首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An indigenously isolated white rot fungus, Schizophyllum commune IBL-06 was used to decolorize Solar brilliant red 80 direct dye in Kirk’s basal salts medium. In initial screening study, the maximum decolorization (84.8%) of Solar brilliant red 80 was achieved in 7 days shaking incubation period at pH 4.5 and 30 °C. Different physical and nutritional factors including pH, temperature and fungal inoculum density were statistically optimized through Completely Randomized Design (CRD), to enhance the efficiency of S. commune IBL-06 for maximum decolorization of Solar brilliant red 80 dye. The effects of inexpensive carbon and nitrogen sources were also investigated. Percent dye decolorization was determined by a reduction in optical density at the wavelength of maximum absorbance (λmax, 590 nm). Under optimum conditions, the S. commune IBL-06 completely decolorized (100%) the Solar brilliant red 80 dye using maltose and ammonium sulfate as inexpensive carbon and nitrogen sources, respectively in 3 days. S. commune IBL-06 produced the three major ligninolytic enzymes lignin peroxidase (LiP), manganase peroxidase (MnP) and lacaase (Lac) during the decolorization of Solar brilliant red 80. LiP was the major enzyme (944 U/mL) secreted by S. commune IBL-06 along with comparatively lower activities of MnP and Laccase.  相似文献   

2.
A developed consortium-GR, consisting of Proteus vulgaris NCIM-2027 (PV) and Micrococcus glutamicus NCIM-2168 (MG), completely decolorized an azo dye Scarlet R under static anoxic condition with an average decolorization rate of 16,666 μg h?1; which is much faster than that of the pure cultures (PV, 3571 μg h?1; MG, 2500 μg h?1). Consortium-GR gave best decolorization performance with nearly complete mineralization of Scarlet R (over 90% TOC and COD reduction) within 3 h, much shorter relative to the individual strains. Induction in the riboflavin reductase and NADH–DCIP reductase was observed in the consortium, suggesting the involvement of these enzymes during the fast decolorization process. The FTIR and GC–MS analysis showed that 1,4-benzenediamine was formed during decolorization/degradation of Scarlet R by consortium-GR. Phytotoxicity studies revealed no toxicity of the biodegraded products of Scarlet R by consortium-GR. In addition, consortium-GR applied for mixture of industrial dyes showed 88% decolorization under static condition with significant reduction in TOC (62%) and COD (68%) within 72 h, suggesting potential application of this microbial consortium in bioremediation of dye-containing wastewater.  相似文献   

3.
《Process Biochemistry》2014,49(1):160-172
The green synthesis of zinc oxide nanoparticles (ZnONPs) using Borassus flabellifer fruit extract was characterized by UV–visible spectroscopy, FT-IR, XRD, TEM, Zeta potential and EDS analysis. The UV–visible spectrum showed an absorption peak at 368 nm that reflects surface Plasmon resonance (SPR) ZnONPs. TEM photograph showed that the green synthesized ZnONPs were porous in nature and rod like structure with an average size of 55 nm. The Zeta potential value of −21.5 mV revealed the surface charge of green synthesized ZnONPs. In this study, we examined the synthesized DOX-ZnONPs exhibited a dose-dependent cytotoxicity against MCF-7 and HT-29. The inhibitory concentration (IC50) was found to be 0.125 μg mL−1 for MCF-7 and HT-29 cells. An induction of apoptosis was evidenced by nuclear stain Hoechst 33258. In vivo toxicity assessment showed that DOX-ZnONPs have low systemic toxicity in murine model system. The results prove that the DOX-ZnONPs has low toxicity and high therapy efficacy, which provides convincing evidence for the green biosynthesized ZnO as a promising candidate for a drug delivery system.  相似文献   

4.
A new fungal peroxidase (Pspd) from Perenniporia subacida was purified by ammonium sulfate precipitation, DEAE-cellulose DE52 anionic exchange and Sepharose GL-6B chromatography, resulting in a high specific activity of 9.138 U mg−1, 3.622-fold higher than that of crude enzyme at the same level. Polyacrylamide gel electrophoresis and UV–vis adsorption spectrum analysis showed that the purified enzyme is a heme-containing monomer with a molecular mass of 43.0 kDa. Optimal peroxidase activity was obtained at pH 5.5 and 30 °C when using 100.0 mM n-propanol as substrate, and under these conditions, the catalytic efficiency (kcat/Km) is 1.57 s−1 μM−1. Pspd was inhibited by l-cysteine, dithiothreitol, EDTA and sodium azide, but stimulated by Mn2+, Na+, Mg2+ and K+. The enzyme is stable over a broad pH range of 7.0–8.5 after incubation for 72 h, which indicated that the enzyme is lasting alkaline-tolerant. It was worth noting that the chloride at relatively low concentrations can enhance the peroxidase activity, with concomitant increase in substrate affinity. Additionally, Pspd performed high decolorization capability toward structurally various dyes and the capability was independent of the oxidizing mediators, with 75.31% of Neutral Red (50.0 mg L−1) being decolorized by 1.5 U mL−1 pure enzyme after incubation for 72 h. These properties demonstrated that Pspd has potentials for textile dyes decolorization applications.  相似文献   

5.
Batch and continuous reactors inoculated with white-rot fungi were operated in order to study decolorization of textile dyes. Synthetic wastewater containing either Reactive Blue 4 (a blue anthraquinone dye) or Reactive Red 2 (a red azo dye) was used during the first part of the study while real wastewater from a textile industry in Tanzania was used in the later part. Trametes versicolor was shown to decolorize both Reactive Blue 4 and Reactive Red 2 if glucose was added as a carbon source. Reactive Blue 4 was also decolorized when the fungus was allowed to grow on birch wood discs in a continuous biological rotating contactor reactor. The absorbance at 595 nm, the wavelength at which the dye absorbs at a maximum, decreased by 70% during treatment. The initial dye concentration in the medium was 200 mg/l and the hydraulic retention time in the reactor 3 days. No glucose was added in this experiment. Changes of the absorbance in the UV range indicated that the aromatic structures of the dyes were altered. Real textile wastewater was decolorized by Pleurotus flabellatus growing on luffa sponge packed in a continuous reactor. The reactor was operated at a hydraulic retention time of 25 h. The absorbance at 584 nm, the wavelength at which the wastewater absorbed the most, decreased from 0.3 in the inlet to approximately 0.1 in the effluent from the reactor.  相似文献   

6.
《Process Biochemistry》2007,42(6):934-942
Pseudomonas luteola was immobilized by entrapment in alginate–silicate sol–gel beads for decolorization of the azo dye, Reactive Red 22. The influences of biomass loading and operating conditions on specific decolorization rate and dye removal efficiency were studied in details. The immobilized cells were found to be less sensitive to changes in agitation rates (dissolved oxygen levels) and pH values. Michaelis–Menten kinetics could be used to describe the decolorization kinetics with the kinetic parameters being 36.5 mg g−1 h−1, 300.1 mg l−1 and 18.2 mg g−1 h−1, 449.8 mg l−1 for free and immobilized cells, respectively. After five repeated batch cycles, the decolorization rate of the free cells decreased by nearly 54%, while immobilized cells still retained 82% of their original activity. The immobilized cells exhibited better thermal stability during storage and reaction when compared with free cells. From SEM observation, a dense silicate gel layer was found to surround the macroporous alginate–silicate core, which resulted in much improved mechanical stability over that of alginate beads when tested under shaking conditions. Alginate–silicate matrices appeared to be the best matrix for immobilization of P. luteola in decolorization of Reactive Red 22 when compared with previous results using synthetic or natural polymer matrices.  相似文献   

7.
Four textile azo dyes, Joyfix Red, Remazol Red, Reactive Red and Reactive Yellow, were studied for decolorization. Of nineteen soil bacterial isolates, two novel strains were found to highly decolorize Joyfix Red and were identified as Lysinibacillus sphaericus (KF032717) and Aeromonas hydrophila (KF032718) through 16S rDNA analysis. Laccase and Azoreductase enzyme modeling and enzyme–dye interaction performed using Schrödinger Suite imitated decolorization percentage. Results based on cumulative Glide score (Dry laboratory) and decolorization percentage of the other three dyes based on ultraviolet–visible (UV–vis) spectroscopy (Wet laboratory) were reliable. Biodegradation of Joyfix Red was confirmed by high-performance liquid chromatography (HPTLC) elution profile which showed four peaks at 1.522, 1.800, 3.068 and 3.804 min with that of parent dye which showed single peak at 1.472 min. Fourier transform infrared spectroscopy (FT-IR) analysis supported the biotransformation of Joyfix Red. Gas chromatography–mass spectroscopy (GC–MS) analysis showed sodium (3E,5Z)-4-amino-6-hydroxyhexa-13,5-triene-2-sulfonate was formed as end product during biodegradation. From these findings, it can be inferred that enzyme and dye interaction studies can assist in examining decolorization efficiency of bacteria and its enzyme, thereby enhancing the bioremediation process by reducing preliminary lengthy wet laboratory screening. This is the first report of a combinatorial in silico cum in vitro approach and its validation for the bioremediation of wastewater containing these textile azo dyes.  相似文献   

8.
A laccase requiring optimum temperature 60 °C, pH 4.0 for the activity and having apparent molecular weight 43,000 Da was purified from Pseudomonas desmolyticum NCIM 2112 by three steps, including heating, anion exchange, and molecular sieve chromatography. The purification fold and yield of laccase obtained through Biogel P100 were 45.75 and 19%, respectively. Staining of native gel with L-dopa showed dark brown color band indicating the presence of laccase. In relation to hydroquinone, the substrate specificity of laccase was in the following order: DAB > o-tolidine > ABTS > L-dopa. The absence of monophenolase activity in eluted fractions conformed that the purified protein is laccase. This laccase showed substrate dependent optimum pH character. Effect of inhibitor and metal ion on enzyme activity was analyzed. UV–vis analysis showed the decolorization of Direct Blue-6, Green HE4B and Red HE7B in the presence of laccase. The FTIR spectral comparison between the control dye sample and the metabolites extracted after decolorization by purified laccase have confirmed degradation of these dyes. This study contributes for the structural requirement of a dye to be degradable by P. desmolyticum laccase and is important in order to optimize potential bioremediation systems for industrial textile process water treatment.  相似文献   

9.
A bacterial strain, CK3, with remarkable ability to decolorize the reactive textile dye Reactive Red 180, was isolated from the activated sludge collected from a textile mill. Phenotypic characterization and phylogenetic analysis of the 16S rDNA sequence indicated that the bacterial strain belonged to the genus Citrobacter. Bacterial isolate CK3 showed a strong ability to decolorize various reactive textile dyes, including both azo and anthraquinone dyes. Anaerobic conditions with 4 g l?1 glucose, pH = 7.0 and 32 °C were considered to be the optimum decolorizing conditions. Citrobacter sp. CK3 grew well in a high concentration of dye (200 mg l?1), resulting in approximately 95% decolorization extent in 36 h, and could tolerate up to 1000 mg l?1 of dye. UV–vis analyses and colorless bacterial cells suggested that Citrobacter sp. CK3 exhibited decolorizing activity through biodegradation, rather than inactive surface adsorption. It is the first time that a bacterial strain of Citrobacter sp. has been reported with decolorizing ability against both azo and anthraquinone dyes. High decolorization extent and facile conditions show the potential for this bacterial strain to be used in the biological treatment of dyeing mill effluents.  相似文献   

10.
A recombinant dye-decolorizing peroxidase (rDyP) produced from Aspergillus oryzae was immobilized in synthesized silica-based mesocellular foam (MCF: average pore size 25 nm) and used for decolorization of the anthraquinone dye, Remazol Brilliant Blue R (RBBR). The adsorption yields of rDyP immobilized in MCF increased as the pH decreased from 6 to 3. However, the activity yields of the immobilized rDyP decreased with decreasing pH. The overall efficiency, defined as adsorption yield × activity yield, reached its maximum of 83% at pH 5. In repeated dye-decolorization tests, 20 batches of RBBR could be decolorized by the MCF-immobilized rDyP. MCF showed significantly better performance for rDyP immobilization in term of retaining enzyme activity and dye-decolorization ability compared to previous studies using other mesoporous materials.  相似文献   

11.
In this paper, two microbial cultures with high decolorization efficiencies of reactive dyes were obtained and were proved to be dominant with fungi consortium in which 21 fungal strains were isolated and 8 of them showed significant decolorization effect to reactive red M-3BE. A 4.5 l continuous biofilm reactor was established using the mixed cultures to investigate the decolorization performance and the system stability under the conditions of simulated and real textile wastewater as influents. The optimal nutrient feed to this bioreactor was 0.5 g l−1 glucose and 0.1 g l−1 (NH4)2SO4 when 30 mg l−1 reactive black 5 was used as initial dye concentrations. Dye mineralization rates of 50–75% and color removal efficiencies of 70–80% were obtained at 12 h hydraulic retention time (HRT) in this case. Higher glucose concentrations in the influents could significantly improve color removal, but was not helpful for dye mineralization. Besides reactive black 5, the bioreactor could effectively decolorize reactive red M-3BE, acid red 249 and real textile wastewater with efficiency of 65%, 94% and 89%, respectively. In addition, the microbial community on the biofilm was monitored in the whole running process. The results indicated fungi as a dominant population in the decolorization system with the ratio of fungi to bacteria 6.8:1 to 51.8:1 under all the tested influent conditions. Analysis of molecular biological detection indicated that yeasts of genus Candida occupied 70% in the fungal clone library based on 26S rRNA gene sequences.  相似文献   

12.
The removal of Remazol Blue and Reactive Black B by the immobilized thermophilic cyanobacterial strain Phormidium sp. was investigated under thermophilic conditions in a batch system, in order to determine the optimal conditions required for the highest dye removal. In the experiments, performed at pH 8.5, with different initial dye concentrations between 9.1 mg l−1 and 82.1 mg l−1 and at 45 °C, calcium alginate immobilized Phormidium sp. showed high dye decolorization, with maximum uptake yields ranging from 50% to 88% at all dye concentrations tested. When the effects of high dye concentrations on dye removal were investigated, the highest uptake yield in the beads was 50.3% for 82.1 mg l−1 Remazol Blue and 60.0% for 79.5 mg l−1 Reactive Black B. The highest color removal was detected at 45 °C and 50 °C incubation temperatures for all dye concentrations. As the temperature decreased, the removal yield of immobilized Phormidium sp. also decreased. At about 75 mg l−1 initial dye concentrations, the highest specific dye uptake measured was 41.29–41.17 mg g−1 for Remazol Blue and 47.69–43.82 mg g−1 for Reactive Black B at 45 °C and 50 °C incubation temperatures, respectively, after 8 days incubation.  相似文献   

13.
The enzymatic decolorization process of manganese peroxidase (MnP) is a complex system, which is greatly affected by the concentrations of H2O2, Mn2+, dye and enzyme. This work aimed to study these factors and investigate the combined interactions between them by applying response surface methodology (RSM) for decolorization of Congo red with MnP from Schizophyllum sp. F17, meanwhile conventional one-factor-at-a-time analysis was carried out. Through the one-factor-at-a-time analysis the optimized H2O2, Mn2+, Congo red and MnP extract was 0.2 mM, 0.5 mM, 50 mg/l and 0.8 ml, respectively, and the maximum decolorization attained under such conditions was 24.2%. Response surface analysis was conducted through Box–Behnken design and a second-order polynomial model (R2 = 0.8565) was generated to describe the combined effect and the interactions quantificationally. ANOVA analysis indicated that the interactions between H2O2 and MnP, between dye and MnP were significant; the optimum condition through RSM was found to be 0.35 mM H2O2, 0.5 mM Mn2+, 75 mg/l Congo red and 1.4 ml MnP extract, for maximum decolorization of 30.8%.  相似文献   

14.
This study investigates the green synthesis of AgNPs from 1 mM aqueous AgNO3 using 10% leaf extract of Alstonia scholaris (Chhatim) for its wide antibacterial and medicinal properties. The synthesized AgNPs were duly characterized by UV–vis (UV–vis) spectrophotometry, dynamic light scattering, field emission scanning electron microscopy, transmission electron microscopy, energy-dispersive analysis of X-rays spectroscopy, and fourier transform infrared spectrophotometry. Their antibacterial property was tested against Escherichia coli (ATCC 25922), and minimum inhibitory concentrations of 0.08 nM of AgNPs were obtained, which suggests improved therapeutic efficacy. We report the interaction of human serum albumin (HSA) with this nanoparticle, and this interaction was studied by UV–vis, fluorescence, and circular dichroism spectroscopies and zeta potential measurement at room temperature. It was found that the AgNPs form a complex with HSA, which may cause the slightest change in the conformation of HSA. The calculated values of Stern-Volmer quenching constant, binding constant, and binding distance were 1.82 × 107 M−1, 1.58 × 107 M−1, and 3.68 nm, respectively. Therefore, in future, the present study may provide useful information to design a better antibacterial compound by using green synthesized nanoparticles with fewer side effects.  相似文献   

15.
For the first time, the investigation of Indigo carmine decolorization was done using an atypical Scytalidium thermophilum laccase. Crude and purified laccases required high temperatures and slight acidic pH to achieve maximum Indigo decolorization. Kinetic parameters (Km and kcat) of the homotrimeric laccase toward Indigo carmine were determined and laccase efficacy toward repeated dye decolorization process was studied. For the first time, 5 g l−1 as initial Indigo carmine concentration were efficiently transformed up to 50% within 6 h of incubation using 0.1 U ml−1 of laccase and without presence of any mediators. In this study, we showed that the atypical laccase transformed the indigoid dye structure, confirmed by the color changing from blue to red. This intermediate (red) was a subject to an efficient microbial consortium treatment monitored by measuring the decrease in optical density and the total organic carbon removal efficiencies. Toxicological studies via micro-toxicity test showed that the released enzymatic and adapted consortium degradation products were both non-toxic while the initial product was toxic.  相似文献   

16.
A sequential anaerobic packed column reactor and an activated sludge unit was operated continuously for treatment of a textile industry wastewater, in Izmir, Turkey. Metal sponges were used as support material in anaerobic unit and pre-activated textile dyestuff biodegrading PDW facultative anaerobic bacterial culture was immobilized on the support particles. Effects of hydraulic retention times in anaerobic unit (θH anaerobic = 12–72 h) and initial COD concentration (COD0 = 3000 ± 200 mg/L and 800 ± 100 mg/L) at θH anaerobic = 24 h on color and COD removal performance of the system were investigated. The results indicated that over 85% decolorization and about 90% COD removal efficiency can be obtained up to θH anaerobic = 48 h but higher retention times causes decreasing in decolorization efficiency. Operating the system with real wastewater without adding any nutrients at θH anaerobic = 24 h resulted in over 60% improvement in color removal in studied wastewater compared to existing treatment plant.  相似文献   

17.
The biological method for the synthesis of silver nanoparticles (AgNPs) using Annona squamosa leaf extract and its cytotoxicity against MCF-7 cells are reported. The synthesized AgNPs using A. squamosa leaf extract was determined by UV–visible spectroscopy and it was further characterized by FT-IR, X-ray diffraction (XRD), Transmission electron microscopy (TEM), Zeta potential and energy dispersive spectrometric (EDS) analysis. The UV–visible spectrum showed an absorption peak at 444 nm which reflects surface plasmon resonance (SPR) of AgNPs. TEM photography showed biosynthesized AgNPs were predominantly spherical in shape with an average size ranging from 20 to 100 nm. The Zeta potential value of ?37 mV revealed the stability of biosynthesized AgNPs. Furthermore, the green synthesized AgNPs exhibited a dose-dependent cytotoxicity against human breast cancer cell (MCF-7) and normal breast epithelial cells (HBL-100) and the inhibitory concentration (IC50) were found to be 50 μg/mL, 30 μg/mL, and 80 μg/mL, 60 μg/ml for AgNPs against MCF-7 and normal HBL-100 cells at 24 h and 48 h incubation respectively. An induction of apoptosis was evidenced by (AO/EtBr) and DAPI staining. Application of such eco-friendly nanoparticles makes this method potentially exciting for the large scale synthesis of nanoparticles.  相似文献   

18.
《Process Biochemistry》2004,39(11):1415-1419
The white-rot fungus Pleurotus ostreatus strain 32 is an excellent producer of the industrially important enzyme laccase. Laccase was the only ligninolytic activity detected in the supernatant when the fungus was grown in liquid culture with or without shaking. Growth and laccase production in static cultivation were superior to that in agitated cultivation, and N-limited culture is of benefit to laccase production. When using cellobiose and peptone as carbon and nitrogen source, a higher activity level was obtained. 2,2′-Azino-di-(3-ethylbenzothialozin-6-sulfonic acid) (ABTS) (1 mM) was shown to be the best inducer of laccase production, reaching maximum values of about 400 U/ml. Cu2+ (1 mM) also had a positive effect on laccase production, activity being enhanced to 360 U/ml. In addition, anthraquinone dye SN4R can be effectively decolorized by crude laccase (30 U/ml), the rate of which was 66%. The decolorization rate was increased by 90% with ABTS (0.16%) addition as a mediator of laccase.  相似文献   

19.
We used a green fluorescent kidney line, Tg(wt1b:GFP), as a model to access the acetaminophen (AAP)-induced nephrotoxicity dynamically. Zebrafish (Danio rerio) embryos at different developmental stages (12–60 hpf) were treated with different dosages of AAP (0–45 mM) for different time courses (12–60 h). Results showed that zebrafish embryos exhibited no evident differences in survival rates and morphological changes between the mock-treated control (0 mM) and 2.25 mM AAP-exposure (12–72 hpf) groups. In contrast, after higher doses (22.5 and 45 mM) of exposure, embryos displayed malformed kidney phenotypes, such as curved, cystic pronephric tube, pronephric duct, and a cystic and atrophic glomerulus. The percentages of embryos with malformed kidney phenotypes increased as the exposure dosages of AAP increased. Interestingly, under the same exposure time course (12 h) and dose (22.5 mM), embryos displayed higher percentages of severe defects at earlier developmental stage of exposure (12–24 hpf), whereas embryos displayed higher percentages of mild defects at later exposure (60–72 hpf). With an exposure time course less than 24 h of 45 mM AAP, no embryo survived by the developmental stage of 72 hpf. These results indicated that AAP-induced nephrotoxicity depended on the exposure dose, time course and developmental stages. Immunohistochemical experiments showed that the cells' morphologies of the pronephric tube, pronephric duct and glomerulus were disrupted by AAP, and consequently caused cell death. Real-time RT-PCR revealed embryos after AAP treatment decreased the expression of cox2 and bcl2, but increased p53 expression. In conclusion, AAP-induced defects on glomerulus, pronephric tube and pronephric duct could be easily and dynamically observed in vivo during kidney development in this present model.  相似文献   

20.
The in vitro human reconstructed skin micronucleus (RSMN) assay in EpiDerm? is a promising new assay for evaluating genotoxicity of dermally applied chemicals. A global pre-validation project sponsored by the European Cosmetics Association (Cosmetics Europe - formerly known as COLIPA), and the European Center for Validation of Alternative Methods (ECVAM), is underway. Results to date demonstrate international inter-laboratory and inter-experimental reproducibility of the assay for chemicals that do not require metabolism [Aardema et al., Mutat. Res. 701 (2010) 123–131]. We have expanded these studies to investigate chemicals that do require metabolic activation: 4-nitroquinoline-N-oxide (4NQO), cyclophosphamide (CP), dimethylbenzanthracene (DMBA), dimethylnitrosamine (DMN), dibenzanthracene (DBA) and benzo(a)pyrene (BaP). In this study, the standard protocol of two applications over 48 h was compared with an extended protocol involving three applications over 72 h. Extending the treatment period to 72 h changed the result significantly only for 4NQO, which was negative in the standard 48 h dosing regimen, but positive with the 72 h treatment. DMBA and CP were positive in the standard 48 h assay (CP induced a more reproducible response with the 72 h treatment) and BaP gave mixed results; DBA and DMN were negative in both the 48 h and the 72 h dosing regimens. While further work with chemicals that require metabolism is needed, it appears that the RMSN assay detects some chemicals that require metabolic activation (4 out of 6 chemicals were positive in one or both protocols). At this point in time, for general testing, the use of a longer treatment period in situations where the standard 48 h treatment is negative or questionable is recommended.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号