubulin transmodulate each other, i.e. that PLC-gamma1 modulates microtubule assembly by beta-tubulin, and beta-tubulin promotes PLC-gamma1 activity.  相似文献   

14.
Hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2) by phosphatidylinositol-specific phospholipase C (PI-PLC) generates two second messengers, inositol 1,4,5-trisphosphate and 1,2-diacylglycerol. The polymerase chain reaction was used to isolate a Saccharomyces cerevisiae gene (PLC1) that encodes a protein of 869 amino acids (designated Plc1p) that bears greatest resemblance to the delta isoforms of mammalian PI-PLC in terms of overall sequence similarity and domain arrangement. Plc1p contains the conserved X and Y domains found in all higher eukaryotic PI-PLCs (51 and 29% identity, respectively, to the corresponding domains of rat delta 1 PI-PLC) and also contains a presumptive Ca(2+)-binding site (an E-F hand motif). Plc1p, modified by in-frame insertion of a His6 tract and a c-myc epitope near its amino terminus, was overexpressed from the GAL1 promoter, partially purified by nickel chelate affinity chromatography, and shown to be an active PLC enzyme in vitro with properties similar to those of its mammalian counterparts. Plc1p activity was strictly Ca2+ dependent: at a high Ca2+ concentration (0.1 mM), the enzyme hydrolyzed PIP2 at a faster rate than phosphatidylinositol, and at a low Ca2+ concentration (0.5 microM), it hydrolyzed PIP2 exclusively. Cells carrying either of two different deletion-insertion mutations (plc1 delta 1::HIS3 and plc1 delta 2::LEU2) were viable but displayed several distinctive phenotypes, including temperature-sensitive growth (inviable above 35 degrees C), osmotic sensitivity, and defects in the utilization of galactose, raffinose, and glycerol at permissive temperatures (23 to 30 degrees C). The findings reported here suggest that hydrolysis of PIP2 in S. cerevisiae is required for a number of nutritional and stress-related responses.  相似文献   

15.
Regulation of phosphoinositide-specific phospholipase C   总被引:7,自引:0,他引:7  
The receptors involved in the regulation of phospholipase C by hormones, neurotransmitters and other ligands have seven transmembrane-spanning hydrophobic regions (seven-helix motif) and no known enzymatic activity. Furthermore these receptors can be isolated as complexes with guanine nucleotide binding (G) proteins. Guanine nucleotides affect the binding of hormones that stimulate phospholipase C and it has been possible to see activation of GTPase activity in membranes upon addition of these ligands. Further indirect evidence for a Gp (p stands for phospholipase C activation) protein is the finding that in membranes agonist activation of phospholipase C requires the presence of GTP gamma S a non-hydrolyzable analog of GTP. Furthermore, fluoride is able to activate phospholipase C but its inhibition of phosphatidylinositol-4' kinase (PI-4' kinase) can interfere with efforts to demonstrate this in intact cells. There are four major isozymes of phospholipase C that have been cloned and sequenced. Recently it was found that phospholipase C-gamma as well as PI-3'-kinase are substrates for phosphorylation on tyrosine residues by the EGF and PDGF receptors. The PI-3' kinase is able to convert phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5-trisphosphate (PIP3) but the function of this lipid is unknown since it is not a substrate for any known phospholipase C. While much has been learned about the structure and regulation of the phosphoinositide specific kinases and phosphodiesterase enzymes this is a relatively new field in which we can expect many advances during the next few years.  相似文献   

16.
Stimulation of rat basophilic leukemia (RBL-2H3) cells with oligomeric IgE elicited a rapid and transient phosphorylation of phospholipase C (PLC)-gamma 1 on tyrosine residues. Prior incubation of RBL-2H3 cells with a protein tyrosine kinase inhibitor, herbimycin A, prevented the tyrosine phosphorylation of PLC-gamma 1 as well as the hydrolysis of phosphatidylinositol 4,5-bisphosphate induced by oligomeric IgE. However, 5'-(N-ethyl)carboxamidoadenosine, which is known to activate PLC through a G protein, did not elicit tyrosine phosphorylation of PLC-gamma 1. These results, together with previous findings showing that tyrosine phosphorylation of PLC-gamma 1 enhances its catalytic activity, indicate that phosphorylation of PLC-gamma 1 by a nonreceptor tyrosine kinase is the mechanism by which IgE receptor aggregation triggers PLC activation.  相似文献   

17.
Phospholipase C-gamma (PLC-gamma) is a substrate of the fibroblast growth factor receptor (FGFR; encoded by the flg gene) and other receptors with tyrosine kinase activity. It has been demonstrated that the src homology region 2 (SH2 domain) of PLC-gamma and of other signalling molecules such as GTPase-activating protein and phosphatidylinositol 3-kinase-associated p85 direct their binding toward tyrosine-autophosphorylated regions of the epidermal growth factor or platelet-derived growth factor receptor. In this report, we describe the identification of Tyr-766 as an autophosphorylation site of flg-encoded FGFR by direct sequencing of a tyrosine-phosphorylated tryptic peptide isolated from the cytoplasmic domain of FGFR expressed in Escherichia coli. The same phosphopeptide was found in wild-type FGFR phosphorylated either in vitro or in living cells. Like other growth factor receptors, tyrosine-phosphorylated wild-type FGFR or its cytoplasmic domain becomes associated with intact PLC-gamma or with a fusion protein containing the SH2 domain of PLC-gamma. To delineate the site of association, we have examined the capacity of a 28-amino-acid tryptic peptide containing phosphorylated Tyr-766 to bind to various constructs containing SH2 and other domains of PLC-gamma. It is demonstrated that the tyrosine-phosphorylated peptide binds specifically to the SH2 domain but not to the SH3 domain or other regions of PLC-gamma. Hence, Tyr-766 and its flanking sequences represent a major binding site in FGFR for PLC-gamma. Alignment of the amino acid sequences surrounding Tyr-766 with corresponding regions of other FGFRs revealed conserved tyrosine residues in all known members of the FGFR family. We propose that homologous tyrosine-phosphorylated regions in other FGFRs also function as binding sites for PLC-gamma and therefore are involved in coupling to phosphatidylinositol breakdown.  相似文献   

18.
Upon binding to its cell surface receptor, platelet-derived growth factor (PDGF) causes the tyrosine phosphorylation of phospholipase C-gamma 1 (PLC-gamma 1) and stimulates the production of diacylglycerol and inositol 1,4,5-triphosphate. We showed that following stimulation by PDGF, rat-2 cells overexpressing PLC-gamma 1 display an increase in the levels of both tyrosine-phosphorylated PLC-gamma 1 and inositol phosphates compared with the parental rat-2 cells. This increased responsiveness to PDGF is a direct effect of PLC-gamma 1 overexpression, as a cell line expressing similar levels of an enzymatically inactive point mutant of PLC-gamma 1, PLC-gamma 1 335Q, did not show elevated inositol phosphate production in response to PDGF. Hematopoietic cells express PLC-gamma 2, a PLC isoform that is closely related to PLC-gamma 1. When rat-2 cells overexpressing PLC-gamma 2 were treated with PDGF, an increase in both the tyrosine phosphorylation and the in vivo activity of PLC-gamma 2 was observed. Aluminum fluoride (AIF4-), a universal activator of PLC linked to G-proteins, did not produce an increase in the levels of inositol phosphates in either of the overexpressing cell lines compared with parental rat-2 cells, demonstrating that PLC-gamma isoforms respond specifically to a receptor with tyrosine kinase activity.  相似文献   

19.
A novel bovine spleen phosphoinositide-specific phospholipase C (PLC) has been identified with respect to immunoreactivity with four independent antibodies against each of the PLC isoenzymes, and purified to near homogeneity by sequential column chromatography. Spleen contains three of the isoenzymes: two different gamma-types [gamma 1 and gamma 2, originally named as PLC-gamma [Rhee, Suh, Ryu & Lee (1989) Science 244, 546-550] and PLC-IV [Emori, Homma, Sorimachi, Kawasaki, Nakanishi, Suzuki & Takenawa (1989) J. Biol. Chem. 264, 21885-21890] respectively] and delta-type of the enzyme, but PLC-gamma 1 is separated from the PLC-gamma 2 pool by the first DEAE-cellulose column chromatography. Subsequently, PLC-delta is dissociated on the third heparin-Sepharose column chromatography. The purified enzyme has a molecular mass of 145 kDa on SDS/polyacrylamide-gel electrophoresis and a specific activity of 12.8 mumol/min per mg with phosphatidylinositol 4,5-bisphosphate as substrate. This enzyme activity is dependent on Ca2+ for hydrolysis of all these phosphoinositides. None of the other phospholipids examined could be its substrate at any concentration of Ca2+. The optimal pH of the enzyme is slightly acidic (pH 5.0-6.5).  相似文献   

20.
Trypsin causes rapid activation of intact platelets that mimics many actions of thrombin, including the stimulation of phospholipase C (PLC). We have examined the effects of thrombin and trypsin on PLC in a platelet membrane preparation using exogenous [3H]-phosphatidylinositol 4,5-bisphosphate (PIP2) as substrate. Trypsin induced PIP2 breakdown, which was maximal at 20 micrograms/ml, but was reduced at higher concentrations. alpha- and gamma-Thrombins also stimulated PLC-induced hydrolysis of PIP2 in membranes. This effect was inhibited by leupeptin. Exogenous [3H]phosphatidylinositol 4-monophosphate (PIP) was hydrolyzed in response to both thrombin and trypsin in the same ratio as PIP2. Activation of membrane-bound PLC persisted after removal of thrombin and trypsin. The hydrolysis of [3H]phosphatidylinositol was not activated by alpha-thrombin and trypsin. We examined the question of whether calpain was involved in the observed PLC activation by thrombin and trypsin. Although dibucaine activated a Ca2(+)-dependent protease as judged by the hydrolysis of actin-binding protein and by the activation of phosphoprotein phosphatases, it failed to stimulate the generation of phosphatidic acid in 32P-prelabeled platelets. Moreover, when PLC was assayed in the membranes, the addition of Ca2(+)-activated neutral proteinases did not increase the rate of hydrolysis of either PIP or PIP2. Our results show that proteases such as trypsin and thrombin are able to stimulate membrane-bound PLC, but this activation does not seem to be related to calpain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号