首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 155 毫秒
1.
It was previously reported that Klebsiella O3 lipopolysaccharide (LPS) exhibits extraordinarily strong adjuvant activity in augmenting antibody response against protein antigens in mice compared with other kinds of LPS, for example, LPS from Escherichia coli O55, O111, and O127 and Salmonella enteritidis. The present study was undertaken to clarify the relationship between the strong adjuvant activity in augmenting antibody response against deaggregated bovine gammaglobulin and the chemical structure of LPS. Among LPS from Klebsiella O1, O4, O5, and O7, only O5 LPS exhibited nearly the same degree of the strong adjuvant activity as did O3 LPS. The adjuvant activity of the other LPS was very weak in a degree similar to that of LPS from E. coli O55 and O127. Even when the natural forms of Klebsiella O3 LPS and O1 LPS were converted to various defined uniform salt forms, their adjuvant activity did not significantly differ from that of the respective natural forms. It is therefore unlikely that the difference in strength of the adjuvant activity between Klebsiella O3 LPS and O1 LPS is due to the difference in their salt forms. The common feature in the structures of Klebsiella O3 LPS and O5 LPS is their O-specific polysaccharide chains consisting of the mannose homopolysaccharides (mannans). LPS from E. coli O8 and O9, the O-specific polysaccharide chains of which consist of the mannans, also exhibited much stronger adjuvant activity than do LPS from E. coli O55 and O127, and the strength of the adjuvant activities of the former two was comparable to that of LPS from Klebsiella O3 and O5. On the other hand, LPS from Klebsiella O3 and O5 and E. coli O8 and O9 showed the ability to activate B lymphocytes polyclonally in vivo in a degree similar to that of the other kinds of LPS. From the present results it can be concluded that LPS possessing the O-specific polysaccharide moieties consisting of the mannans exhibit extraordinarily strong adjuvant activity in augmenting antibody response against protein antigen.  相似文献   

2.
Previously it was demonstrated that Klebsiella pneumoniae O3 lipopolysaccharide (KO3 LPS) exhibited much stronger adjuvant action on antibody response to subcutaneously (s.c.) injected sheep red blood cells or deaggregated bovine serum albumin than did other kinds of LPS, the R-form LPS lacking the O-specific polysaccharide chain of KO3 LPS (R-LPS), and the lipid A fractionated from KO3 LPS. We compared histological changes in the regional subcutaneous tissues of mice injected subcutaneously (s.c.) with KO3 LPS, the lipid A, and R-LPS. At the early stage after injection, KO3 LPS induced the infiltration of a large number of inflammatory cells, mainly polymorphonuclear leukocytes (PMN), at the site of injection. Neither R-LPS nor the lipid A induced the accumulation of PMN so much as KO3 LPS did. When injected s.c. with LPS from Escherichia coli O111 (EO111 LPS) and O55 (EO55 LPS), and Salmonella enteritidis (Sent LPS), the appearance of PMN at the regional site was much less than KO3 LPS. KO3 LPS could accumulate more 51Cr-labeled leukocytes at the injection site than EO111 LPS and Sent LPS. Administration of acetylsalicylic acid, which can inhibit leukocyte migration in inflammatory lesions, suppressed its adjuvant action. It was therefore suggested that the strong adjuvant action of KO3 LPS in s.c. injection might be dependent on its potent capability of accumulating PMN at the regional subcutaneous tissue. Furthermore, at the late stage after injection, the formation of several lymphoid follicles at the regional site was seen only in mice injected with KO3 LPS. It might be also related to the strong adjuvant action of KO3 LPS.  相似文献   

3.
This work evaluated the ability of human anti-lipopolysaccharide O6 IgM and IgG antibodies to protect mice challenged with Escherichia coli serotype O6 : K2ac. Purified IgM-effluent, purified IgG, pools of normal human serum (NHS), or control group were injected into mice 18 h before challenges with O6 E. coli. Interleukin 6 and tumor necrosis factor alpha were quantified in the sera of test and control groups. All mice receiving purified IgM-effluent (66.6 mg L(-1) of anti-lipopolysaccharide O6 IgM antibodies) and NHS survived. Purified IgG (1.1 mg L(-1) of anti-lipopolysaccharide O6 IgG antibodies) protected 87.5% of the animals. The control group showed no protective ability. The minimal concentration of anti-lipopolysaccharide O6 IgM antibodies, able to protect 50% of the animals was 33.3 mg L(-1) of purified IgM-effluent, whereas purified IgG was able to protect 50% of the animals with only 1.1 mg L(-1) of anti-lipopolysaccharide O6 IgG antibodies. Serum from animals pretreated with purified IgM-effluent and purified IgG before challenges with lipopolysaccharide O6 did not have detectable pro-inflammatory cytokines. Hepatocytes of the control group were completely invaded by bacteria, whereas none was found in animals pretreated with purified IgM-effluent and purified IgG. Higher concentrations of anti-lipopolysaccharide O6 IgM antibodies as compared to anti-lipopolysaccharide O6 IgG antibodies were needed to protect mice from challenges with E. coli O6 serotype.  相似文献   

4.
The effect of dermonecrotic toxin (DNT), fimbrial hemagglutinin (FHA), K-agglutinogen, lipopolysaccharide (LPS), and pertussigen from Bordetella pertussis on the production of IgE and IgG1 antibodies to hen egg albumin (Ea) was investigated in C57BL/6 mice. The IgE antibody contents were determined by passive cutaneous anaphylaxis (PCA) in the skin of Lewis rats, while the IgG1 antibody contents were determined by PCA reactions on the skin of mice using sera that had been heated for 3 hr at 56 C to destroy the IgE antibodies. Among the B. pertussis components tested, pertussigen was the most effective adjuvant for increasing the IgE and IgG1 antibodies to Ea. LPS also moderately increased both types of antibodies, and FHA slightly increased the IgG1 titers. When LPS was given 5 days before Ea, it suppressed both IgE and IgG1 titers while FHA had only slight adjuvant action on both type of antibodies. When each of the components was tested for its ability to modify the adjuvant action of pertussigen, it was found that only DNT interfered significantly with the adjuvanticity of pertussigen when given on the day of immunization with Ea. When the components were given 5 days before Ea, DNT produced significant suppression of only the IgG1 response. LPS, FHA, and K-agglutinogen did not significantly affect the adjuvant action of pertussigen.  相似文献   

5.
The immunogenicity induced in BALB/c mice following intranasal challenge with a viable nonlethal dose (1.2 x 10(8) CFU) of enterotoxigenic Escherichia coli (ETEC) strain E23477A (O139:H28:CS1:CS3:LT+:ST+) was studied over a 140-day period. Serum IgG and IgM antibodies against coli surface antigen 3 (CS3), O139 lipopolysaccharide and heat-labile enterotoxin were measured by day 14 and remained at elevated levels out to day 140. The serum IgG response to the somatic antigens (CS3 and O139 lipopolysaccharide) was significantly greater (P < 0.05) than the IgG response to heat-labile enterotoxin, and the serum IgG response to CS3 was significantly greater (P < 0.05) than the IgG response to O139 lipopolysaccharide. The predominant serum IgG subclasses to CS3 were IgG1 and IgG2a, and they were significantly greater (P < 0.05) than IgG2b and IgG3. The predominant serum IgG subclass response to O139 lipopolysaccharide was initially IgG3 until day 56, after which IgG1 was predominant. The serum subclass response to CS3 indicated a mixed T helper 1/2 (Th1/Th2) profile, whereas the response to O139 lipopolysaccharide was primarily that of a Th2-type, at least over time. Fecal IgG and IgA responses to CS3 and O139 lipopolysaccharide were detected by day 14 and were measured out to day 140, with the CS3 fecal antibody responses being significantly greater (P < 0.05) than the O139 lipopolysaccharide and heat-labile enterotoxin fecal antibody responses. The aim of this study is the development of the intranasal mouse model that can aid in better understanding the immunopathology of ETEC infection and in screening of vaccine candidates prior to volunteer trials.  相似文献   

6.
High incidences of Gram-negative bacteria are found in neonatal nosocomial infections. Our aim was to investigate placental transmission of immunoglobulin G (IgG) reactive with lipopolysaccharide from Klebsiella pneumoniae, Pseudomonas aeruginosa and Escherichia coli O111, O6 and O26. The total and lipopolysaccharide-specific IgM and IgG were determined in 11 maternal/umbilical-cord sera aged ≤33 weeks (GI); 21 aged >33 and <37 weeks (GII); and 32 term newborns (GIII). The total and lipopolysaccharide-specific IgM concentrations were equivalent in maternal sera. The total IgG concentrations were equivalent in maternal and newborn sera, with the exception of GIII newborns as compared with their mothers (P<0.0001) and with neonates from GI and GII (P<0.05). Lipopolysaccharide-specific IgG concentrations were lower in GI neonates than in their mothers (P<0.01) and lower in GII (P<0.05). Lower lipopolysaccharide-specific IgG levels were observed among neonates only for O111 in GI (P<0.05) and for O26 and Pseudomonas in GII, both as compared with GIII (P<0.05). The anti-lipopolysaccharide IgG transfer ratios were lower in GI (except for O26) and in GII (except for Klebsiella and O111) as compared with GIII (P<0.05). Our results suggest that the greater susceptibility to infections in preterm infants is influenced (besides the humoral response) by factors intrinsic and extrinsic to the condition of prematurity.  相似文献   

7.
N Kido  M Ohta  N Kato 《Cellular immunology》1985,92(2):328-337
It has been reported that lipopolysaccharides (LPS) from Klebsiella O3 and O5 and Escherichia coli O8 and O9 exhibit extraordinarily strong adjuvant activity in augmenting antibody responses against protein antigens in mice as compared with other kinds of LPS. These four kinds of LPS all possess homopolysaccharides consisting of mannose (mannans) as the O-specific side chains. When these kinds of LPS were mixed in vitro with succinyl concanavalin A (Con A) which is known to bind specifically to alpha-mannoside and alpha-glucoside, their strong adjuvant activity was inhibited. Degree of the inhibition of the adjuvant activity of Klebsiella O3 LPS by succinyl Con A was dependent upon the dose of succinyl Con A. However, phytohemagglutinin, which is known to bind specifically to N-acetyl-D-galactosamine, did not inhibit the adjuvant activity of Klebsiella O3 LPS and O5 LPS. When Klebsiella O3 LPS was mixed with succinyl Con A in the presence of excess amounts of alpha-methyl mannoside or the polysaccharide fraction isolated from Klebsiella O3 LPS, the inhibitory effect of succinyl Con A on the adjuvant activity of Klebsiella O3 LPS was blocked. By contrast, the activity of Klebsiella O3 LPS as a polyclonal B-cell activator was not affected by treatment with succinyl Con A. From these results it is concluded that the mannans, as the O-specific polysaccharide chains of the LPS, significantly contribute to expression of their strong adjuvant activity.  相似文献   

8.
Abstract Monoclonal antibodies of subclasses IgG1 and IgG2b and specific for the O4 antigen of Escherichia coli 20025 (O4 : K12 : H) and the capsular K12 polysaccharide of the same strain (IgM) were obtained with the hybridoma technique using spleen cells from Balb/c mice, immunized with a crude bacterial extract, and Sp2/O-Ag8 myeloma cells. The anti-O4 antibodies reacted exclusively with the O4 lipopolysaccharide and not with those from serologically O-cross reactive E. coli . The anti-K12 antibodies recognized as epitope (part of) the KDO moiety of the capsular K12 polysaccharide. Not only anti-K12, but also anti-O4 antibodies effectively phagoopsonized encapsulated E. coli 20025. The opsonized bacteria were killed in subsequent in vitro phagocytosis by human leokocytes in the presence of human serum complement.  相似文献   

9.
To evaluate antibody responses against lipopolysaccharide (LPS: O157, O26, and O111) in enterohemorrhagic Escherichia coli(EHEC) infection, sera of 24 schoolchildren associated with the Morioka outbreak in 1997 and of 74 sporadic patients suspected of having EHEC infection were examined. Using a positive standard serum, quantitative evaluation of LPS antibodies by an enzyme-linked immunosorbent assay (ELISA) was established. High levels of specific IgM and IgA antibodies against homologous E. coli LPS were present in the acute period and are characteristic of EHEC. This could be used for the serological diagnosis of EHEC infection, except for early infants and the elderly. In addition to the specific homologous response, multiple antibody responses against different serotypes other than those isolated were demonstrated in many cases by qualitative analysis using Western blotting.  相似文献   

10.
The antigen specificity of two immunoprotective monoclonal antibodies derived from mice immunized with Escherichia coli 0111:B4 bacteria and boosted with purified lipopolysaccharide (LPS) were investigated. One of the antibodies, B7, was shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis and immunostaining to bind to the O-antigen containing LPS species, whereas the other antibody, 5B10, reacted with both O-antigen containing homologs and the O-antigen-deficient LPS. 5B10 did not bind to LPS from E. coli J5, an Rc mutant of E. coli 0111:B4 that lacks both the O-antigen and outer core sugars. 5B10 did not cross-react with LPS from several other E. coli strains. Thus 5B10 appeared to recognize a type-specific epitope in the outer core of LPS exclusive of Rc determinants. The monoclonal antibody specific for the polymeric O-antigen is of the IgG3 subclass, and the monoclonal antibody 5B10 specific for the outer core of LPS is an IgG2a. Although B7 and 5B10 were equally able to protect mice from a lethal challenge of E. coli 0111:B4 organisms, the outer core-specific IgG2a antibody was much more efficient at mediating the binding of human complement C3 than the O-antigen-specific IgG3 monoclonal antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号