首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pheromone production in the female turnip moth, Agrotis segetum, is under the control of a brain factor. This factor was demonstrated to be a proteinaceous substance termed pheromone biosynthesis activating neuropeptide-like substance (PBAN-like substance). The sex pheromone of Swedish A. segetum includes (Z)-5-decenyl acetate, (Z)-7-dodecenyl acetate, and (Z)-9-tetradecenyl acetate as major components. Decapitation of a female decreased pheromone production significantly. Pheromone production was restored by injection of homogenates of either male or female brain-suboesophageal ganglion or the corpora cardiaca alone. Pheromonotropic activity was also found in homogenates of the female thoracic ganglion and abdominal ganglion that were obtained during scotophase. Injection of female brain and thoracic ganglion homogenates made from insects during the scotophase induced two and four times as much Z7-12:OAc, respectively, as injection with similar homogenates from photophase. As little as one-eighth female equivalent (FE) brain homogenate was sufficient to increase the amount of Z7-12:OAc. The effect of brain homogenate on pheromone titer reached its maximum after 30 min. The activity of the PBAN-like substance present in female brain extracts was not correlated to the age of the donor. Injection of hemolymph collected during either photophase or scotophase into decapitated females did not increase the pheromone titer. The target site of the PBAN-like substance was not the pheromone gland, and the ventral nerve cord was not involved in the transportation of the PBAN-like substance, which implies a mode of action different from what has been reported in other moths. Brain homogenates obtained during photophase from females of African A. segetum, Spodoptera littoralis, or Ostrinia nubilalis as well as synthetic Bombyx-PBAN also induced pheromone production in decapitated Swedish female A. segetum. © 1995 Wiley-Liss, Inc.  相似文献   

3.
The pyrokinin/pheromone-biosynthesis-activating neuropeptide (PBAN) family of peptides found in insects is characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. The pentapeptide is the active core required for diverse physiological functions, including the stimulation of pheromone biosynthesis in female moths, muscle contraction, induction of embryonic diapause, melanization, acceleration of puparium formation, and termination of pupal diapause. We have used immunocytochemical techniques to demonstrate the presence of pyrokinin/PBAN-like peptides in the central nervous system of the fire ant, Solenopsis invicta. Polyclonal antisera against the C-terminal end of PBAN have revealed the location of the peptide-producing cell bodies and axons in the central nervous system. Immunoreactive material is detectable in at least three groups of neurons in the subesophageal ganglion and corpora cardiaca of all adult sexual forms. The ventral nerve cord of adults consists of two segmented thoracic ganglia and four segmented abdominal ganglia. Two immunoreactive pairs of neurons are present in the thoracic ganglia, and three neuron pairs in each of the first three abdominal ganglia. The terminal abdominal ganglion has no immunoreactive neurons. PBAN immunoreactive material found in abdominal neurons appears to be projected to perisympathetic organs connected to the abdominal ganglia. These results indicate that the fire ant nervous system contains pyrokinin/PBAN-like peptides, and that these peptides are released into the hemolymph. In support of our immunocytochemical results, significant pheromonotropic activity is found in fire ant brain-subesophageal ganglion extracts from all adult fire ant forms (queens, female and male alates, and workers) when extracts are injected into decapitated females of Helicoverpa zea. This is the first demonstration of the presence of pyrokinin/PBAN-like peptides and pheromonotropic activity in an ant species. This research was supported in part by a US-Israel Binational Science Foundation Grant (no. 2003367).  相似文献   

4.
Summary Production of sex pheromone in several species of moths has been shown to be under the control of a neuropeptide termed pheromone-biosynthesis-activating neuropeptide (PBAN). We have produced an antiserum to PBAN from Helicoverpa zea (Lepidoptera: Noctuidae) and used it to investigate the distribution of immunoreactive peptide in the brain-suboesophageal ganglion complex and its associated neurohemal structures, and the segmental ganglia of the ventral nerve cord. Immunocytochemical methods reveal three clusters of cells along the ventral midline in the suboesophageal ganglion (SOG), one cluster each in the presumptive mandibular (4 cells), maxillary (12–14 cells), and labial neuromeres (4 cells). The proximal neurites of these cells are similar in their dorsal and lateral patterns of projection, indicating a serial homology among the three clusters. Members of the mandibular and maxillary clusters have axons projecting into the maxillary nerve, while two additional pairs of axons from the maxillary cluster project into the ventral nerve cord. Members of the labial cluster project to the retrocerebral complex (corpora cardiaca and cephalic aorta) via the nervus corpus cardiaci III (NCC III). The axons projecting into the ventral nerve cord appear to arborize principally in the dorsolateral region of each segmental ganglion; the terminal abdominal ganglion is distinct in containing an additional ventromedial arborization in the posterior third of the ganglion. Quantification of the extractable immunoreactive peptide in the retrocerebral complex by ELISA indicates that PBAN is gradually depleted during the scotophase, then restored to maximal levels in the photophase. Taken together, our findings provide anatomical evidence for both neurohormonal release of PBAN as well as axonal transport via the ventral nerve cord to release sites within the segmental ganglia.Abbreviations A aorta - Br-SOG brain-suboesophageal ganglion complex - CC corpus cardiacum - PBS phosphate-buffered saline - PLI PBAN-like immunoreactivity - TAG terminal abdominal ganglion - VNC ventral nerve cord  相似文献   

5.
The circadian variation of pheromone production in the turnip moth, Agrotis segetum, was characterized by quantifying (Z)-7-dodecenyl acetate (Z7-12:OAc), the most abundant pheromone component produced by female turnip moth, at different times of day. Under 17:7 h light-dark cycle (LD), the peak of Z7-12:OAc production occurred around 4 h into the scotophase, while there was very little pheromone production during the photophase. When females were maintained under constant darkness (DD), the periodicity of pheromone production was sustained for 3 consecutive days. Furthermore, the rhythm in pheromone production could be entrained to a shifted LD. These results demonstrate that the pheromone production in the turnip moth is regulated endogenously by a circadian clock. To understand how the circadian rhythm of pheromone production is generated, circadian variation of pheromone- biosynthesis-activating neuropeptide (PBAN)-like activity in the brain-suboesophageal ganglion complexes (Br-SOG), hemolymph, and ventral nerve cord (VNC) was also examined. Under both LD and DD, only the VNC displayed a circadian variation in the PBAN-like activity, which was significantly higher during the late-photophase than that in the scotophase. In addition, the present study showed that removal of VNC in isolated abdomen did not affect PBAN stimulation of pheromone production, while severing the VNC impaired normal pheromone production. The role of Br-SOG, VNC, and hemolymph in the regulation of the periodicity of pheromone production is discussed.  相似文献   

6.
The five components, Z9-16:Ald, 16:Ald, Z11-16:Ald, Z9-16:Ac and Z11-16:Ac, of the sex pheromone in Helicoverpa assulta were mostly detected during the scotophase, with their titer peaking at the 4th hour during the scotophase under a 15L/9D regime. They were not detected during the photophase, but were produced during the photophase when decapitated females were injected with extracts of virgin female (FHE), male heads (MHE), homogenates of the brain-suboesophageal ganglion complex (Br-SOG), or synthetic Hez-PBAN. Production of Z9-16:Ald increased during the first 45min after FHE injection and then declined to a very low level after 2h during the photophase. Synthetic Hez-PBAN stimulated the sex pheromone glands for at least 2h and the effect was more or less proportional to the concentration of the peptide. From the present results, we suggest the following: PBAN is released continuously into the haemolymph to stimulate pheromone biosynthesis at least during the first half of the scotophase, PBAN is synthesized and accumulated independent of photoperiod or sex, and the release starts just prior (about 1h) to the beginning of the scotophase.  相似文献   

7.
Production of sex pheromones, Z9-14:OAc and Z11-14:OAc, of the smaller tea tortrix, Adoxophyes sp. was stimulated by injection of the female or male head extracts as well as synthetic pheromone biosynthesis activating neuropeptide (PBAN) into decapitated females. The amount of pheromone produced reached a maximum level 3 h after injection of synthetic PBAN into females. A cDNA isolated from brain-suboesophageal ganglion complex (Br-SEG) of A. sp. females contained an ORF of 576 nucleotides encoding 192 amino acids. Based on endoproteolytic sites, it can be predicted to be cleaved into five putative peptide domains including PBAN and four other neuropeptides. Ado-PBAN consisting of 31-amino acids is the shortest PBAN so far reported. Four other putative PBAN-encoding gene neuropeptides (PGN) are predicted with PGN-24, PGN-7, PGN-20, and PGN-8 amino acids. All of the peptides are amidated in their C-termini with a FXPR(or I, K)L structure, except for PGN-8 (TVKLTPRLamide). PBAN-like immunoreactive material was observed in Br, SEG and ventral nerve cord (VNC) of the female adult. In the brain, 5-7 pairs of neurons containing PBAN-like immunoreactivity were found in each protocerebral hemisphere. Three groups of cell clusters found in the SEG corresponded to the mandibular, maxillary and labial neurons as in other moths. PBAN-like immunoreactive neurons in the VNC were found in thoracic (three pairs) and abdominal ganglia (two pairs). As compared to other moths, a relatively low similarity of peptide sequences deduced from Ado-PBAN gene and a different expression pattern of PBAN-like immunoreactivity could indicate phylogenetical distance from the other species.  相似文献   

8.
In this article, we report evidence suggesting that the immunoreactive factor previously detected in Spodoptera littoralis scotophase hemolymph is PBAN, which supports a humoral route of the hormone to the pheromone gland. Western blot after native-PAGE of prepurified scotophase hemolymph extracts yielded an immunoreactive band with the same mobility as S. littoralis Br-SOG factor and the expected mobility for a noctuid PBAN. This band was not detected in photophase hemolymph extract. The identity of S. littoralis Br-SOG factor as PBAN was obtained from cDNA cloning using RT-PCR strategy. This allowed us to deduce the amino acid sequence of Spl-PBAN, which is highly homologous to other known PBANs. Moreover, we found that the PBAN encoding cDNA also encoded four other putative amidated peptides (Spl-DH homologue, Spl-alpha-NP, Spl-beta-NP and Spl-gamma-NP) that are identical or highly conserved among noctuids, and two non amidated peptides of unknown function. This cDNA organization is common to all known cDNAs encoding PBANs, leading to the release of different peptides after putative enzymatic cleavage of the preprohormone.  相似文献   

9.
The pyrokinin/pheromone biosynthesis activating neuropeptide (PBAN) family of peptides found in insects is characterized by a 5-amino-acid C-terminal sequence, FXPRLamide. The pentapeptide is the active core required for diverse physiological functions, including stimulation of pheromone biosynthesis in female moths, stimulation of muscle contraction, induction of embryonic diapause in Bombyx mori, and stimulation of melanization in some larval moths. Recently, this family of peptides has been implicated in accelerating the formation of the puparium in a dipteran. Using bioassay and immunocytochemical techniques, we demonstrate the presence of pyrokinin/PBAN-like peptides in the central nervous system of Drosophila melanogaster. Pheromonotropic activity was shown in the moths Helicoverpa zeaand Helicoverpa armigera by using dissected larval nervous systems and adult heads and bodies of D. melanogaster. Polyclonal antisera against the C-terminal ending of PBAN revealed the location of cell bodies and axons in the central nervous systems of larval and adult flies. Immunoreactive material was detected in at least three groups of neurons in the subesophageal ganglion of 3rd instar larvae, pupae, and adults. The ring gland of both larvae and adults contained immunoreactivity. Adult brain-subesophageal ganglion complex possessed additional neurons. The fused ventral ganglia of both larvae and adults contained three pairs of neurons that sent their axons to a neurohemal organ connected to the abdominal nervous system. These results indicate that the D. melanogasternervous system contains pyrokinin/PBAN-like peptides and that these peptides could be released into the hemolymph.  相似文献   

10.
烟夜蛾雄蛾性附腺因子对雌蛾性信 息素合成的抑制作用   总被引:8,自引:0,他引:8  
烟夜蛾Helicoverpa assulta处女蛾在交配后1 h,其性信息素滴度即显著降低,72 h内未见恢复。生测结果表明,烟夜蛾性信息素合成抑制因子主要来源于雄蛾性附腺。不同日龄雄蛾性附腺提取物的抑制活性无显著差异。光暗期对其活性具显著影响,暗期中雄蛾的性附腺物质对雌蛾性信息素合成具有较强抑制作用,而光期中雄蛾的性附腺物质不具抑制活性。在暗期的不同时间处理,对处女蛾性信息素合成的抑制作用无显著差异。雄蛾性附腺提取物对雌蛾性信息素合成的抑制作用与注射剂量有明显的相关性,0.2 ME(雄蛾当量)是产生显著抑制作用的最小剂量。对交配雌蛾注射性信息素生物合成激活神经肽(PBAN)提取物后,其性信息素合成又可恢复,这说明雌蛾交配后,性信息素滴度降低的原因是由于缺少了PBAN的调控。  相似文献   

11.
Insect males produce accessory gland (MAG) factors that are transferred in the seminal fluid to females during copulation, and elicit changes in the mated female's behavior and physiology. Our previous studies showed that the injection of synthetic Drosophila melanogaster sex-peptide (DrmSP) into virgin females of the moth Helicoverpa armigera causes a significant inhibition of pheromone production. In this and other moth species, pheromone production, correlated with female receptivity, is under neuroendocrine control due to the circadian release of the neuropeptide PBAN. In this study, we show that PBAN, present in the hemolymph during the scotophase in females, is drastically reduced after mating. We also identify 4 DrmSP-like HPLC peaks (Peaks A, S1, S2, and B) in MAGs, with increasing levels of DrmSP immunoreactivity during the scotophase, when compared to their levels observed during the photophase. In H. armigera MAGs, a significant reduction in the pheromonostatic peak (Peak B) was already evident after 15 min of copulation, and depletion of an additional peak (Peak S2) was evident after complete mating. Peak A is also detected in female brains, increasing significantly 1 h after mating, at which time inhibition of pheromone biosynthesis also occurs. However, changes corresponding to the other MAG peaks were not detected in mated female tissues.  相似文献   

12.
Pheromone biosynthesis activating neuropeptide (PBAN) stimulates sex pheromone production in several species of moths. We have used an antiserum to PBAN to map the distribution of PBAN-like immunoreactivity (PLI) in the subesophageal ganglion (SEG) of the larval and pupal stages of the corn earworm, Helicoverpa zea, and compared this distribution with that of the adult. The distribution of PLI within the SEG of larvae and pupae was quite similar to that found in adults, suggesting a function for PBAN other than the stimulation of pheromone biosynthesis. In all developmental stages studied, three groups of nerve cells in the SEG, and their projections, contained PLI. In adults and larvae, most of the cells containing PLI also had FMRFamide-like immunoreactivity (FLI). In pupae, however, a number of cells which appeared to have PLI and FLI in both larvae and adults, did not contain andy detectable FLI, while the PLI appeared unchanged. The FLI returns to these cells during adult development. These immunocytochemical observations were corroborated by quantifying PLI and FLI by competitive ELISA; the level of extractable FLI in pupae was about 25% of that found in larvae, while PLI levels were unchanged. © 1992 Wiley-Liss, Inc.  相似文献   

13.
Female sex pheromone production in certain moth species have been shown to be regulated by a cephalic endocrine peptidic factor: pheromone biosynthesis activating neuropeptide (PBAN), having 33 amino acid residues. Antisera against syntheticHeliothis zea-PBAN were developed. Using these polyclonals, immunoreactivity was mapped in the nervous system ofAchaea janata. Three distinct groups of immunopositive secretory neurons were identified in the suboesophageal ganglion; and immunoreactivity was observed in the corpora cardiaca, thoracic and in the abdominal ganglia. From about 6000 brain sub-oesophageal ganglion complexes, the neuropeptide was isolated; and purified sequentially by Sep-pak and reversed phase high performance liquid chromatographic methods. Identity of purified PBAN fraction was confirmed with polyclonal antibody by immunoblotting. Molecular mass of the isolated peptide was determined by matrix-assisted laser desorption/ionization mass spectrometry, and was found to be 3900 Da, same as that of knownH. zea-PBAN. Radiochemical bioassay confirmed the pheromonotropic effect of the isolated neuropeptide in this insect  相似文献   

14.
This study describes the preparation and characterization of a highly specific antiserum to Helicoverpa zea pheromone biosynthesis activating neuropeptide (Hez-PBAN), and the use of this antiserum, in an enzyme linked immunosorbent assay (ELISA), to determine: a) the content of endogenous PBAN in head extracts of male and female Heliothis peltigera; b) the level of PBAN at different developmental stages; and c) the content of PBAN in four different moth species. Cross-reactivity studies revealed that the antiserum is directed mainly toward the N-terminal region of the neuropeptide, and that it exhibits similar binding affinities toward the oxidized and reduced forms of PBAN. Analysis of PBAN content in head extracts of male and female H. peltigera, at scotophase, revealed the presence of 4.97 and 4.58 pmol, respectively, in 3-day-old moths, and 5.33 and 4.78 pmol, respectively, in 7-day-old moths. The similarity in the content of PBAN at both ages and sexes was in accordance with the amount of pheromonotropic activity in these extracts which stimulated pheromone biosynthesis to a similar level. Analysis of PBAN-like immunoreactivity (IR) in head extracts of H. peltigera larvae and pupae demonstrated the existence of the neuropeptide in the 4th larval instar and continued to increase as a function of development. No IR could be detected in the first three larval instars. The larval and pupal extracts also exerted pheromonotropic activity which followed a similar pattern. The activity in these extracts, however, was considerably lower than that found in adult male and female heads. IR was also detected in head extracts of three other Noctuidae moths: Helicoverpa armigera, Cornutiplusia circumflexa and Spodoptera littoralis, indicating a high degree of chemical and structural similarity of PBAN in these moths.  相似文献   

15.
The adrenergic agonists octopamine, tyramine and clonidine inhibited the normal pheromonotropic action due to PBAN (pheromone biosynthesis activating neuropeptide) in incubations of intersegmental tissues that are situated between the 8th and 9th abdominal segments of the moth ovipositor tip. This inhibition was reversed in the presence of the adrenergic antagonists phentolamine, yohimbine and chlorpromazine. Incubations of 8th segments alone, which do not produce pheromone, resulted in elevated levels of intracellular cAMP in the presence of octopamine. The physiological significance of this phenomenon is unclear. However, clonidine (an alpha(2) selective agonist) did not duplicate octopamine stimulation of intracellular cAMP in 8th segment cultures. In intersegmental membrane cultures clonidine successfully duplicated the octopamine inhibition of both pheromone and intracellular cAMP production. The physiological significance of octopaminergic receptors mediating the inhibitory response of intersegments was investigated by experiments in vivo. When PBAN was injected into photophase females the normal pheromonotropic activity due to the injected PBAN dropped after 2h. In the presence of clonidine, normal peak stimulatory levels were never attained and a faster decline was observed. Clonidine also inhibited the pheromonotropic response of 24h-decapitated females to PBAN. Adrenergic antagonists successfully reversed the inhibitory effect of clonidine in decapitated females, but did not reverse the effect of clonidine in photophase females. In addition, when clonidine was injected into female moths during the scotophase normal peak pheromone titers were reduced although no effect on calling behavior was observed. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

16.
In the female turnip moth, Agrotis segetum, a pheromone biosynthesis activating neuropeptide (PBAN) stimulates sex pheromone biosynthesis which exhibits a daily rhythm. Here we show data supporting a circadian rhythm in PBAN release from the corpora cardiaca, which we propose regulates the endogenous rhythm in sex pheromone biosynthesis. This conclusion is drawn as the observed daily rhythm in PBAN-like immunoreactivity in the hemolymph is persistent in constant darkness and is phase-shifted by an advanced light:dark cycle. PBAN-like immunoreactivity was found in the brain, the optic lobe, the suboesophageal ganglion and in the retrocerebral complex. In each hemisphere ca. 10 immunopositive neurons were observed in the pars intercerebralis and a pair of stained somata in the dorso-lateral protocerebrum. A cluster of cells containing PBAN-like immunoreactive material was found in the tritocerebrum and three clusters of such cells were found in the SOG. Their processes reach the corpora cardiaca via nervi corporis cardiaci and the dorsal surface of the corpora allata via the nervi corporis allati.  相似文献   

17.
The sequence of an 18-amino acid residue peptide was deduced from the gene encoding PBAN and other peptides with common C-termini in Helicoverpa zea. The peptide caused melanization in larvae and pheromone production in females of H. zea, and was designated pheromonotropic melanizing peptide (Hez-PMP). The peptide has a 83% sequence homology with a pheromonotropic peptide isolated from Pseudaletia separata. PMP caused melanization and mortality when injected into larvae just before molting. Whereas intense melanization was caused with a dose of 1,000 pmol, peak mortality occurred at 100 pmol, with 50% of larvae dying within 48 h after injection. Pheromonotropic activity of PMP was dose dependent. Co-injection of Hez-PMP and Hez-PBAN into a female resulted in suppression of the pheromonotropic effect of PBAN. Whole-mount immunocytochemical studies revealed PMP-like immunoreactivity in frontal ganglion, subesophageal, thoracic, and abdominal ganglia as well as the esophageal nerve.  相似文献   

18.
Sex pheromone titers in females of two tortricid moths, Epiphyas postvittana and Planotortrix octo, did not significantly vary between the scotophase and photophase. Pheromone production in these two species is controlled by a factor located in the head of the respective females, probably the pheromone biosynthesis-activating neuropeptide (PBAN). Unlike that reported for the related tortricid, Argyrotaenia velutinana, the bursa copulatrix in female E. postvittana and P. octo does not appear to contain a factor that stimulates pheromone production. After mating, female E. postvittana permanently shut down pheromone production. In contrast, pheromone titer in mated P. octo females is reduced to a level approximately half that of similar-age virgins. While the abdominal nervous system is involved in the inactivation of pheromone production in mated E. postvittana females and probably acts to stop release of PBAN from the corpora cardiaca, the abdominal nervous system is not involved in effecting the decreased pheromone titers of mated P. octo females. It is possible that in the latter species, a humoral factor(s) is responsible for effecting the decreased pheromone titers, possibly through affecting the release of PBAN from the corpora cardiaca. Bioassaying head extracts allowed changes in PBAN titer in female E. postvittana to be inferred. PBAN titers remain roughly constant in virgins but increase after mating. This suggests that PBAN is biosynthesized throughout the life of an adult virgin female at approximately the same rate as it is released. Furthermore, it appears that the decline in pheromone titer observed in older E. postvittana females is probably due to a decline in competency of the gland to produce pheromone rather than to a decrease in PBAN titer in older females. © 1994 Wiley-Liss, Inc.  相似文献   

19.
The pyrokinin/pheromone biosynthesis activating neuropeptide (PBAN) family of peptides is characterized by a common C-terminal pentapeptide, FXPRLamide, which is required for diverse physiological functions in various insects. Polyclonal antisera against the C-terminus was utilized to determine the location of cell bodies and axons in the central nervous systems of larval and adult mosquitoes. Immunoreactive material was detected in three groups of neurons in the subesophageal ganglion of larvae and adults. The corpora cardiaca of both larvae and adults contained immunoreactivity indicating potential release into circulation. The adult and larval brains had at least one pair of immunoreactive neurons in the protocerebrum with the adult brain having additional immunoreactive neurons in the dorsal medial part of the protocerebrum. The ventral ganglia of both larvae and adults each contained one pair of neurons that sent their axons to a perisympathetic organ associated with each abdominal ganglion. These results indicate that the mosquito nervous system contains pyrokinin/PBAN-like peptides and that these peptides could be released into the hemolymph. The peptides in insects and mosquitoes are produced by two genes, capa and pk/pban. Utilizing PCR protocols, we demonstrate that products of the capa gene could be produced in the abdominal ventral ganglia and the products of the pk/pban gene could be produced in the subesophageal ganglion. Two receptors for pyrokinin peptides were differentially localized to various tissues.  相似文献   

20.
The hydrocarbon sex pheromone (13-methyl-Z6-heneicosene) of Scoliopteryx libatrix L. (Lepidoptera: Noctuidae) was found to reach its highest levels on pheromone glands of 3-day-old females. Pheromone levels were not different between the time of maximum calling (end of scotophase) and at the middle of photophase. Overwintering females collected in October had sex pheromone present. Decapitation did not lower the amount of pheromone present, indicating that a head factor is not involved in maintaining pheromone titers. Hemolymph also contained the pheromone, indicating that it is made by oenocytes and transported to the sex pheromone gland. Longer chain length hydrocarbons were also identified from the hemolymph and on the cuticular surface. Quantitative differences in hydrocarbon profiles were found with more methyl-branched hydrocarbons found in the hemolymph than on the cuticular surface. Arch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号