首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Toxoplasma gondii, an obligate intracellular parasite of humans and other warm-blooded vertebrates, invades a variety of cell types in the organism, including immune cells. Notably, dendritic cells (DCs) infected by T. gondii acquire a hypermigratory phenotype that potentiates parasite dissemination by a ‘Trojan horse’ type of mechanism in mice. Previous studies have demonstrated that, shortly after parasite invasion, infected DCs exhibit hypermotility in 2-dimensional confinements in vitro and enhanced transmigration in transwell systems. However, interstitial migration in vivo involves interactions with the extracellular matrix in a 3-dimensional (3D) space. We have developed a collagen matrix-based assay in a 96-well plate format that allows quantitative locomotion analyses of infected DCs in a 3D confinement over time. We report that active invasion of DCs by T. gondii tachyzoites induces enhanced migration of infected DCs in the collagen matrix. Parasites of genotype II induced superior DC migratory distances than type I parasites. Moreover, Toxoplasma-induced hypermigration of DCs was further potentiated in the presence of the CCR7 chemotactic cue CCL19. Blocking antibodies to integrins (CD11a, CD11b, CD18, CD29, CD49b) insignificantly affected migration of infected DCs in the 3D matrix, contrasting with their inhibitory effects on adhesion in 2D assays. Morphological analyses of infected DCs in the matrix were consistent with the acquisition of an amoeboid-like migratory phenotype. Altogether, the present data show that the Toxoplasma-induced hypermigratory phenotype in a 3D matrix is consistent with integrin-independent amoeboid DC migration with maintained responsiveness to chemotactic and chemokinetic cues. The data support the hypothesis that induction of amoeboid hypermigration and chemotaxis/chemokinesis in infected DCs potentiates the dissemination of T. gondii.  相似文献   

2.
During acute infection in human and animal hosts, the obligate intracellular protozoan Toxoplasma gondii infects a variety of cell types, including leukocytes. Poised to respond to invading pathogens, dendritic cells (DC) may also be exploited by T. gondii for spread in the infected host. Here, we report that human and mouse myeloid DC possess functional γ-aminobutyric acid (GABA) receptors and the machinery for GABA biosynthesis and secretion. Shortly after T. gondii infection (genotypes I, II and III), DC responded with enhanced GABA secretion in vitro. We demonstrate that GABA activates GABAA receptor-mediated currents in T. gondii-infected DC, which exhibit a hypermigratory phenotype. Inhibition of GABA synthesis, transportation or GABAA receptor blockade in T. gondii-infected DC resulted in impaired transmigration capacity, motility and chemotactic response to CCL19 in vitro. Moreover, exogenous GABA or supernatant from infected DC restored the migration of infected DC in vitro. In a mouse model of toxoplasmosis, adoptive transfer of infected DC pre-treated with GABAergic inhibitors reduced parasite dissemination and parasite loads in target organs, e.g. the central nervous system. Altogether, we provide evidence that GABAergic signaling modulates the migratory properties of DC and that T. gondii likely makes use of this pathway for dissemination. The findings unveil that GABA, the principal inhibitory neurotransmitter in the brain, has activation functions in the immune system that may be hijacked by intracellular pathogens.  相似文献   

3.
Toxoplasma gondii is an obligate intracellular protozoan with the ability to infect virtually any type of nucleated cell in warm-blooded vertebrates including humans. Toxoplasma gondii invades immune cells, which the parasite employs as shuttles for dissemination by a Trojan horse mechanism. Recent findings are starting to unveil how this parasite orchestrates the subversion of the migratory functions of parasitised mononuclear phagocytes, especially dendritic cells (DCs) and monocytes. Here, we focus on how T. gondii impacts host cell signalling that regulates leukocyte motility and systemic migration in tissues. Shortly after active parasite invasion, DCs undergo mesenchymal-to-amoeboid transition and adopt a high-speed amoeboid mode of motility. To trigger migratory activation – termed hypermigratory phenotype – T. gondii induces GABAergic signalling, which results in calcium fluxes mediated by voltage-gated calcium channels in parasitised DCs and brain microglia. Additionally, a TIMP-1-CD63-ITGB1-FAK signalling axis and signalling via the receptor tyrosine kinase MET promotes sustained hypermigration of parasitised DCs. Recent reports show that the activated signalling pathways converge on the small GTPase Ras to activate the MAPK Erk signalling cascade, a central regulator of cell motility. To date, three T. gondii-derived putative effector molecules have been linked to hypermigration: Tg14-3-3, TgWIP and ROP17. Here, we discuss their impact on the hypermigratory phenotype of phagocytes. Altogether, the emerging concept suggests that T. gondii induces metastasis-like migratory properties in parasitised mononuclear phagocytes to promote infection-related dissemination.  相似文献   

4.
Host defense to the apicomplexan parasite Toxoplasma gondii is critically dependent on CD8+ T cells, whose effector functions include the induction of apoptosis in target cells following the secretion of granzyme proteases. Here we demonstrate that T. gondii induces resistance of host cells to apoptosis induced by recombinant granzyme B. Granzyme B induction of caspase-independent cytochrome c release was blocked in T. gondii-infected cells. Prevention of apoptosis could not be attributed to altered expression of the Bcl-2 family of apoptotic regulatory proteins, but was instead associated with reduced granzyme B-mediated, caspase-independent cleavage of procaspase 3 to the p20 form in T. gondii-infected cells, as well as reduced granzyme B-mediated cleavage of the artificial granzyme B substrate, GranToxiLux. The reduction in granzyme B proteolytic function in T. gondii-infected cells could not be attributed to altered granzyme B uptake or reduced trafficking of granzyme B to the cytosol, implying a T. gondii-mediated inhibition of granzyme B activity. Apoptosis and GranToxiLux cleavage were similarly inhibited in T. gondii-infected cells exposed to the natural killer-like cell line YT-1. The endogenous granzyme B inhibitor PI-9 was not up-regulated in infected cells. We believe these findings represent the first demonstration of granzyme B inhibition by a cellular pathogen and indicate a new modality for host cell protection by T. gondii that may contribute to parasite immune evasion.  相似文献   

5.
Adenylate cyclase toxin (CyaA) is a key virulence factor of the whooping cough agent Bordetella pertussis. The toxin targets CD11b-expressing phagocytes and delivers into their cytosol an adenylyl cyclase (AC) enzyme that subverts cellular signaling by increasing cAMP levels. In the present study, we analyzed the modulatory effects of CyaA on adhesive, migratory and antigen presenting properties of Toll-like receptor (TLR)-activated murine and human dendritic cells (DCs). cAMP signaling of CyaA enhanced TLR-induced dissolution of cell adhesive contacts and migration of DCs towards the lymph node-homing chemokines CCL19 and CCL21 in vitro. Moreover, we examined in detail the capacity of toxin-treated DCs to induce CD4+ and CD8+ T cell responses. Exposure to CyaA decreased the capacity of LPS-stimulated DCs to present soluble protein antigen to CD4+ T cells independently of modulation of co-stimulatory molecules and cytokine production, and enhanced their capacity to promote CD4+CD25+Foxp3+ T regulatory cells in vitro. In addition, CyaA decreased the capacity of LPS-stimulated DCs to induce CD8+ T cell proliferation and limited the induction of IFN-γ producing CD8+ T cells while enhancing IL-10 and IL-17-production. These results indicate that through activation of cAMP signaling, the CyaA may be mobilizing DCs impaired in T cell stimulatory capacity and arrival of such DCs into draining lymph nodes may than contribute to delay and subversion of host immune responses during B. pertussis infection.  相似文献   

6.
Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.  相似文献   

7.
During Yersinia pseudotuberculosis infection of C57BL/6 mice, an exceptionally large CD8+ T cell response to a protective epitope in the type III secretion system effector YopE is produced. At the peak of the response, up to 50% of splenic CD8+ T cells recognize the epitope YopE69-77. The features of the interaction between pathogen and host that result in this large CD8+ T cell response are unknown. Here, we used Y. pseudotuberculosis strains defective for production, secretion and/or translocation of YopE to infect wild-type or mutant mice deficient in specific dendritic cells (DCs). Bacterial colonization of organs and translocation of YopE into spleen cells was measured, and flow cytometry and tetramer staining were used to characterize the cellular immune response. We show that the splenic YopE69-77-specific CD8+ T cells generated during the large response are polyclonal and are produced by a “translocation-dependent” pathway that requires injection of YopE into host cell cytosol. Additionally, a smaller YopE69-77-specific CD8+ T cell response (~10% of the large expansion) can be generated in a “translocation-independent” pathway in which CD8α+ DCs cross present secreted YopE. CCR2-expressing inflammatory DCs were required for the large YopE69-77-specific CD8+ T cell expansion because this response was significantly reduced in Ccr2-/- mice, YopE was translocated into inflammatory DCs in vivo, inflammatory DCs purified from infected spleens activated YopE69-77-specific CD8+ T cells ex vivo and promoted the expansion of YopE69-77-specific CD8+ T cells in infected Ccr2-/- mice after adoptive transfer. A requirement for inflammatory DCs in producing a protective CD8+ T cell response to a bacterial antigen has not previously been demonstrated. Therefore, the production of YopE69-77-specific CD8+ T cells by inflammatory DCs that are injected with YopE during Y. pseudotuberculosis infection represents a novel mechanism for generating a massive and protective adaptive immune response.  相似文献   

8.
9.
CXCR4 expression is important for cell migration and recruitment, suggesting that the expression levels of CXCR4 may be correlated with functional activity of implanted cells for therapeutic neovascularization. Here, we examined differences between umbilical cord blood (CB) donors in the CXCR4 levels of endothelial colony forming cells (ECFCs), which are a subtype of endothelial progenitor cells (EPCs). We investigated the relationships between CXCR4 expression level and SDF-1α-induced vascular properties in vitro, and their in vivo contributions to neovascularization. We found that ECFCs isolated from different donors showed differences in CXCR4 expression that were linearly correlated with SDF-1α-induced migratory capacity. ECFCs with high CXCR4 expression showed enhanced ERK and Akt activation in response to SDF-1α. In addition, SDF-1α-induced migration and ERK1/2, Akt, and eNOS activation were reduced by AMD3100, a CXCR4-specific peptide antagonist, or by siRNA-CXCR4. Administration of high-CXCR4-expressing ECFCs resulted in a significant increase in therapeutic potential for blood flow recovery, tissue healing and capillary density compared to low-CXCR4-expressing ECFCs in hindlimb ischemia. Taken together, the functional differences among ECFCs derived from different donors depended on the level of CXCR4 expression, suggesting that CXCR4 expression levels in ECFCs could be a predictive marker for success of ECFC-based angiogenic therapy.  相似文献   

10.
Directional migration of primordial germ cells (PGCs) toward future gonads is a common feature in many animals. In zebrafish, mouse and chicken, SDF-1/CXCR4 chemokine signaling has been shown to have an important role in PGC migration. In Xenopus, SDF-1 is expressed in several regions in embryos including dorsal mesoderm, the target region that PGCs migrate to. CXCR4 is known to be expressed in PGCs. This relationship is consistent with that of more well-known animals. Here, we present experiments that examine whether chemokine signaling is involved in PGC migration of Xenopus. We investigate: (1) Whether injection of antisense morpholino oligos (MOs) for CXCR4 mRNA into vegetal blastomere containing the germ plasm or the precursor of PGCs disturbs the migration of PGCs? (2) Whether injection of exogenous CXCR4 mRNA together with MOs can restore the knockdown phenotype? (3) Whether the migratory behavior of PGCs is disturbed by the specific expression of mutant CXCR4 mRNA or SDF-1 mRNA in PGCs? We find that the knockdown of CXCR4 or the expression of mutant CXCR4 in PGCs leads to a decrease in the PGC number of the genital ridges, and that the ectopic expression of SDF-1 in PGCs leads to a decrease in the PGC number of the genital ridges and an increase in the ectopic PGC number. These results suggest that SDF-1/CXCR4 chemokine signaling is involved in the migration and survival or in the differentiation of PGCs in Xenopus.  相似文献   

11.
Toxoplasma gondii (T. gondii) is a parasitic protist that can infect nearly all nucleated cell types and tissues of warm‐blooded vertebrate hosts. T. gondii utilises a unique form of gliding motility to cross cellular barriers, enter tissues, and penetrate host cells, thus enhancing spread within an infected host. However, T. gondii also disseminates by hijacking the migratory abilities of infected leukocytes. Traditionally, this process has been viewed as a route to cross biological barriers such as the blood–brain barrier. Here, we review recent findings that challenge this view by showing that infection of monocytes downregulates the program of transendothelial migration. Instead, infection by T. gondii enhances Rho‐dependent interstitial migration of monocytes and macrophages, which enhances dissemination within tissues. Collectively, the available evidence indicates that T. gondii parasites use multiple means to disseminate within the host, including enhanced motility in tissues and translocation across biological barriers.  相似文献   

12.
Mouse skin melanocytes originate from the neural crest and subsequently invade the epidermis and migrate into the hair follicles (HF) where they proliferate and differentiate. Here we demonstrate a role for the chemokine SDF-1/CXCL12 and its receptor CXCR4 in regulating the migration and positioning of melanoblasts during HF formation and cycling. CXCR4 expression by melanoblasts was upregulated during the anagen phase of the HF cycle. CXCR4-expressing cells in the HF also expressed the stem cell markers nestin and LEX, the neural crest marker SOX10 and the cell proliferation marker PCNA. SDF-1 was widely expressed along the path taken by migrating CXCR4-expressing cells in the outer root sheath (ORS), suggesting that SDF-1-mediated signaling might be required for the migration of CXCR4 cells. Skin sections from CXCR4-deficient mice, and skin explants treated with the CXCR4 antagonist AMD3100, contained melanoblasts abnormally concentrated in the epidermis, consistent with a defect in their migration. SDF-1 acted as a chemoattractant for FACS-sorted cells isolated from the anagen skin of CXCR4–EGFP transgenic mice in vitro, and AMD3100 inhibited the SDF-1-induced migratory response. Together, these data demonstrate an important role for SDF-1/CXCR4 signaling in directing the migration and positioning of melanoblasts in the HF.  相似文献   

13.
Stromal cell-derived factor-1 (SDF-1) and its unique receptor, CXCR4, regulate stem/progenitor cell migration and retention in the bone marrow and are required for hematopoiesis. Recent studies found that hERG1 K+ channels were important regulators of tumor cell migration. In this study, we investigated whether SDF-1 induced acute leukemic cell migration associated with hERG1 K+ channels. Our results showed that E-4031, a specific hERG1 K+ channels inhibitor, significantly blocked SDF-1-induced migration of leukemic cell lines, primary acute leukemic cells, leukemic stem cells and HEK293T cells transfected with herg-pEGFP. The migration of phenotypically recognizable subsets gave the indication that lymphoblastic leukemic cells were inhibited more than myeloid cells while in the presence of E-4031 which maybe associated with herg expression. SDF-1 increased hERG1 K+ current expressed in oocytes and HEK293T cells transfected with herg-pEGFP. There were no significant changes of CXCR4 expression on both HL-60 cells and primary leukemic cells regardless if untreated or treated with E-4031 for 24 h (P > 0.05). The hERG1 K+ current increased by SDF-1 might contribute to the mechanism of SDF-1-induced leukemic cell migration. The data suggested that hERG1 K+ channels functionally linked to cell migration induced by SDF-1.  相似文献   

14.
Recognition of sialylated glycoconjugates is important for host cell invasion by Apicomplexan parasites. Toxoplasma gondii parasites penetrate host cells via interactions between their microneme proteins and sialylated glycoconjugates on the surface of host cells. However, the role played by sialic acids during infection with T. gondii is not well understood. Here, we focused on the role of α2-3 sialic acid linkages as they appear to be widely expressed in vertebrates. Removal of α2-3 sialic acid linkages on macrophages by neuraminidase treatment did not influence the rate of infection or growth of T. gondii, nor did it affect phagocytosis in vitro. Sialyltransferase ST3Gal-I deficient mice (ST3Gal-I−/− mice) lost α2-3 sialic acid linkages in macrophages and spleen cells. The numbers of T. gondii-infected CD11b+ cells in peritoneal cavities of the infected ST3Gal-I−/− mice were relatively lower than those of the infected wild type animals. In addition, CD8+ T cell populations and numbers in the spleens and peritoneal cavities of the ST3Gal-I−/− mice were significantly lower than those in the wild type animals before and after the T. gondii infection. ST3Gal-I−/− mice had severe liver damage and reduced survival rates following peritoneal infection with T. gondii. Furthermore, adoptive transfer of immune CD8+ cells from wild type mice to ST3Gal-I−/− mice increased their survival during infection with T. gondii. Our data show that parasite invasion via α2-3 sialic acid linkages might not contribute on host survival and indicate the impact that loss of α2-3 sialic acid linkages has on CD8+ T cell populations, which are necessary for effective immune responses against infection with T. gondii.  相似文献   

15.
During infection with the intracellular parasite Toxoplasma gondii, the presentation of parasite-derived antigens to CD4+ and CD8+ T cells is essential for long-term resistance to this pathogen. Fundamental questions remain regarding the roles of phagocytosis and active invasion in the events that lead to the processing and presentation of parasite antigens. To understand the most proximal events in this process, an attenuated non-replicating strain of T. gondii (the cpsII strain) was combined with a cytometry-based approach to distinguish active invasion from phagocytic uptake. In vivo studies revealed that T. gondii disproportionately infected dendritic cells and macrophages, and that infected dendritic cells and macrophages displayed an activated phenotype characterized by enhanced levels of CD86 compared to cells that had phagocytosed the parasite, thus suggesting a role for these cells in priming naïve T cells. Indeed, dendritic cells were required for optimal CD4+ and CD8+ T cell responses, and the phagocytosis of heat-killed or invasion-blocked parasites was not sufficient to induce T cell responses. Rather, the selective transfer of cpsII-infected dendritic cells or macrophages (but not those that had phagocytosed the parasite) to naïve mice potently induced CD4+ and CD8+ T cell responses, and conferred protection against challenge with virulent T. gondii. Collectively, these results point toward a critical role for actively infected host cells in initiating T. gondii-specific CD4+ and CD8+ T cell responses.  相似文献   

16.
17.
We report that primary human vaginal dendritic cells (DCs) display a myeloid phenotype and express CD4, CCR5, and CXCR4. Vaginal CD13+ CD11c+ DCs rapidly and efficiently bound transmitted/founder (T/F) CCR5-tropic (R5) viruses, transported them through explanted vaginal mucosa, and transmitted them in trans to vaginal and blood lymphocytes. Vaginal myeloid DCs may play a key role in capturing and disseminating T/F R5 HIV-1 in vivo and are candidate “gatekeeper” cells in HIV-1 transmission.  相似文献   

18.
The obligate intracellular parasite Toxoplasma gondii exploits cells of the immune system to disseminate. Upon infection, parasitized dendritic cells (DCs) and microglia exhibit a hypermigratory phenotype in vitro that has been associated with enhancing parasite dissemination in vivo in mice. One unresolved question is how parasites commandeer parasitized cells to achieve systemic dissemination by a ‘Trojan‐horse’ mechanism. By chromatography and mass spectrometry analyses, we identified an orthologue of the 14‐3‐3 protein family, T. gondii 14‐3‐3 (Tg14‐3‐3), as mediator of DC hypermotility. We demonstrate that parasite‐derived polypeptide fractions enriched for Tg14‐3‐3 or recombinant Tg14‐3‐3 are sufficient to induce the hypermotile phenotype when introduced by protein transfection into murine DCs, human DCs or microglia. Further, gene transfer of Tg14‐3‐3 by lentiviral transduction induced hypermotility in primary human DCs. In parasites expressing Tg14‐3‐3 in a ligand‐regulatable fashion, overexpression of Tg14‐3‐3 was correlated with induction of hypermotility in parasitized DCs. Localization studies in infected DCs identified Tg14‐3‐3 within the parasitophorous vacuolar space and a rapid recruitment of host cell 14‐3‐3 to the parasitophorous vacuole membrane. The present work identifies a determinant role for Tg14‐3‐3 in the induction of the migratory activation of immune cells by T. gondii. Collectively, the findings reveal Tg14‐3‐3 as a novel target for an intracellular pathogen that acts by hijacking the host cell's migratory properties to disseminate.  相似文献   

19.
IQ motif–containing GTPase-activating protein 1 (IQGAP1) is a cytoskeleton-interacting scaffold protein. CXCR4 is a chemokine receptor that binds stromal cell–derived factor-1 (SDF-1; also known as CXCL12). Both IQGAP1 and CXCR4 are overexpressed in cancer cell types, yet it was unclear whether these molecules functionally interact. Here, we show that depleting IQGAP1 in Jurkat T leukemic cells reduced CXCR4 expression, disrupted trafficking of endocytosed CXCR4 via EEA-1+ endosomes, and decreased efficiency of CXCR4 recycling. SDF-1–induced cell migration and activation of extracellular signal-regulated kinases 1 and 2 (ERK) MAPK were strongly inhibited, even when forced overexpression restored CXCR4 levels. Similar results were seen in KMBC and HEK293 cells. Exploring the mechanism, we found that SDF-1 treatment induced IQGAP1 binding to α-tubulin and localization to CXCR4-containing endosomes and that CXCR4-containing EEA-1+ endosomes were abnormally located distal from the microtubule (MT)-organizing center (MTOC) in IQGAP1-deficient cells. Thus, IQGAP1 critically mediates CXCR4 cell surface expression and signaling, evidently by regulating EEA-1+ endosome interactions with MTs during CXCR4 trafficking and recycling. IQGAP1 may similarly promote CXCR4 functions in other cancer cell types.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号