首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent hypotheses that variation in brain size among birds and mammals result from differences in metabolic allocation during ontogeny are tested.
Indices of embryonic and post-embryonic brain growth are defined. Precocial birds and mammals have high embryonic brain growth indices which are compensated for by low post-embryonic indices (with the exception of Homo supiens ). In contrast, altricial birds and mammals have low embryonic and high post-embryonic indices. Altricial birds have relatively small brains at hatching and develop relatively large brains as adults, but among mammals there is no equivalent correlation between variation in adult relative brain sizes and state of neonatal development.
Compensatory brain development in both birds and mammals is associated with compensatory parental metabolic allocation. In comparison with altricial development, precocial development is characterized by higher levels of brain growth and parental metabolic allocation prior to hatching or birth and lower levels subsequently. Differences between degrees of postnatal investment by the parents in the young of precocial birds versus precocial mammals may result in the different patterns of adult brain size associated with precociality versus altriciality in the two groups.
The allometric exponent scaling brain on body size differs among taxonomic levels in birds. The exponent is higher for some parts of the brain than others, irrespective of taxonomic level. Unlike mammals, the exponents for birds do not show a general increase with taxonomic level. These pattcrns call into question recent interpretations of the allometric exponent in birds. and the reason for changes in exponent with taxonomic level.  相似文献   

2.
Brain size varies dramatically, both within and across species, and this variation is often believed to be the result of trade-offs between the cognitive benefits of having a large brain for a given body size and the energetic cost of sustaining neural tissue. One potential consequence of having a large brain is that organisms must also meet the associated high energetic demands. Thus, a key question is whether metabolic rate correlates with brain size. However, using metabolic rate to measure energetic demand yields a relatively instantaneous and dynamic measure of energy turnover, which is incompatible with the longer evolutionary timescale of changes in brain size within and across species. Morphological traits associated with oxygen consumption, specifically gill surface area, have been shown to be correlates of oxygen demand and energy use, and thus may serve as integrated correlates of these processes, allowing us to assess whether evolutionary changes in brain size correlate with changes in longer-term oxygen demand and energy use. We tested how brain size relates to gill surface area in the blacktip shark Carcharhinus limbatus. First, we examined whether the allometric slope of brain mass (i.e., the rate that brain mass changes with body mass) is lower than the allometric slope of gill surface area across ontogeny. Second, we tested whether gill surface area explains variation in brain mass, after accounting for the effects of body mass on brain mass. We found that brain mass and gill surface area both had positive allometric slopes, with larger individuals having both larger brains and larger gill surface areas compared to smaller individuals. However, the allometric slope of brain mass was lower than the allometric slope of gill surface area, consistent with our prediction that the allometric slope of gill surface area could pose an upper limit to the allometric slope of brain mass. Finally, after accounting for body mass, individuals with larger brains tended to have larger gill surface areas. Together, our results provide clues as to how fishes may evolve and maintain large brains despite their high energetic cost, suggesting that C. limbatus individuals with a large gill surface area for their body mass may be able to support a higher energetic turnover, and, in turn, a larger brain for their body mass.  相似文献   

3.
Amiel JJ  Tingley R  Shine R 《PloS one》2011,6(4):e18277
Brain size relative to body size varies considerably among animals, but the ecological consequences of that variation remain poorly understood. Plausibly, larger brains confer increased behavioural flexibility, and an ability to respond to novel challenges. In keeping with that hypothesis, successful invasive species of birds and mammals that flourish after translocation to a new area tend to have larger brains than do unsuccessful invaders. We found the same pattern in ectothermic terrestrial vertebrates. Brain size relative to body size was larger in species of amphibians and reptiles reported to be successful invaders, compared to species that failed to thrive after translocation to new sites. This pattern was found in six of seven global biogeographic realms; the exception (where relatively larger brains did not facilitate invasion success) was Australasia. Establishment success was also higher in amphibian and reptile families with larger relative brain sizes. Future work could usefully explore whether invasion success is differentially associated with enlargement of specific parts of the brain (as predicted by the functional role of the forebrain in promoting behavioural flexibility), or with a general size increase (suggesting that invasion success is facilitated by enhanced perceptual and motor skills, as well as cognitive ability).  相似文献   

4.
We have examined Na(+),K(+)-ATPase molecular activity and membrane fatty acid composition in the heart of six mammalian and eight avian species ranging in size from 30 g in mice to 280 kg in cattle and 13 g in zebra finches to 35 kg in emus, respectively. Na(+),K(+)-ATPase activity scaled negatively with body mass in both mammals and birds. In small mammals, the elevated enzyme activity was related to allometric changes in both the concentration and molecular activity (turnover rate) of Na(+),K(+)-ATPase enzymes, while in small birds, higher Na(+),K(+)-ATPase activity appeared to result primarily from an increased molecular activity of individual enzymes. The unsaturation index of cardiac phospholipids scaled negatively with body mass in both groups, while a significant allometric increase in monounsaturate content was observed in the larger mammals and birds. In particular, the relative content of the highly polyunsaturated docosahexaenoic acid (22:6n-3) displayed the greatest variation, scaling negatively with body mass and varying greater than 40-fold in both mammals and birds. Membrane fatty acid profile was correlated with Na(+),K(+)-ATPase molecular activity in both mammals and birds, suggesting a potential association between membrane lipid composition and the activity of membrane-bound enzymes in the hearts of endotherms.  相似文献   

5.
To explain variation in relative brain size among homoiothermic vertebrates, we propose the Expensive Brain hypothesis as a unifying explanatory framework. It claims that the costs of a relatively large brain must be met by any combination of increased total energy turnover or reduced energy allocation to another expensive function such as digestion, locomotion, or production (growth and reproduction). Focusing on the energetic costs of brain enlargement, a comparative analysis of the largest mammalian sample assembled to date shows that an increase in brain size leads to larger neonates among all mammals and a longer period of immaturity among monotokous precocial species, but not among the polytokous altricial ones, who instead reduce their litter size. Relatively large brained mammals, altricial and precocial, also show reduced annual fertility rates as compared to their smaller brained relatives, but allomaternal energy inputs allow some cooperatively breeding altricial carnivores to produce even more offspring in a shorter time despite having a relatively large brain. Thus, the Expensive Brain framework explains why brain size is linked to life history pace in some, but not all mammalian lineages. This framework encompasses other hypotheses of energetic constraints on brain size variation and is also compatible with the Brain Malnutrition Risk hypothesis, but the absence of a mammal-wide correlation between brain size and immature period argues against the Needing-to-Learn explanation for slower development among large brained mammals.  相似文献   

6.
Seed retention time (SRT), the time interval between seed ingestion and defaecation, is a critical parameter that determines the spatial pattern of seed dispersal created by an animal, and is therefore, an essential component of trait‐based modelling of seed dispersal functions. However, no simple predictive model of SRT for any given animal exists. We explored the linkage between animal traits and SRT. We collected previously published data on mean SRT for 112 species of birds, mammals, reptiles and fishes and investigated the general allometric scaling of mean SRT with body mass for each taxon. Moreover, we analysed the effects of food habit and digestive strategy on mean SRT for birds and mammals. In general, mean SRT increased with body mass in all four taxa, whereas the pattern of allometric scaling varied greatly among the taxa. Birds had a smaller intercept and larger slope than those of mammals, whereas reptiles had a much larger intercept and smaller slope than those of either birds or mammals. For birds, food habit was also detected as an important factor affecting SRT. We applied the allometric scaling that was obtained for birds to estimate mean SRT of extinct Mesozoic dinosaurs (Theropoda) – few of which are assumed to have acted as seed dispersers. SRT for large carnivorous theropods was estimated to be 4–5 days, when considering only body mass. The present study provides allometric scaling parameters of mean SRT for a variety of seed‐dispersing animals, and highlights large variations in scaling among taxa. The allometric scaling obtained could be a critical component of further trait‐based modelling of seed dispersal functions. Further, the potential and limitations of the scaling of animal SRT with body mass and a future pathway to the development of trait‐based modelling are discussed.  相似文献   

7.
Brain size is strongly associated with body size in all vertebrates. This relationship has been hypothesized to be an important constraint on adaptive brain size evolution. The essential assumption behind this idea is that static (i.e., within species) brain–body allometry has low ability to evolve. However, recent studies have reported mixed support for this view. Here, we examine brain–body static allometry in Lake Tanganyika cichlids using a phylogenetic comparative framework. We found considerable variation in the static allometric intercept, which explained the majority of variation in absolute and relative brain size. In contrast, the slope of the brain–body static allometry had relatively low variation, which explained less variation in absolute and relative brain size compared to the intercept and body size. Further examination of the tempo and mode of evolution of static allometric parameters confirmed these observations. Moreover, the estimated evolutionary parameters indicate that the limited observed variation in the static allometric slope could be a result of strong stabilizing selection. Overall, our findings suggest that the brain–body static allometric slope may represent an evolutionary constraint in Lake Tanganyika cichlids.  相似文献   

8.
How anatomical, physiological and ecological (life history) features scale with body mass is a fundamental question in biology. There is an ongoing debate in the scientific literature whether allometric scaling follows a universal pattern that can be described in a single model, or differs between groups. However, recently some analyses were published demonstrating a change in scaling across the body mass range: brain‐size allometry of mammals indicates that scaling follows a curvilinear pattern in double‐logarithmic space, and a quadratic pattern in double‐logarithmic space was found in one of the largest physiological datasets, on basal metabolic rate (MR) in mammals. Here, we analysed a variety of independent datasets on anatomical, physiological and ecological characteristics in mammals, birds and reptiles to answer the question whether the quadratic scaling is a universal biological law, or a pattern unique to mammals. The pattern was present in mammalian basal and field MR, brain size, and reproduction parameters, but neither in other organ allometries in mammals, nor in the scaling of MR in birds and reptiles. However, the curvature was better explained by separate allometric scaling of three different mammalian reproduction strategies: marsupials, and eutherian mammals with one and with many offspring. The two latter strategies are distributed unequally over the body mass range in eutherian mammals. Our findings show that a quadratic model, as well as a traditional allometric model with a universal scaling exponent (such as 0.67 or 0.75), may be inappropriate in mammals as they are a result of different scalings within these three reproductive groups. We propose that the observed distribution pattern is the result of the eutherian mammal clade's uniquely pronounced dichotomy of reproductive strategies.  相似文献   

9.
In terrestrial placental mammals, there is a well‐known negative allometric relationship between body mass and relative investment in testes mass. Such a negative relationship means that males of relatively monogamous small species invest proportionately more in their reproductive tissues than males of more polyandrous larger species. The selective pressure responsible for this relationship remains unclear and is it not known if this is a general allometric relationship that is similar across all vertebrate lineages. To investigate this, we conducted the first comparison of relationships between body mass and testes mass (using percentage testes mass as the dependent variable) across a variety of vertebrate groups. In all amniote lineages examined, the allometric relationship between body mass and testes mass was relatively strong and negative. We show, for the first time, that reptiles, birds and terrestrial placental mammals followed the same allometric relationship and, contrary to previous expectations, this relationship is sigmoidal rather than linear. Within this data set, there was no significant difference between this general amniote relationship and any of the 13 orders of reptiles, birds and terrestrial placental mammals examined. As a result, we propose that a sigmoidal relationship should be considered the default assumption for the form of the body mass – testes mass relationship within the amniote lineage. However, we also identify significant differences within some additional mammal groups (marsupials, bats and cetaceans). In each of these cases, only some sub‐groupings differed significantly from the general amniote relationship. In contrast to the amniotes, the relationship is relatively weak and positive in teleost fish and frogs suggesting that a negative allometric relationship is not universal in vertebrates. We explore whether variation in the body mass – testes mass relationships can be linked to sperm competition or a variety of ecological characteristics, either for amniotes in particular or vertebrates in general.  相似文献   

10.
We tested the hypothesis that egg size should evolve in sexually dimorphic birds to reduce costs associated with more rapid growth by nestlings of the larger sex. Consistent with this hypothesis, we found that in species in which males were larger, females laid proportionately larger eggs as sexual size dimorphism increased. However, this result was also consistent with the hypothesis that egg size varied allometrically with both male and female body size. Furthermore we found that in species in which females were larger, relative egg size decreased as size dimorphism increased, which is consistent with the “allometry hypothesis” but not the “cost-reduction hypothesis. That male body size contributes to the allometric relationship between egg size and body size suggests that the basis for the allometric relationship is not wholly a mechanical one stemming from the physical requirements of developing, transporting, and laying an egg of a particular size. Rather, the relationship seems likely to be tied more directly to body size itself the tact that male body size influences a female trait suggests that egg size–body size relationships otter some scope for investigating the basis for allometric relationships in general.  相似文献   

11.
We investigated the relationship between body size, Na(+)-K(+)-ATPase molecular activity, and membrane lipid composition in the kidney of five mammalian and eight avian species ranging from 30-g mice to 280-kg cattle and 13-g zebra finches to 35-kg emus, respectively. Na(+)-K(+)-ATPase activity was found to be higher in the smaller species of both groups. In small mammals, the higher Na(+)-K(+)-ATPase activity was primarily the result of an increase in the molecular activity (turnover rate) of individual enzymes, whereas in small birds the higher Na(+)-K(+)-ATPase activity was the result of an increased enzyme concentration. Phospholipids from both mammals and birds contained a relatively constant percentage of unsaturated fatty acids; however, phospholipids from the smaller species were generally more polyunsaturated, and a complementary significant allometric increase in monounsaturate content was observed in the larger species. In particular, the relative content of the highly polyunsaturated docosahexaenoic acid [22:6(n-3)] displayed the greatest variation with body mass, scaling with allometric exponents of -0.21 and -0.26 in the mammals and birds, respectively. This allometric variation in fatty acid composition was correlated with Na(+)-K(+)-ATPase molecular activity in mammals, whereas in birds molecular activity only correlated with membrane cholesterol content. These relationships are discussed with respect to the metabolic intensity of different-sized animals.  相似文献   

12.
Most studies of sexual dimorphism in mammals focus on overall body size. However, relatively little is known about the differences in growth trajectories that produce dimorphism in organ and muscle size. We weighed six organs and four muscles in Rattus norvegicus to determine what heterochronic and allometric scaling differences exist between the sexes. This cross-sectional growth study included 113 males and 109 females with ages ranging from birth to 200 days of age. All muscle and organ weights were ultimately greater in males than in females, because males grew for a longer period of time, had a greater maximum rate of growth, and spent more time near the maximum rate. No ontogenetic scaling differences existed between the sexes in organ weight except for lungs and gonads. During growth, organ weights were negatively allometric to body weight. No scaling differences relative to body weight existed between the sexes for muscles; however, there was variation in the allometric relations among muscles relative to body weight. Sexual dimorphism in muscles and organs appears to be a size difference resulting from differences in the duration and rates of growth.  相似文献   

13.
Summary It is argued that allometric principles account for most of the observed variation in the life history patterns amongst birds. To test this contention it is shown that traits such as incubation time, growth rates, age at first reproduction, lifespan, clutch weight and egg weight all scale to body weight with exponents similar to those found for analogous traits in mammals. It is then shown that most of the variation amongst bird taxa and between birds and mammals based on body weight allometry can be explained by variations in brain size, body temperature and metabolic rate, consistent with theories of growth and ageing derived from mammalian studies. Finally, it is suggested that the evidence for life histostory allometry is sufficiently strong that it argues for a more epigenetic view of life history patterns and their evolution than is generally conceded in most adaptation theories.  相似文献   

14.
The objective of this investigation was to examine the relationship between body size, fatty acid composition and sensitivity to lipid peroxidation of mitochondria and microsomes isolated from the brain of different size bird species: manon, quail, pigeon, duck and goose, representing a 372-fold range of body mass. Fatty acids of total lipids were determined using gas chromatography and lipid peroxidation was evaluated using a chemiluminescence assay. The allometric study of the fatty acids present in brain mitochondria and microsomes of the different bird species showed a small number of significant allometric trends. In mitochondria the percentage of monounsaturated fatty acids, was significantly lower in the larger birds (r=-0.965; P<0.008). The significant allometric increase in 18:2 n-6; linoleic acid (r=0.986; P<0.0143), polyunsaturated (r=0.993; P<0.007) and total unsaturated (r=0.966; P<0.034) in brain microsomes but not in mitochondria may indicate a preferential incorporation of this fatty acid in the brain endoplasmic reticulum of the larger bird species. The brain of all birds studied had a high content of docosahexaenoic acid. However brain mitochondria but not microsomes isolated from all the birds analyzed showed a significant decrease of arachidonic and docosahexaenoic acids during lipid peroxidation. The allometric analyses of chemiluminescence were not statistically significant. In conclusion our results show absence of correlation between the sensitivity to lipid peroxidation of brain mitochondria and microsomes with body size and maximum life span.  相似文献   

15.
The oxygen store/usage hypothesis suggests that larger animals are able to dive for longer and hence deeper because oxygen storage scales isometrically with body mass, whereas oxygen usage scales allometrically with an exponent <1 (typically 0.67-0.75). Previous tests of the allometry of diving tend to reject this hypothesis, but they are based on restricted data sets or invalid statistical analyses (which assume that every species provides independent information). Here we apply information-theoretic statistical methods that are phylogenetically informed to a large data set on diving variables for birds and mammals to describe the allometry of diving. Body mass is strongly related to all dive variables except dive:pause ratio. We demonstrate that many diving variables covary strongly with body mass and that they have allometric exponents close to 0.33. Thus, our results fail to falsify the oxygen store/usage hypothesis. The allometric relationships for most diving variables are statistically indistinguishable for birds and mammals, but birds tend to dive deeper than mammals of equivalent mass. The allometric relationships for all diving variables except mean dive duration are also statistically indistinguishable for all major taxonomic groups of divers within birds and mammals, with the exception of the procellariiforms, which, strictly speaking, are not true divers.  相似文献   

16.
The superior cervical ganglion (SCG) in mammals varies in structure according to developmental age, body size, gender, lateral asymmetry, the size and nuclear content of neurons and the complexity and synaptic coverage of their dendritic trees. In small and medium-sized mammals, neuron number and size increase from birth to adulthood and, in phylogenetic studies, vary with body size. However, recent studies on larger animals suggest that body weight does not, in general, accurately predict neuron number. We have applied design-based stereological tools at the light-microscopic level to assess the volumetric composition of ganglia and to estimate the numbers and sizes of neurons in SCGs from rats, capybaras and horses. Using transmission electron microscopy, we have obtained design-based estimates of the surface coverage of dendrites by postsynaptic apposition zones and model-based estimates of the numbers and sizes of synaptophysin-labelled axo-dendritic synaptic disks. Linear regression analysis of log-transformed data has been undertaken in order to establish the nature of the relationships between numbers and SCG volume (Vscg). For SCGs (five per species), the allometric relationship for neuron number (N) is N=35,067×Vscg0.781 and that for synapses is N=20,095,000×Vscg1.328, the former being a good predictor and the latter a poor predictor of synapse number. Our findings thus reveal the nature of SCG growth in terms of its main ingredients (neurons, neuropil, blood vessels) and show that larger mammals have SCG neurons exhibiting more complex arborizations and greater numbers of axo-dendritic synapses.  相似文献   

17.
Previous studies of relative brain size in mammals have suggested an association with complex habitats and with low reproductive rate. In order to examine the causal relationships more thoroughly, a detailed examination of relative brain size variation in the genus Peromyscus was undertaken. Endocranial volumes were used to estimate brain weight for 32 species including 161 subspecies, and relative brain size calculated as the species deviation from the allometric relationship between brain and body size. The intrageneric allometric coefficient was higher than most values previously reported from low taxonomic levels, but intraspecific coefficients were generally lower than this.
Island species, and relict species isolated on mountain tops, which may be ecological 'islands', had consistently small relative brain sizes, but peninsular species were large brained. Among the remaining species there were significant correlations between litter size and relative brain size, and between the number of competitor species and relative brain size. Species with many competitor species have relatively large brains and small litters. It is concluded that the nature of the geographical distribution, the pattern of species formation and habitat complexity all influence relative brain size in existing forms.  相似文献   

18.
Two explanations for species differences in neonatal brain size in eutherian mammals relate the size of the brain at birth to maternal metabolic rate. Martin (1981, 1983) argued that maternal basal metabolic rate puts an upper bound on the mother's ability to supply energy to the fetus, thereby limiting neonatal brain size. Hofman (1983) proposed that gestation length in mammals is constrained by maternal metabolic rate, implying an indirect constraint on neonatal brain size. Since individuals of precocial species have much larger neonatal brain sizes and are gestated longer for a given maternal body size than individuals of altricial species, Martin's and Hofman's ideas also require that mothers of precocial offspring have higher metabolic rates for their body sizes than mothers of altricial offspring. Data on 116 mammal species from 13 orders show that neither neonatal brain size nor gestation length is correlated with maternal metabolic rate when maternal body-size effects are removed. For a given maternal size, there is no difference in metabolic rates between precocial and altricial species, despite a two-fold difference between them in average neonatal brain size. However, neonatal brain size is strongly correlated with gestation length and litter size, independently of maternal size and metabolic rate. Analyses conducted within orders replicated the findings for gestation length and suggested that neonatal brain size may be at best only weakly related to metabolic rate. Differences in neonatal brain size appear to have evolved primarily with species differences in gestation length and litter size but not with differences in metabolic rate; large-brained offspring are typically produced from litters of one that have been gestated for a long time relative to maternal size. We conclude that species differences in relative neonatal brain size reflect different life-history tactics rather than constraints imposed by metabolic rate.  相似文献   

19.
There is a well-established allometric relationship between brain and body mass in mammals. Deviation of relatively increased brain size from this pattern appears to coincide with enhanced cognitive abilities. To examine whether there is a phylogenetic structure to such episodes of changes in encephalization across mammals, we used phylogenetic techniques to analyse brain mass, body mass and encephalization quotient (EQ) among 630 extant mammalian species. Among all mammals, anthropoid primates and odontocete cetaceans have significantly greater variance in EQ, suggesting that evolutionary constraints that result in a strict correlation between brain and body mass have independently become relaxed. Moreover, ancestral state reconstructions of absolute brain mass, body mass and EQ revealed patterns of increase and decrease in EQ within anthropoid primates and cetaceans. We propose both neutral drift and selective factors may have played a role in the evolution of brain-body allometry.  相似文献   

20.
Juha Tuomi 《Oecologia》1980,45(1):39-44
Summary A generalized relationship of litter size to mammalian body size was predicted by a graph model. The model was used to generate hypotheses explaining specific features of variation in gestation time, relative litter weight, birth weight, and reproductive capacity. The predictions were tested by means of data from the literature.Mammals were assumed to maximize neonatal survival of offspring to the limits allowed by litter weight per female body weight. Gestation time correlated negatively with the foetal growth rate of relative litter weight. Gestation time did not correlate with the foetal growth rate of individual offspring.Relative litter weight correlated negatively with adult body weight. This relationship was explained by the higher assimilation rate per unit weight relative to metabolic rate in small mammals.Birth weight correlated positively with body weight. However, small mammals produce larger offspring than predicted by the linear relationship of birth weight to body weight in large mammals. There is obviously a minimum birth weight which cannot be decreased without special arrangements for parental care.The prediction of the relationship of litter size to body size was derived from the relations of relative litter weight and birth weight to body weight. In small mammals (less than 1 kg) litter the correlation was negative. When litter size was compared with body length, the correlation was positive in small mammals (less than 30 cm) and negative in large mammals. In both sets of data there was a negative overall correlation between litter size and body size.Reproductive capacity, defined as the number of offspring per season, correlated negatively with life-span.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号