首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In this work we describe the synthesis, docking studies and biological evaluation of a focused library of novel arylpiperazinyl derivatives of 8-acetyl-7-hydroxy-4-methylcoumarin. The new compounds were screened for their 5-HT1A and 5-HT2A receptor affinity. Among the evaluated compounds, six displayed high affinities to 5-HT1A receptors (4a-0.9?nM, 6a-0.5?nM, 10a-0.6?nM, 3b-0.9?nM, 6b-1.5?nM, 10b-1?nM). Compound 6a and 10a bearing a bromo- or methoxy- substituent in ortho position of the piperazine phenyl ring, were identified as potent antagonists of the 5-HT1A receptors. In the tail suspension test, mice injected with 6a showed a dose-dependent increase in depressive-like behavior that was related to a decrease in locomotor activity. Compound 10a did not decrease or prolong immobility time nor did it affect home cage activity. Molecular docking studies using 5-HT1A and 5-HT2A homology models revealed structural basis of the high affinity of ortho-substituted derivatives and subtle changes in amino acid interactions patterns depending on the length of the alkyl linker.  相似文献   

2.
Aim of the study was evaluation of anxiolytic, antidepressant, anticonvulsant and analgesic activity in a series of a consistent group of compounds. A series of eleven new N-(phenoxyalkyl)- or N-{2-[2-(phenoxy)ethoxy]ethyl}piperazine derivatives has been obtained. Their affinity towards 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, D2 and α1 receptors has been assessed, and then functional assays were performed. The compounds were evaluated in mice, i.p. for their antidepressant-like (forced swim test), locomotor, anxiolytic-like (four-plate test) activities as well as – at higher doses – for anticonvulsant potential (MES) and neurotoxicity (rotarod). Two compounds (3, 6) were also evaluated for their analgesic activity in neuropathic pain models (streptozocin test, oxaliplatin test) and they were found active against allodynia in diabetic neuropathic pain at 30?mg/kg. Among the compounds, anxiolytic-like, anticonvulsant or analgesic activity was observed but antidepressant-like activity was not. One of the two most interesting compounds is 1-{2-[2-(2,4,6-trimethylphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazine dihydrochloride (9), exhibiting anxiolytic and anticonvulsant activity in mice, i.p. 30 min after administration (at 2.5?mg/kg and ED50?=?26.33?mg/kg, respectively), which can be justified by the receptor profile: 5-HT1A Ki?=?5?nM (antagonist), 5-HT7 Ki?=?70?nM, α1 Ki?=?15?nM, D2 Ki?=?189?nM (antagonist). Another interesting compound is 1-[3-(2,4,6-trimethylphenoxy)propyl]-4-(4-methoxyphenyl)piperazine dihydrochloride (3), exhibiting anxiolytic, anticonvulsant and antiallodynic activity in mice, i.p., 30?min after administration (at 10?mg/kg, ED50?=?23.50?mg/kg, at 30?mg/kg, respectively), which can be related with 5-HT1A weak antagonism (Ki?=?146?nM), or other possible mechanism of action, not evaluated within presented study. Additionally, for the most active compound in the four-plate test (7), molecular modeling was performed (docking to receptors 5-HT1A, 5-HT2A, 5-HT7, D2 and α1A).  相似文献   

3.
On the basis of the structures of serotonin modulators or drugs (NAN-190, buspirone, aripiprazole) and phosphodiesterase 4 (PDE4) inhibitors (rolipram, RO-20-1724), a series of novel multitarget 5-arylidenehydantoin derivatives with arylpiperazine fragment was synthesized. Among these compounds, 5-(3,4-dimethoxybenzylidene-3-(4-(4-(2,3-dichlorophenyl)piperazine-1-yl)butyl)-imidazolidine-2,4-dione (13) and 5-(3-cyclopentyloxy-4-methoxybenzylidene-3-(4-(4-(2-methoxyphenyl)piperazine-1-yl)butyl)-imidazolidine-2,4-dione (18) were found to be the most promising showing very high affinity toward 5-HT1A and 5-HT7 receptors (Ki = 0.2–1.0 nM) but a negligible inhibitory effect on PDE4. The high affinity of the compounds for 5-HT1A and 5-HT7 receptors was further investigated by computer-aided studies. Moreover, compounds 13 and 18 showed no significant cytotoxicity in the MTT assay, but high clearance in the in vitro assay. In addition, these compounds behaved like 5-HT1A and 5-HT7 receptor antagonists and exhibited antidepressant-like activity, similar to the reference drug citalopram, in an animal model of depression.  相似文献   

4.
A novel series of 3-ethoxyquinoxalin-2-carboxamides were designed as per the pharmacophoric requirements of 5-HT3 receptor antagonist using ligand-based approach. The desired carboxamides were synthesized from the key intermediate, 3-ethoxyquinoxalin-2-carboxylic acid by coupling with appropriate amines in the presence of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC·HCl) and 1-hydroxybenzotriazole (HOBt). The 5-HT3 receptor antagonism was evaluated in longitudinal muscle myenteric plexus preparation from guinea pig ileum against 5-HT3 agonist, 2-methy-5-HT, which was expressed in the form of pA2 values. Compound 6h (3-ethoxyquinoxalin-2-yl)(4-methylpiperazin-1-yl)methanone was found to be the most active compound, which expressed a pA2 value of 7.7. In forced swim test, the compounds with higher pA2 value exhibited good anti-depressant-like activity and compounds with lower pA2 value failed to show activity as compared to the vehicle-treated group.  相似文献   

5.
A series of benzoxazole/benzothiazole-2,3-dihydrobenzo[b][1,4]dioxine derivatives (5a5d and 8a8j) was synthesized. Compounds were evaluated for binding affinities at the 5-HT1A and 5-HT2A receptors. Antidepressant activities of the compounds were screened using the forced swimming test (FST) and the tail suspension test (TST). The results indicated that the compounds exhibited high affinities for the 5-HT1A and 5-HT2A receptors and showed a marked antidepressant-like activity. Compound 8g exhibited high affinities for the 5-HT1A (Ki = 17 nM) and 5-HT2A (Ki = 0.71 nM) receptors; it also produced a decrease of the immobility time and exhibited potent antidepressant-like effects in the FST and TST in mice.  相似文献   

6.
A series of new xanthone derivatives with piperazine moiety [17] was synthesized and evaluated for their pharmacological properties. They were subject to binding assays for α1 and β1 adrenergic as well as 5-HT1A, 5-HT6 and 5-HT7b serotoninergic receptors. Five of the tested compounds were also evaluated for their anticonvulsant properties. The compound 3a 3-methoxy-5-{[4-(2-methoxyphenyl)piperazin-1-yl]methyl}-9H-xanthen-9-one hydrochloride exhibited significantly higher affinity for serotoninergic 5-HT1A receptors (Ki = 24 nM) than other substances. In terms of anticonvulsant activity, 6-methoxy-2-{[4-(benzyl)piperazin-1-yl]methyl}-9H-xanthen-9-one (5) proved best properties. Its ED50 determined in maximal electroshock (MES) seizure assay was 105 mg/kg b.w. (rats, p.o.). Combining of xanthone with piperazine moiety resulted in obtaining of compounds with increased bioavailability after oral administration.  相似文献   

7.
A series of novel alkoxy-piperidine derivatives were synthesized and evaluated for their serotonin reuptake inhibitory and binding affinities for 5-HT1A/5-HT7 receptors. In vivo antidepressant activities of the selective compounds were explored using the forced swimming test (FST) and tail suspension test (TST) in mice. The results showed that compounds 7a (reuptake inhibition (RUI), IC50 = 177 nM; 5-HT1A, Ki = 12 nM; 5-HT7, Ki = 25 nM) and 15g (RUI, IC50 = 85 nM; 5-HT1A, Ki = 17 nM; 5-HT7, Ki = 35 nM) were potential antidepressant agents in animal behavioral models with high 5-HT1A/5-HT7 receptor affinities and moderate serotonin reuptake inhibition, and good metabolic stability in vitro.  相似文献   

8.
A series of fourteen novel, eight-membered lactam- and dilactam-based analogues of tricyclic drugs were obtained in a simple one-pot procedure. Crystal structures of two compounds were determined by single-crystal X-ray diffraction analysis and their selected structural features were discussed and compared with those of imipramine and dibenzepine. Affinity of developed molecules for histamine receptor H1, serotonin receptors 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, serotonin transporter (SERT) and dopamine receptor D2 was determined. The commercial drug dibenzepine was also checked on these molecular targets, as its mechanism of action is largely unknown. Two derivatives of 11,12-dihydrodibenzo[b,f]azocin-6(5H)-one (7,8) and two of dibenzo[b,f]azocin-6(5H)-one (9,10) were found to be active toward the H1 receptor in sub-micromolar concentrations.  相似文献   

9.
A set of aporphine analogs related to nantenine was evaluated for antagonist activity at 5-HT2A and α1A adrenergic receptors.With regards to 5-HT2A receptor antagonism, a C2 allyl group is detrimental to activity. The chiral center of nantenine is not important for 5-HT2A antagonist activity, however the N6 nitrogen atom is a critical feature for 5-HT2A antagonism.Compound 12b was the most potent 5-HT2A aporphine antagonist identified in this study and has similar potency to previously identified aporphine antagonists 2 and 3. The ring A and N6 modifications examined were detrimental to α1A antagonism. A slight eutomeric preference for the R enantiomer of nantenine was observed in relation to α1A antagonism.  相似文献   

10.
On the basis of systematic studies on the structure–activity relationships in arylpiperazine group of serotonin ligands, 12 new derivatives containing quinazolidin-4(3H)-one (14), 2-phenyl-2,3-dihydrophthalazine-1,4-dione (58) or 1-phenyl-1,2-dihydropyridazine-3,6-dione (912) fragments were synthesized. The majority of the tested compounds (2, 4, 7, 8 and 1012) showed a high affinity for 5-HT1A receptors (Ki=11–54 nM) and two (1, 2) were found active at 5-HT2A sites (16 and 68 nM, respectively). All the new 5-HT1A ligands tested in vivo revealed an antagonistic activity at postsynaptic 5-HT1A receptors, and three of them behaved as agonists at presynaptic ones. Additionally, both the meta-chlorophenylpiperazine derivatives containing quinazolidin-4-one fragment showed features of 5-HT2A receptor antagonists. The dual 5-HT1A/5-HT2A receptor ligand (2) was further tested for its potential psychotropic activity. It showed a distinct anxiolytic-like activity in a conflict drinking test in rats and the observed effect was more potent in terms of the active dose, than that produced by diazepam (used as a reference drug).  相似文献   

11.
Aporphine alkaloids containing a C10 nitrogen motif were synthesized and evaluated for affinity at 5-HT1AR, 5-HT2AR, 5-HT6R and 5-HT7AR. Three series of racemic aporphines were investigated: 1,2,10-trisubstituted, C10 N-monosubstituted and compounds containing a C10 benzofused aminothiazole moiety. The 1,2,10-trisubstituted series of compounds as a group displayed modest selectivity for 5-HT7AR and also had moderate 5-HT7AR affinity. Compounds from the C10 N-monosubstituted series generally lacked affinity for 5-HT2AR and 5-HT6R and showed strong affinity for 5-HT1A or 5-HT7AR. Compounds in this series that contained an N6-methyl group were up to 27-fold selective for 5-HT7AR over 5-HT1AR, whereas compounds with an N6-propyl substituent showed a reversal in this selectivity. The C10 benzofused aminothiazole analogues showed a similar binding profile as the C10 N-monosubstituted series i.e. strong affinity for 5-HT1AR or 5-HT7AR, with selectivity between the two receptors being similarly influenced by N6-methyl or N6-propyl substituents. Compounds 29 and 34a exhibit high 5-HT7AR affinity, excellent selectivity versus dopamine receptors and function as antagonists in 5-HT7AR cAMP-based assays. Compounds 29 and 34a have been identified as new lead molecules for further tool and pharmaceutical optimization.  相似文献   

12.
A series of arylalkanol and aralkyl piperazine derivatives have been synthesized and evaluated for 5-HT reuptake inhibitory abilities and binding affinities at the 5-HT1A/5-HT7 receptors. Antidepressant activities of the compounds in vivo were screened using the forced swimming test (FST). The results indicated that the compound 8j exhibited high affinities for the 5-HT1A/5-HT7 receptors (5-HT1A, ki?=?0.84?nM; 5-HT7, ki?=?12?nM) coupling with moderate 5-HT reuptake inhibitory activity (RUI, IC50?=?100?nM) and showed a marked antidepressant-like activity in the FST model.  相似文献   

13.
5-HT7 receptor (5-HT7R) is a promising target for the treatment of depression and neuropathic pain. 5-HT7R antagonists exhibited antidepressant effects, while the agonists produced strong anti-hyperalgesic effects. In our efforts to discover selective 5-HT7R antagonists or agonists, N-biphenylylmethyl 2-methoxyphenylpiperazinylalkanamides 1 were designed, synthesized, and biologically evaluated against 5-HT7R. Among the synthesized compounds, N-2′-chlorobiphenylylmethyl 2-methoxyphenylpiperazinylpentanamide 18 showed the best binding affinity with a Ki value of 8.69 nM and it was verified as a novel antagonist according to functional assays. The compound 18 was very selective over 5-HT1DR, 5-HT2AR, 5-HT3R, 5-HT5AR and 5-HT6R and moderately selective over 5-HT1AR, 5-HT1BR and 5-HT2CR. The novel 5-HT7R antagonist 18 exhibited an antidepressant effect at a dose of 25 mg/kg in the forced swimming test in mice and showed a U-shaped dose–response curve which typically appears in 5-HT7R antagonists such as SB-269970 and lurasidone.  相似文献   

14.
A novel scaffold derived from l-SPD with a substituted thiophene group in the D ring were designed, synthesized, and evaluated for their binding affinities at dopamine (D1, D2 and D3) and serotonin (5-HT1A and 5-HT2A) receptors. Most of the tetracyclic compounds exhibited higher affinities for D2 and 5-HT1A receptors than l-SPD, while compound 23e showed the highest Ki value of 7.54 nM at D2 receptor which was 14 times more potent than l-SPD. Additionally, compounds 23d and 23e were more potent than l-SPD at D3 receptor. According to the functional assays, 23d and 23e were demonstrated as full antagonists at D1 and D2 receptors and full agonists at 5-HT1A receptor. Since the combination of D2 antagonism and 5-HT1A agonism is considered effective in treating both the positive and negative symptoms of schizophrenia, these novel compounds are implicated as potential therapeutic agents.  相似文献   

15.
Novel 3-substituted-1-aryl-5-phenyl-6-anilino-pyrazolo[3,4-d]pyrimidin-4-ones of pharmacological significance were synthesized by the reaction of ethyl-(5-amino-3-methylthio-1-aryl-5-phenyl-2H-pyrazole)-4-carboxylates 3ac with S-methyl diphenyl thiourea independently to produce 1-aryl-3-thiomethyl-5-phenyl-pyrazolo[3,4-d]pyrimidines 4ac in DMF with catalytic amount of K2CO3, which on further treatment with different aromatic amines independently under same reaction conditions generated for compounds 5al. The compounds were screened for the anti-inflammatory activity and evaluated for ulcerogenic potential. The compounds 5i exhibited superior anti-inflammatory activity in comparison with diclofenac sodium and comparable activity with celecoxib at a dose of 25 mg/kg. The other compounds 4c, 5c, 5f and 5l were found as active with inhibition of edema in the range of 35–39 after 3 h of administration of test compounds. The ulcerogenic potential of active compounds was observed to be quite lesser as compared to standard. COX-2 docking score of the active compound 5i was found to be better than standard celecoxib.  相似文献   

16.
A series of 9-disubstituted N-(9H-fluorene-2-carbonyl)guanidine derivatives have been discovered as potent and orally active dual 5-HT2B and 5-HT7 receptor antagonists. Upon screening several compounds, N-(diaminomethylene)-4′,5′-dihydro-3′H-spiro[fluorene-9,2′-furan]-2-carboxamide (17) exhibited potent affinity for both 5-HT2B (Ki = 5.1 nM) and 5-HT7 (Ki = 1.7 nM) receptors with high selectivity over 5-HT2A, 5-HT2C, α1, D2 and M1 receptors. Optical resolution of the intermediate carboxylic acid 16 via the formation of diastereomeric salts using chiral alkaloids gave the optically pure compounds (R)-17 and (S)-17. Both enantiomers suppressed 5-HT-induced dural protein extravasation in guinea pigs in a dose-dependent manner and the amount of leaked protein was suppressed to near normal levels when orally administrated at 10 mg/kg. (R)-17 and (S)-17 were therefore selected as candidates for human clinical trials.  相似文献   

17.
It is now known that many neurotransmitter systems are responsible for diseases of the central nervous system (CNS). One of the most common CNS disease is depression. Considering that in the treatment and the genesis of depression, the most important are the serotonin receptors from 5-HT1A, 5-HT2A, 5-HT6 and 5-HT7 groups, and dopamine D2R this article describes searching for group of new ligands for mentioned receptors. In the searching for potentially useful compound, we decided to start from the structure of well-known Fananserin. We tried to developed new derivatives, with changed profile of activity compared to Fananserin. Literature analysis and virtual screening emerged group of halogenated long-chain arylpiperazines derivatives of 1,8 naphthosultam/lactam with hexyl carbon chain to synthesis. The compounds obtaining method was developed with a microwave assisted synthesis. Reactions were carried out in acetonitrile, water or in solvent-free conditions. The obtained compounds were tested for their affinity for the serotonin receptors mentioned above. The work managed to obtain compounds acting on selected serotonin receptors, including multifunctional 5-HT1A/5-HT7/D2 ligand 5k, dual 5-HT1A/D2 ligand 5j and selective 5-HT1A ligands 5r and 5c. The SAR analysis showed a visible dependence of affinity for the 5-HT6 receptors from structure of ligands. This relationship was discussed using molecular docking methods. A conformal analysis was also performed for selected ligands and the Fukui indexes were calculated using the DFT (B3LYP/6-311+G (d,p) level of theory) methods. The conducted research and analysis using molecular docking methods allows for selecting further pathways of structural modifications in the design of new ligands for serotonin receptors belonging to the group mentioned. What is more, conducted research show the potential using of Fukui indices to predict the biological activity of new molecules.  相似文献   

18.
A series of novel 3β-aminotropane derivatives containing a 2-naphthalene or a 2-quinoline moiety was synthesised and evaluated for their affinity for 5-HT1A, 5-HT2A and D2 receptors. Their affinity for the receptors was in the nanomolar to micromolar range. p-Substitution (6c, 6f, 6i, 6l, 6o), as well as substitution with chlorine atoms (6g, 6h, 6i), led to a significant increase in binding affinity for D2 receptors with compounds 6f (Ki = 0.6 nM), 6c and 6i (Ki = 0.4 nM), having the highest binding affinities. m-Substituted derivatives were the most promising ligands in terms of 5-HT2A receptor binding affinity whereas 2-quinoline derivatives (10a, 10b) displayed the highest affinity for 5-HT1AR and were the most selective ligands with Ki = 62.7 nM and Ki = 30.5 nM, respectively. Finally, the selected ligands 6b, 6d, 6e, 6g, 6h, 6k, 6n and 6o, with triple binding activity for the D2, 5-HT1A and 5-HT2A receptors, were subjected to in vivo tests, such as those for induced hypothermia, climbing behaviour and the head twitch response, in order to determine their pharmacological profile. The tested ligands presented neither agonist nor antagonist properties for the 5-HT1A receptors in the induced hypothermia and lower lip retraction (LLR) tests. All tested compounds displayed antagonistic activity against 5-HT2A, with 6n and 6o being the most active. Four (6b, 6k, 6n and 6o) out of eight tested compounds could be classified as D2 antagonists. Additionally, evaluation of metabolic stability was performed for selected ligands, and introduction of halogen atoms into the benzene ring of 6h, 6k, 6n and 6o improved their metabolic stability. The project resulted in the selection of the lead compounds 6n and 6o, which had antipsychotic profiles, combining dopamine D2-receptor and 5-HT2A antagonism and metabolic stability.  相似文献   

19.
A novel series of 5-HT2A ligands that contain a (phenylpiperazinyl-propyl)arylsulfonamides skeleton was synthesized. Thirty-seven N-(cycloalkylmethyl)-4-methoxy-N-(3-(4-arylpiperazin-1-yl)propyl)-arylsulfonamide and N-(4-(4-arylpiperazin-1-yl)butan-2-yl)-arylsulfonamide compounds were obtained. The binding of these compounds to the 5-HT2A, 5-HT2C, and 5-HT7 receptors was evaluated. Most of the compounds showed IC50 values of less than 100 nM and exhibited high selectivity for the 5-HT2A receptor. Among the synthesized compounds, 16a and 16d showed good affinity at 5-HT2A (IC50 = 0.7 nM and 0.5 nM) and good selectivity over 5-HT2C (50–100 times) and 5-HT7 (1500–3000 times).  相似文献   

20.
In the pharmacotherapy of schizophrenia, there is a lack of effective drugs, and currently used agents cause a large number of side effects. The D2, 5-HT1A, 5-HT2A receptors are among the most important receptor targets in the treatment of schizophrenia, but antagonism at 5-HT6 and 5-HT7 receptors may bring about additional improvement of cognitive functions. However, doubt exists regarding the importance of 5-HT7R in the pharmacotherapy. In 2010, lurasidone (with high affinity for D2, D3, 5-HT1A, 5-HT2A, 5-HT7 receptors) was approved for the treatment of schizophrenia. Due to the efficacy of the mentioned drug and doubts related to the role of 5-HT7R, we decided to obtain compounds with an activity profile similar to that of lurasidone, but with the reduced affinity for 5-HT7R and increased affinity for 5-HT6R. For this purpose, we chose a flexible hexyl derivative of lurasidone (2-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)hexahydro-1H-4,7-methanoisoindole-1,3(2H)-dione 1a) as a hit structure. After molecular modeling, we modified it, in the area of the arylpiperazine and imide group, using the moieties found in other known CNS drugs. We received the compounds in accordance with the previously developed method of ecological synthesis in the microwave radiation field. Among the obtained compounds, N-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)naphthalene-sulfonamides 1v and 1w were distinguished as multifunctional ligands showing increased affinity for 5-HT6R, and 2-(6-(4-(benzo[d]isothiazol-3-yl)piperazin-1-yl)hexyl)-[1,2,4]triazolo[4,3-a]pyridin-3(2H)-one 1i – a multifunctional ligand showing moderate affinity for 5-HT6R and threefold lower for 5-HT7R. In the paper, we discuss some of the observed dependencies regarding 5-HT6/5-HT7R affinity using molecular docking methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号