首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Agrobacterium-mediated transformation of an elite indica rice variety, Pusa Basmati 1, was performed using LBA4404 (pSB1, pMKU-RF2) that harbours a rice chitinase gene (chi11) under the control of the maize ubiquitin (Ubi1) promoter-intron. Right border (gus) and left border (hph) flanking sequences and the transgene (chi11) in the middle of the T-DNA were used as probes in Southern analysis. Out of eleven independent T0 plants regenerated, three had single copy T-DNA insertions and eight had multiple T-DNA insertions. Nine T0 plants carried the complete T-DNA with the chitinase transgene. Two T0 plants did not carry chi11, though they had other T-DNA portions. Three plants harbouring single copy insertions and one plant harbouring two inserted copies were analyzed in detail. A segregation ratio of 3:1, reflecting T-DNA insertion at a single locus, was observed in the progeny of all the four T0 plants. Northern and western blot analyses of T1 plants revealed constitutive expression of chitinase at high levels. Bioassays of T1 plants indicated enhanced resistance to the sheath blight pathogen, Rhizoctonia solani, in comparison to control plants. A homozygous transgenic line was established from one T0 line, which exhibited the maximum resistance to R. solani.  相似文献   

2.
A plant expression vector harboring four antifungal genes was delivered into the embryogenic calli of ‘9311’, an indica restorer line of Super Hybrid Rice, via modified biolistic particle bombardment. Southern blot analysis indicated that in the regenerated hygromycin-resistant plants, all the four antifungal genes, including RCH10, RAC22, β-Glu and B-RIP, were integrated into the genome of ‘9311’, co-transmitted altogether with the marker gene hpt in a Mendelian pattern. Some transgenic R1 and R2 progenies, with all transgenes displaying a normal expression level in the Northern blot analysis, showed high resistance to Magnaporthe grisea when tested in the typical blast nurseries located in Yanxi and Sanya respectively. Furthermore, transgenic F1 plants, resulting from a cross of R2 homozygous lines with high resistance to rice blast with the non-transgenic male sterile line Peiai 64S, showed not only high resistance to M. grisea but also enhanced resistance to rice false smut (a disease caused by Ustilaginoidea virens) and rice kernel smut (another disease caused by Tilletia barclayana).  相似文献   

3.
4.
We present a simple and rapid method for screening second-generation transgenic rice plants (T1) to identify homozygous plants. The plasmid (pfd11) used for rice transformation contains a partially deleted cytochrome c gene (cyc) for comparing with the endogenous cyc for copy number. After polymerase chain reaction (PCR) amplification of a segment of the cyc in transgenic rice DNA followed by agarose gel electrophoresis, two specific bands are obtained. The upper band represents the endogenous cyc, and the lower band represents the partially deleted cyc in the transgene. The first-generation plants (T0) that harbor a single copy of the transgene are selected based on the fact that the density of the lower band is half as dense as the upper band. Next, only plants harboring a single copy of the transgene are advanced to the second generation (T1). The same PCR procedure is used again, and homozygous T1 plants are easily identified from samples in which the intensity of the two bands is the same.  相似文献   

5.
The integration pattern and the inheritance of exogenous DNA in transgenic rice plants were analysed. Plasmid pCH (4.8 kb), that contains chimaeric cauliflower mosaic virus 35S promoter-hygromycin phosphotransferase structural gene, and plasmid pGP400 (7.2 kb), possessing oat phytochrome promoter and structural gene of bacterial -glucuronidase, were co-transferred into protoplasts of rice (Oryza sativa L.) plants via electroporation. Primary transformants (T0 generation) and their progenies (T1, T2 and T3) were selected by hygromycin B. Southern blot analysis of inserted genes in transgenic rice plants suggests the integration of an intact hygromycin phosphotransferase gene and non-functional DNA fragments into host genome. Co-inheritance of the hygromycin phosphotransferase gene and -glucuronidase gene was also observed. There were no significant differences in terms of the morphology and size of seeds between untransformed and transgenic plants (T3 generation).  相似文献   

6.
A plant expression vector harboring four antifungal genes was delivered into the embryogenic calli of ‘9311’, an indica restorer line of Super Hybrid Rice, via modified biolistic particle bombardment. Southern blot analysis indicated that in the regenerated hygromycin-resistant plants, all the four anti-fungal genes, including RCH10, RAC22, β-Glu and B-RIP, were integrated into the genome of ‘9311’, co-transmitted altogether with the marker gene hpt in a Mendelian pattern. Some transgenic R1 and R2 progenies, with all transgenes displaying a normal expression level in the Northern blot analysis, showed high resistance to Magnaporthe grisea when tested in the typical blast nurseries located in Yanxi and Sanya respectively. Furthermore, transgenic F1 plants, resulting from a cross of R2 homozygous lines with high resistance to rice blast with the non-transgenic male sterile line Peiai 64S, showed not only high resistance to M. grisea but also enhanced resistance to rice false smut (a disease caused by Ustilaginoidea virens) and rice kernel smut (another disease caused by Tilletia barclayana).  相似文献   

7.
Segregating T1, T2 and T3 transgenic rice populations, derived from independent particle-bombardment-mediated transformation events were examined in order to assess the effect of gene dosage on transgene expression levels and stability. The expression level of the unselected β-glucuronidase (gusA) reporter gene was quantified in plants from these populations. The gusA gene dosage was determined by segregation analysis of progeny seedlings at the structural level (by PCR) and at the expression level. For some transformation events a gene dosage effect on transgene expression was observed, leading to higher transgene expression levels in homozygous progeny than in hemizygous progeny or primary transgenic plants. However, in many other transformation events, the homozygous state appears to be disadvantageous, being associated with lower transgene expression levels, gene silencing or counter-selection of homozygous plants across generations. Change of gene dosage is probably one of the key factors influencing transgene expression levels and stability in transgenic rice. This is particularly important when considering molecular genetic studies and crop improvement programmes. The possible influence of matrix attachment regions (MARs) in increasing the likelihood of an additive effect on transgene expression level is discussed. Received: 21 March 2001 / Accepted: 29 June 2001  相似文献   

8.
The DIANTHIN gene encoding a ribosome-inactivating protein (RIP) from Dianthus caryophyllus L. was tested for negative selection in tobacco and rice. Tobacco leaf discs and scutellum-derived callus of rice were transformed with Agrobacterium tumefaciens strain LBA4404 (pSB1, pJAS1). pJAS1 harbors the DIANTHIN gene under the control of the CaMV 35S promoter. Tobacco transformation efficiency, in comparison to pCAMBIA1301, was reduced by 87 % in pJAS1-transformed leaf discs. The DIANTHIN gene proved to be completely toxic to tobacco as all the recovered hygromycin-resistant transgenic plants harbored truncated T-DNAs with deletions of the DIANTHIN gene. Transformation of the DIANTHIN gene under a Mungbean yellow mosaic virus (MYMV)-inducible promoter did not cause any toxicity in tobacco as reflected by the recovery of transgenic tobacco plants with the complete DIANTHIN gene. Transformation efficiency of pJAS1 did not decline in rice. Interestingly, all transgenic rice plants harbored the complete DIANTHIN gene and expressed the gene. The T1 transgenic lines showed reduction of sheath blight symptom in the range of 29 to 42 %. The difference in the sensitivity to DIANTHIN between tobacco and rice provides a new direction to study the mechanisms underlying RIP toxicity in plants.  相似文献   

9.
The insecticidal cry genes of Bacillus thuringiensis (Bt) have been successfully used for development of insect resistant transgenic rice plants. In this study, a novel cry2AX1 gene consisting a sequence of cry2Aa and cry2Ac gene driven by rice rbcS promoter was introduced into a rice cultivar, ASD16. Among 27 putative rice transformants, 20 plants were found to be positive for cry2AX1 gene. The expression of Cry2AX1 protein in transgenic rice plants ranged from 5.95 to 122.40 ng/g of fresh leaf tissue. Stable integration of the transgene was confirmed in putative transformants of rice by Southern blot hybridization analysis. Insect bioassay on T0 transgenic rice plants against rice leaffolder (Cnaphalocrosis medinalis) recorded larval mortality up to 83.33 %. Stable inheritance and expression of cry2AX1 gene in T1 progenies was demonstrated using Southern and ELISA. The detached leaf bit bioassay with selected T1 plants showed 83.33–90.00 % mortality against C. medinalis. The whole plant bioassay for T1 plants with rice leaffolder showed significant level of resistance even at a lower level of Cry2AX1 expression varying from 131 to 158 ng/g fresh leaf tissue during tillering stage.  相似文献   

10.
To develop salt tolerant rice, the P5CS gene of Vigna aconitifolia, encoding for proline synthesis, was introduced into the popular indica rice cultivar ADT 43. Agrobacterium tumefaciens strain LBA 4404 harboring the binary vector pCAMBIA 1301/P5CS, carrying the proline synthesis encoding gene P5CS, was co-cultivated with embryogenic callus of rice. Adding 100 μM acetosyringone to the Linsmaier and Skoog (LS) liquid and solid co-culture medium, along with 30 mg/l hygromycin and 250 mg/l timentin, contributed to significantly higher efficiency of transformation. Southern blot analysis of T1 independent transformants revealed that the copy number of transgene varied between one and three. When transgenic plants were subjected to salt stress, these plants grew well in the presence of up to 200 mM NaCl, while control plants died within 10 days under these treatment conditions. These transgenic plants grew under salt stress for a period of 4 weeks, and were capable of flowering and set seed. T1 plants segregated into 3:1 ratio suggesting Mendelian segregation pattern of inheritance of the P5CS transgene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号