首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
S-Nitrosylation is a post-translational modification on cysteine(s) that can regulate protein function, and pannexin 1 (Panx1) channels are present in the vasculature, a tissue rich in nitric oxide (NO) species. Therefore, we investigated whether Panx1 can be S-nitrosylated and whether this modification can affect channel activity. Using the biotin switch assay, we found that application of the NO donor S-nitrosoglutathione (GSNO) or diethylammonium (Z)-1–1(N,N-diethylamino)diazen-1-ium-1,2-diolate (DEA NONOate) to human embryonic kidney (HEK) 293T cells expressing wild type (WT) Panx1 and mouse aortic endothelial cells induced Panx1 S-nitrosylation. Functionally, GSNO and DEA NONOate attenuated Panx1 currents; consistent with a role for S-nitrosylation, current inhibition was reversed by the reducing agent dithiothreitol and unaffected by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one, a blocker of guanylate cyclase activity. In addition, ATP release was significantly inhibited by treatment with both NO donors. To identify which cysteine residue(s) was S-nitrosylated, we made single cysteine-to-alanine substitutions in Panx1 (Panx1C40A, Panx1C346A, and Panx1C426A). Mutation of these single cysteines did not prevent Panx1 S-nitrosylation; however, mutation of either Cys-40 or Cys-346 prevented Panx1 current inhibition and ATP release by GSNO. This observation suggested that multiple cysteines may be S-nitrosylated to regulate Panx1 channel function. Indeed, we found that mutation of both Cys-40 and Cys-346 (Panx1C40A/C346A) prevented Panx1 S-nitrosylation by GSNO as well as the GSNO-mediated inhibition of Panx1 current and ATP release. Taken together, these results indicate that S-nitrosylation of Panx1 at Cys-40 and Cys-346 inhibits Panx1 channel currents and ATP release.  相似文献   

2.
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1?/? mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1?/? mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.  相似文献   

3.
Death of murine T cells induced by extracellular ATP is mainly triggered by activation of purinergic P2X7 receptors (P2X7Rs). However, a link between P2X7Rs and pannexin1 (Panx1) channels, which are non-selective, has been recently demonstrated in other cell types. In this work, we characterized the expression and cellular distribution of pannexin family members (Panxs 1, 2 and 3) in isolated T cells. Panx1 was the main pannexin family member clearly detected in both helper (CD4+) and cytotoxic (CD8+) T cells, whereas low levels of Panx2 were found in both T-cell subsets. Using pharmacological and genetic approaches, Panx1 channels were found to mediate most ATP-induced ethidium uptake since this was drastically reduced by Panx1 channel blockers (10Panx1, Probenecid and low carbenoxolone concentration) and absent in T cells derived from Panx1−/− mice. Moreover, electrophysiological measurements in wild-type CD4+ cells treated with ATP unitary current events and pharmacological sensitivity compatible with Panx1 channels were found. In addition, ATP release from T cells treated with 4Br-A23187, a calcium ionophore, was completely blocked with inhibitors of both connexin hemichannels and Panx1 channels. Panx1 channel blockers drastically reduced the ATP-induced T-cell mortality, indicating that Panx1 channels mediate the ATP-induced T-cell death. However, mortality was not reduced in T cells of Panx1−/− mice, in which levels of P2X7Rs and ATP-induced intracellular free Ca2+ responses were enhanced suggesting that P2X7Rs take over Panx1 channels lose-function in mediating the onset of cell death induced by extracellular ATP.  相似文献   

4.
Mammalian taste cells of the type II release ATP, an afferent neurotransmitter, by employing unselective ATP-permeable ion channels. The molecular identity of these channels is not known with confidence, although evidence implicates certain channel proteins from the connexin and pannexin families as most likely candidates. Here we carried out the comparative analysis of biophysical features and pharmacological profiles of unselective channels operative in type II cells and recombinant pannexin 1 (Panx1), which was cloned from the taste tissue and heterologously expressed in eukaryotic cells of several lines, including HEK-293, CHO, and neuroblastoma SK-N-SH. Integral currents mediated by Panx1 hemichannels were recorded to elucidate their kinetics characteristics, such as activation and deactivation, voltage dependence, and sensitivity to a variety of blockers, including carbenoxolone, DIDS, and NPPB. It was shown that the heterologous expression of Panx1 in cells of each type induced specific conductance, which exhibited outward rectification and was effectively blockable with carbenoxolone and anionic channel blockers DIDS and NPPB. Panx1 activity was studied at the single channel level as well. As was found, transfection of HEK-293 cells with the plasmid harboring cDNA encoding Panx1 gave rise to single channel current-like events in excised patches that were inhibited by 20 μM carbenoxolone, the relatively specific blocker of Panx1. These carbenoxolone-sensitive channels were peculiar in that single-channel current versus membrane voltage was not linear but exhibited outward rectification. In addition, the open-channel probability strongly increased with membrane voltage. Taken together, the data obtained here and earlier demonstrate clearly that by their biophysical and pharmacological features, ATP-permeable channels operative in type II cells are rather distinct from recombinant Panx1 hemichannels, thus arguing against Panx1 as the main conduit of ATP release in taste cells.  相似文献   

5.
Pannexin1 (Panx1) is an ATP release channel important for controlling immune responses and synaptic strength. Various stimuli including C-terminal cleavage, a high concentration of extracellular potassium, and voltage have been demonstrated to activate Panx1. However, it remains unclear how Panx1 senses and integrates such diverse stimuli to form an open channel. To provide a clue on the mechanism underlying Panx1 channel gating, we investigated the action mechanism of carbenoxolone (CBX), the most commonly used small molecule for attenuating Panx1 function triggered by a wide range of stimuli. Using a chimeric approach, we discovered that CBX reverses its action polarity and potentiates the voltage-gated channel activity of Panx1 when W74 in the first extracellular loop is mutated to a nonaromatic residue. A systematic mutagenesis study revealed that conserved residues in this loop also play important roles in CBX function, potentially by mediating CBX binding. We extended our experiments to other Panx1 inhibitors such as probenecid and ATP, which also potentiate the voltage-gated channel activity of a Panx1 mutant at position 74. Notably, probenecid alone can activate this mutant at a resting membrane potential. These data suggest that CBX and other inhibitors, including probenecid, attenuate Panx1 channel activity through modulation of the first extracellular loop. Our experiments are the first step toward identifying a previously unknown mode of CBX action, which provide insight into the role of the first extracellular loop in Panx1 channel gating.  相似文献   

6.
Pannexin1 (Panx1), a protein related to the gap junction proteins of invertebrates, forms nonjunctional channels that open upon depolarization and in response to mechanical stretch and purinergic receptor stimulation. Importantly, ATP can be released through Panx1 channels, providing a possible role for these channels in non-vesicular signal transmission. In this study we expressed exogenous human and mouse Panx1 in the gap junction deficient Neuro2A neuroblastoma cell line and explored the contribution of Panx1 channels to cell–cell communication as sites of ATP release. Electrophysiological (patch clamp) recordings from Panx1 transfected Neuro2A cells revealed membrane conductance that increased beyond 0 mV when applying voltage ramps from −60 to +100 mV; threshold was correlated with extracellular K+, so that at 10 mM K+, channels began to open at −30 mV. Evaluation of cell–cell communication using dual whole cell recordings from cell pairs revealed that activation of Panx1 current in one cell of the pair induced an inward current in the second cell after a latency of 10–20 s. This paracrine response was amplified by an ATPase inhibitor (ARL67156, 100 μM) and was blocked by the ATP-degrading enzyme apyrase (6.7 U/ml), by the P2 receptor antagonist suramin (50 μM) and by the Panx1 channel blocker carbenoxolone. These results provide additional evidence that ATP release through Panx1 channels can mediate nonsynaptic bidirectional intercellular communication. Furthermore, current potentiation by elevated K+ provides a mechanism for enhancement of ATP release under pathological conditions.  相似文献   

7.
8.
The pannexin-1 (Panx1) channel (often referred to as the Panx1 hemichannel) is a large-conductance channel in the plasma membrane of many mammalian cells. While opening of the channel is potentially detrimental to the cell, little is known about how it is regulated under physiological conditions. Here we show that stomatin inhibited Panx1 channel activity. In transfected HEK-293 cells, stomatin reduced Panx1-mediated whole-cell currents without altering either the total or membrane surface Panx1 protein expression. Stomatin coimmunoprecipitated with full-length Panx1 as well as a Panx1 fragment containing the fourth membrane-spanning domain and the cytosolic carboxyl terminal. The inhibitory effect of stomatin on Panx1-mediated whole-cell currents was abolished by truncating Panx1 at a site in the cytosolic carboxyl terminal. In primary culture of mouse astrocytes, inhibition of endogenous stomatin expression by small interfering RNA enhanced Panx1-mediated outward whole-cell currents. These observations suggest that stomatin may play important roles in astrocytes and other cells by interacting with Panx1 carboxyl terminal to limit channel opening.  相似文献   

9.
Pancreatic beta cells act as glucose sensors, in which intracellular ATP ([ATP]i) are altered with glucose concentration change. The characterization of voltage-gated sodium channels under different [ATP]i remains unclear. Here, we demonstrated that increasing [ATP]i within a certain range of concentrations (2–8 mM) significantly enhanced the voltage-gated sodium channel currents, compared with 2 mM cytosolic ATP. This enhancement was attenuated by even high intracellular ATP (12 mM). Furthermore, elevated ATP modulated the sodium channel kinetics in a dose-dependent manner. Increased [ATP]i shifted both the current–voltage curve and the voltage-dependent inactivation curve of sodium channel to the right. Finally, the sodium channel recovery from inactivation was significantly faster when the intracellular ATP level was increased, especially in 8 mM [ATP]i, which is an attainable concentration by the high glucose stimulation. In summary, our data suggested that elevated cytosolic ATP enhanced the activity of Na+ channels, which may play essential roles in modulating β cell excitability and insulin release when blood glucose concentration increases.  相似文献   

10.
BackgroundThe ATP-sensitive K+ (K(ATP)) channel is found in a variety of tissues extending from the heart and vascular smooth muscles to the endocrine pancreas and brain. Common to all K(ATP) channels is the pore-forming subunit Kir6.x, a member of the family of small inwardly rectifying K+ channels, and the regulatory subunit sulfonylurea receptor (SURx). In insulin secreting β-cells in the endocrine part of the pancreas, where the channel is best studied, the K(ATP) channel consists of Kir6.2 and SUR1. Under physiological conditions, the K(ATP) channel current flow is outward at membrane potentials more positive than the K+ equilibrium potential around ?80 mV. However, K(ATP) channel kinetics have been extensively investigated for inward currents and the single-channel kinetic model is based on this type of recording, whereas only a limited amount of work has focused on outward current kinetics.MethodsWe have estimated the kinetic properties of both native and cloned K(ATP) channels under varying ionic gradients and membrane potentials using the patch-clamp technique.ResultsAnalyses of outward currents in K(ATP) and cloned Kir6.2ΔC26 channels, alone or co-expressed with SUR1, show openings that are not grouped in bursts as seen for inward currents. Burst duration for inward current corresponds well to open time for outward current.ConclusionsOutward K(ATP) channel currents are not grouped in bursts regardless of membrane potential, and channel open time for outward currents corresponds to burst duration for inward currents.  相似文献   

11.
Outward currents through inward rectifier Kir2.1 channels play crucial roles in controlling the electrical properties of excitable cells. Extracellular monovalent and divalent cations have been shown to reduce outward K+ conductance. In the present study, we examined whether spermine, with four positive charges, also inhibits outward Kir2.1 currents. We found that extracellular spermine inhibits steady-state outward Kir2.1 currents, an effect that increases as the voltage becomes more depolarizing, similar to that observed for intracellular spermine. However, several lines of evidence suggest that extracellular spermine does not inhibit outward currents by entering the cytoplasmic pore. Site-directed mutagenesis studies support that extracellular spermine directly interacts with the extracellular domain. In addition, we found that the voltage-dependent decay of outward Kir2.1 currents was necessary for inhibition by extracellular spermine. Further, a region at or near the selectivity filter and the cytoplasmic pore are involved in the voltage-dependent decay and thus in the inhibition of outward currents by extracellular spermine. Taken together, the data suggest that extracellular spermine bound to the mouth of the extracellular pore may induce an allosteric effect on voltage-dependent decay of outward currents, a process in which a region in the vicinity of the selectivity filter and cytoplasmic pore are involved. This study reveals that the extracellular pore domain, the selectivity filter and the cytoplasmic pore are in communication and this coupling is involved in modulating K+ conduction in the Kir2.1 channel.  相似文献   

12.
In cells of different types outward voltage-gated (VG) ion currents are generally carried by potassium ions. However, in mouse type II taste cells these currents persist when K+-selective ion channels are inhibited. In this study, we examined the ion channels that provide a pathway for atypical VG outward currents in type II taste cells. These channels are found to be weakly selective and permeabile to large molecules such as NMDG, gluconate, and ATP. According to non-stationary fluctuation analysis, single channel conductance is about 200 pS. The data obtained suggest that the nonselective ion channels are similar to hemichannels formed by connexins, the gap-junction proteins, in the plasma membrane of vertebrate cells.  相似文献   

13.
Electrocytes from the electric organ of Electrophorus electricus exhibited sodium action potentials that have been proposed to be repolarized by leak currents and not by outward voltage-gated potassium currents. However, patch-clamp recordings have suggested that electrocytes may contain a very low density of voltage-gated K+ channels. We report here the cloning of a K+ channel from an eel electric organ cDNA library, which, when expressed in mammalian tissue culture cells, displayed delayed-rectifier K+ channel characteristics. The amino-acid sequence of the eel K+ channel had the highest identity to Kv1.1 potassium channels. However, different important functional regions of eel Kv1.1 had higher amino-acid identity to other Kv1 members, for example, the eel Kv1.1 S4-S5 region was identical to Kv1.5 and Kv1.6. Northern blot analysis indicated that eel Kv1.1 mRNA was expressed at appreciable levels in the electric organ but it was not detected in eel brain, muscle, or cardiac tissue. Because electrocytes do not express robust outward voltage-gated potassium currents we speculate that eel Kv1.1 channels are chronically inhibited in the electric organ and may be functionally recruited by an unknown mechanism.  相似文献   

14.
Pannexins are a family of integral membrane proteins with distinct post-translational modifications, sub-cellular localization and tissue distribution. Panx1 is the most studied and best-characterized isoform of this gene family. The ubiquitous expression, as well as its function as a major ATP release and nucleotide permeation channel, makes Panx1 a primary candidate for participating in the pathophysiology of CNS disorders. While many investigations revolve around Panx1 functions in health and disease, more recently, details started emerging about mechanisms that control Panx1 channel activity. These advancements in Panx1 biology have revealed that beyond its classical role as an unopposed plasma membrane channel, it participates in alternative pathways involving multiple intracellular compartments, protein complexes and a myriad of extracellular participants. Here, we review recent progress in our understanding of Panx1 at the center of these pathways, highlighting its modulation in a context specific manner. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve  相似文献   

15.
A voltage-dependent but Ca2+-independent regulation of N-methyl-D-aspartate (NMDA) receptor outward activity was studied at the single channel level using outside-out patches of cultured mouse cortical neurons. Unlike the inward activity associated with Ca2+ and Na+ influx, the NMDA receptor outward K+ conductance was unaffected by changes in Ca2+ concentration. Following a depolarizing pre-pulse, the single channel open probability (NP o), amplitude, and open duration of the NMDA inward current decreased, whereas the same pre-depolarization increased those parameters of the NMDA outward current (pre-pulse facilitation). The outward NP o was increased by the pre-pulse facilitation, disregarding Ca2+ changes. The voltage–current relationships of the inward and outward currents were shifted by the pre-depolarization toward opposite directions. The Src family kinase inhibitor, PP1, and the Src kinase antibody, but not the anti-Fyn antibody, blocked the pre-pulse facilitation of the NMDA outward activity. On the other hand, a hyperpolarizing pre-pulse showed no effect on NMDA inward currents but inhibited outward currents (pre-pulse depression). Application of Src kinase, but not Fyn kinase, prevented the pre-pulse depression. We additionally showed that a depolarization pre-pulse potentiated miniature excitatory synaptic currents (mEPSCs). The effect was blocked by application of the NMDA receptor antagonist AP-5 during depolarization. These data suggest a voltage-sensitive regulation of NMDA receptor channels mediated by Src kinase. The selective changes in the NMDA receptor-mediated K+ efflux may represent a physiological and pathophysiological plasticity at the receptor level in response to dynamic changes in the membrane potential of central neurons.  相似文献   

16.
Pannexin1 (Panx1) is a plasma membrane channel permeable to relatively large molecules, such as ATP. In the central nervous system (CNS) Panx1 is found in neurons and glia and in the immune system in macrophages and T-cells. We tested the hypothesis that Panx1-mediated ATP release contributes to expression of Experimental Autoimmune Encephalomyelitis (EAE), an animal model for multiple sclerosis, using wild-type (WT) and Panx1 knockout (KO) mice. Panx1 KO mice displayed a delayed onset of clinical signs of EAE and decreased mortality compared to WT mice, but developed as severe symptoms as the surviving WT mice. Spinal cord inflammatory lesions were also reduced in Panx1 KO EAE mice during acute disease. Additionally, pharmacologic inhibition of Panx1 channels with mefloquine (MFQ) reduced severity of acute and chronic EAE when administered before or after onset of clinical signs. ATP release and YoPro uptake were significantly increased in WT mice with EAE as compared to WT non-EAE and reduced in tissues of EAE Panx1 KO mice. Interestingly, we found that the P2X7 receptor was upregulated in the chronic phase of EAE in both WT and Panx1 KO spinal cords. Such increase in receptor expression is likely to counterbalance the decrease in ATP release recorded from Panx1 KO mice and thus contribute to the development of EAE symptoms in these mice. The present study shows that a Panx1 dependent mechanism (ATP release and/or inflammasome activation) contributes to disease progression, and that inhibition of Panx1 using pharmacology or gene disruption delays and attenuates clinical signs of EAE.  相似文献   

17.
We studied the effect of carbachol on pacemaker currents in cultured interstitial cells of Cajal (ICC) from the mouse small intestine by muscarinic stimulation using a whole cell patch clamp technique and Ca2+-imaging. ICC generated periodic pacemaker potentials in the current-clamp mode and generated spontaneous inward pacemaker currents at a holding potential of–70 mV. Exposure to carbachol depolarized the membrane and produced tonic inward pacemaker currents with a decrease in the frequency and amplitude of the pacemaker currents. The effects of carbachol were blocked by 1-dimethyl-4-diphenylacetoxypiperidinium, a muscarinic M3 receptor antagonist, but not by methotramine, a muscarinic M2 receptor antagonist. Intracellular GDP-β-S suppressed the carbachol-induced effects. Carbachol-induced effects were blocked by external Na+-free solution and by flufenamic acid, a non-selective cation channel blocker, and in the presence of thapsigargin, a Ca2+-ATPase inhibitor in the endoplasmic reticulum. However, carbachol still produced tonic inward pacemaker currents with the removal of external Ca2+. In recording of intracellular Ca2+ concentrations using fluo 3-AM dye, carbachol increased intracellular Ca2+ concentrations with increasing of Ca2+ oscillations. These results suggest that carbachol modulates the pacemaker activity of ICC through the activation of non-selective cation channels via muscarinic M3 receptors by a G-protein dependent intracellular Ca2+ release mechanism.  相似文献   

18.
Pannexin 1 (Panx1) channels are generally represented as non-selective, large-pore channels that release ATP. Emerging roles have been described for Panx1 in mediating purinergic signaling in the normal nervous, cardiovascular, and immune systems, where they may be activated by mechanical stress, ionotropic and metabotropic receptor signaling, and via proteolytic cleavage of the Panx1 C-terminus. Panx1 channels are widely expressed in various cell types, and it is now thought that targeting these channels therapeutically may be beneficial in a number of pathophysiological contexts, such as asthma, atherosclerosis, hypertension, and ischemic-induced seizures. Even as interest in Panx1 channels is burgeoning, some of their basic properties, mechanisms of modulation, and proposed functions remain controversial, with recent reports challenging some long-held views regarding Panx1 channels. In this brief review, we summarize some well-established features of Panx1 channels; we then address some current confounding issues surrounding Panx1 channels, especially with respect to intrinsic channel properties, in order to raise awareness of these unsettled issues for future research.  相似文献   

19.
Properties of "creep currents" in single frog atrial cells   总被引:6,自引:5,他引:1  
Changes in membrane current in response to an elevation of [Na]i were studied in enzymatically dispersed frog atrial cells. Na loading by either intracellular dialysis or exposure to the Na ionophore monensin produces changes in membrane current that resemble the "creep currents" originally observed in cardiac Purkinje fibers during exposure to low-K solutions. Na loading induces a transient outward current during depolarizing voltage-clamp pulses, followed by an inward current in response to repolarization back to the holding potential. In contrast to cardiac Purkinje fibers, Na loading of frog atrial cells induces creep currents without accompanying transient inward currents. Creep currents induced by Na loading are insensitive to K channel antagonists like Cs and 4-aminopyridine; they are not influenced by doses of Ca channel antagonists that abolish iCa, but are sensitive to changes in [Ca]o or [Na]o. A comparison of the time course of development of inward creep currents are not tail currents associated with iCa. Inward creep currents can also be induced by experimental interventions that increase the iCa amplitude. Exposure to isoproterenol enhances the iCa amplitude and induces inward creep currents; both can be attenuated by Ca channel antagonists. Both inward and outward creep currents are blocked by low doses of La, independently of La's ability to block iCa. It is concluded that (a) creep currents are not mediated by voltage-gated Na, Ca, or K channels or by an electrogenic Na,K pump; (b) inward creep currents induced either by Na loading or in response to an increase in the amplitude of iCa are triggered by an elevation of [Ca]i; and (c) creep currents may be generated by either an electrogenic Na/Ca exchange mechanism or by a nonselective cation channel activated by [Ca]i.  相似文献   

20.
《FEBS letters》2014,588(8):1411-1415
The large-pore channels formed by the pannexin family of proteins have been implicated in many physiological and pathophysiological functions, mainly through their ATP release function. However, a tight regulation of channel opening is necessary to modulate their function in vivo. Post-translational modifications have been postulated as some of the regulating mechanisms for Panx1, while Panx2 and Panx3 have not been as well characterized. Positive regulators include caspase cleavage to open Panx1 channels in apoptotic cells, and activation by Src family kinases via ionotropic receptors in neurons and macrophages. S-nitrosylation of cysteines has been shown to both inhibit and activate the Panx1 channel in different cell types. All three pannexins are N-glycosylated but to different levels of modification. Their diverse glycosylation appears to regulate cellular localization, intermixing, and may restrict their ability to function as inter-cellular channels. It is clear that our understanding of pannexin post-translational modification and their role in channel function regulation is still in its infancy even a decade after their discovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号