首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 65 毫秒
1.
耳蜗电图慢波电位   总被引:3,自引:0,他引:3  
采用同极双道同步记录法对比观察了豚鼠耳蜗电图慢波电位和快波电位的波形;测量了慢波电位的潜伏期、波幅和阈值;并与快波电位的阈值进行了比较。结果表明,慢波电位不但对高频声音反应好,而且对低频声音反应也很好,反应闽都在OdBnHL以下,因而弥补了快波电位对低频声音反应闽值高的缺陷,解决了耳蜗电图低频检测的难题。作者认为,慢波电位主要来源于听神经动作电位的慢成分,其次是听觉脑干诸核团的慢成分。慢波电位是反映频率和强度特性的理想指标,在科研及临床实践中应用将是很有前途的。  相似文献   

2.
听觉早潜伏期电位同步记录法研究   总被引:1,自引:0,他引:1  
听觉脑干电位(BAEP)和耳蜗电图(EcochG)是从头部不同位置记录出来的听觉早潜伏期电位。听觉早潜伏期电位由快波电位(快成分)和慢波电位(慢成分)组成。BAEP由快波电位(FW-BAEP)和慢波电位(SW BAEP)组成,是从颅顶记录  相似文献   

3.
(一)用一个10% K_4Fe(CN)_6灌注的玻璃微电极記录了大蠊复眼及視叶不同深度部位对光刺激的电反应。这个电极是从对侧复眼插入的,它同时又与另外一个固定的角膜下电极作为辨差引导。对某些深度的电反应曾加以分析。 (二)电极接触基底膜时,无例外地产生一种振动电位;根据基底膜的位置卽可准确地断定复眼及視叶其他結构的位置。对复眼和视叶的結构曾簡单地加以描述。 (三)用小光点(直徑150μ)、光环(內徑150μ,外徑約1mm)和圓形光(直徑約1mm)刺激,檢查了視网膜电图的相加性和波形是否因刺激形状的不同而有所改变。結果表明,大蠊复眼視网膜电图是完全可以相加的,单相引导出的电位的形状与刺激光的形状无关。沒有証据指示在昆虫复眼有相当于脊椎动物的局部視网膜电图的存在。 (四)大蠊視网膜电图为一純负波,在这个负波里,可区別两个成分,N_1和N_2,它們在整个小网膜細胞层都可以不衰减地被記录出来;在基底膜紧下,主要只記录到N_2。視叶的外髓层也有一个正向电位反应,但它的电場不到达复眼。 (五)漸次增强明适应,N_1比N_2更快被压抑。 (六)对于大蠊視网膜电图某些部分的起源以及与其他某些昆虫的不同,本文曾加以讨論。  相似文献   

4.
豚鼠耳蜗电图慢成分的研究   总被引:2,自引:0,他引:2  
选用0.8-150Hz的带通滤波,从豚鼠圆窗记录出一负一正相慢电位.实验结果表明.其对0.5kHz短音的反应阈为729dB nHL.较耳蜗电图快成分低38.27dB nHL.通过离断听觉传导径路不同水平对该电位的观察,表明它是毛细胞及听神经电反应的慢成分.而且可能受听觉传出神经的调控.  相似文献   

5.
本文介绍用外耳道慢性电极植入法可以在较长时间内记录到清醒豚鼠的耳蜗电位(CAP和CM)。正常豚鼠的CAP(N_1)最大振幅平均达70—80μV。CAP(N_1)的潜伏期、阈值和最大振幅在4个月内均较稳定。因此用此法能远期观察清醒豚鼠耳蜗听功能的变化。  相似文献   

6.
康健  魏保龄 《生理学报》1986,38(3):259-265
在33例猫将普鲁卡因或海人酸微量注入耳蜗核(CN)和上橄榄复合体(SOC)内,观察ABR的相应改变,以分析P_(2a)和P_(2b)波的来源。猫P_(2a)波的出现率与电极导联有关,颅顶-颈后为90%,颅顶-乳突仅为18%。普普卡因注入CN后,同侧耳短声诱发的ABR仅保留P_1波,对侧耳的则无改变。海人酸注入CN后,P_1和P_(2a)存留,P_(2a)不减小反而增大。普鲁卡因注入双侧SOC,可使P_3、P_4和P_5消失。这些结果提示,P_(2a)波主要起源于CN区域内的第一级听觉传入神经元轴突并受第二级神经元负电位的影响,P_(2b)波主要起源于SOC以下的第二级听觉传入神经元,猫的P_(2a)和P_(2a)波与对侧脑干结构无关。  相似文献   

7.
本文对豚鼠噪声暴露后的耳蜗电图功率谱进行了分析,实验表明:噪声组豚鼠耳蜗电图功率谱150~300Hz频段能量较正常组有明显增长;500~850Hz和850~1400Hz频段能量不集中(表2).另外,噪声组耳蜗电图功率谱与标准型的相关度比正常组与标准型的相关度差(P<0.01).  相似文献   

8.
本工作用全视野闪光刺激器结合微处理机平均技术对人视网膜电图(ERG)进行了记录和分析。正常人的 ERG 主要由 a 波、b 波和振荡电位组成。正常人的振荡电位的峰值时间及其间隔相当恒定,但在糖尿病性视网膜病和视神经萎缩病人,振荡电位减小或消失。本文对这种改变的可能原因进行了讨论。  相似文献   

9.
本实验观察115dB(SPL)白噪声暴露20min对豚鼠耳蜗直流电位(EP),复合听神经动作电位(CAP),微音器电位(CM)的影响。发现此种噪声暴露确可提高源于血管纹的正EP(P-EP),说明有血管纹功能的代偿性增强;而负EP(N-EP)变化不大。AP及CM输入-输出函数的变化说明噪声首先影响外毛细胞的主动运动功能。EP与耳蜗电图的对照分析表明,血管纹功能的改变确能影响噪声性听损伤的发展。  相似文献   

10.
本文通过20例听力正常人和10例听力正常豚鼠研究了白噪声对耳蜗电图(ECochG)和听觉脑干电反应(ABR)的干涉作用。实验结果表明,白噪声比短声(信号)的声强级低30dB(SL)以上时,ECochG和ABR的振幅仅轻微减小。白噪声与短声的声强级相等时,ECochG与ABR的振幅和出现率会明显受到干涉而减小,甚至完全消失。但是,此时的耳蜗微音器电位(CM)并未观察到有明显的变化。这意味着白噪声对ECochG和ABR的干涉作用主要与围绕毛细胞基底部的突触产生的抑制密切相关。由于白噪声对ABR各波的干涉有些差异,所以认为这种抑制,可能既包括脑中抑制也包括侧方抑制。  相似文献   

11.
The maturation of the morphological substrate for inhibitory interactions was investigated in the cochlear nucleus of the gerbil with immunocytochemistry for gamma aminobutyric acid (GABA) and glycine on alternating vibratome sections. The patterns of immunostaining obtained with both antibodies in the adult closely conformed to the general mammalian scheme. Qualitative analyses revealed an age-related increase in staining intensity and in the relative numbers of immunolabelled cells after birth up to the age of 3–4 weeks. As early as birth and in all subdivisions of the cochlear nucleus, a few labelled cells and puncta in the sections were stained either with the GABA or the glycine antibody. Immunoreactive puncta and cells were, however, far less abundant than in the adult, and the staining intensity of cells was only weak. The most strikingly GABA-immunolabelled cells at birth were the Golgi cells of the granule-cell domains. The numbers of weakly GABA- and glycine-immunostained cells of the dorsal cochlear nucleus clearly increased between birth and the third postnatal week. At approximately the onset of hearing (postnatal day 12–14), some cells of the dorsal cochlear nucleus and small cells of the ventral cochlear nucleus gained adult-like GABA-staining properties. Almost adult-like labelling intensity was observed in glycine-immunoreactive cells of the deep dorsal cochlear nucleus and in some small cells of the ventral cochlear nucleus. Puncta staining to both antibodies appeared adult-like throughout the cochlear nucleus. About 2 weeks after the onset of hearing (at the latest), adult-like staining of all subsets of immunoreactive cells occurred throughout the cochlear nucleus in all specimens. Received: 25 March 1997 / Accepted: 15 March 1998  相似文献   

12.
Abstract: This study attempts to determine if γ-aminobutyric acid (GABA) may be a transmitter of cochlear nerve fibers projecting from the cochlea to the cochlear nucleus, and of centrifugal fibers projecting to the cochlear nucleus via the trapezoid body and the acoustic striae of the medulla. The uptake and the electrically evoked release of exogenous [14C]GABA were measured, in vitro, in the three major subdivisions of the guinea pig cochlear nucleus: the anteroventral, posteroventral, and dorsal cochlear nuclei. These activities were compared using unlesioned animals, animals with bilateral cochlear ablations, and animals whose trapezoid body and acoustic striae were interrupted on the right side of the medulla. Subdivisions from unlesioned animals took up [14C]GABA, achieving concentrations in the tissues that were 11–19 times that in the medium. Electrical stimulation evoked a Ca2+-dependent release of [14C]GABA from each subdivision. Bilateral cochlear ablation, which presumably destroyed the cochlear nerve fibers, had no effect on [14C]GABA uptake and release. Section of the trapezoid body and the acoustic striae on the right side of the medulla typically severed all known connections of the right posteroventral and dorsal cochlear nuclei with the rest of the brain, but left intact many connections involved with the right anteroventral cochlear nucleus. This lesion partially depressed [14C]GABA uptake and release in the right posteroventral and dorsal cochlear nuclei, but not in the right anteroventral cochlear nucleus. These findings suggest that one or more of the centrifugal tracts projecting to the cochlear nucleus may be GABAergic, 88% or more of the cochlear nerve fibers probably are not GABAergic, and some neurons of the cochlear nucleus are probably GABAergic.  相似文献   

13.
Uptake and Release of D-Aspartate in the Guinea Pig Cochlear Nucleus   总被引:7,自引:6,他引:1  
Abstract: This study attempted to determine if l -glutamate (L-Glu) and/or l -aspartate (L-Asp) might be the transmitters of neurons that provide synaptic endings to the cochlear nucleus of the medulla. The uptake and release of D-[3H]aspartate (D-Asp), a putative marker for l -Glu and l -Asp, were measured in the guinea pig cochlear nucleus before and after destruction of the cochlear afferents by cochlear ablation. The cochlear nucleus was dissected into the anteroventral (AVCN), posteroventral (PVCN), and dorsal (DCN) cochlear nuclei. Subdivisions from unlesioned animals took up D-Asp, achieving concentrations in the tissues that were 13–20 times that in the medium. Subsequently, electrical stimulation evoked a Ca2+-dependent release of part of the D-Asp from each subdivision. Disarticulation of the middle ear ossicles, which attenuates acoustic stimulation, produced a modest inhibition of D-Asp release in each subdivision, but did not alter the uptake of D-Asp. Cochlear ablation strongly depressed both the uptake and the release of D-Asp in each subdivision, presumably as a result of destruction of the cochlear nerve endings in the cochlear nucleus. Nevertheless, after lesions, there was a preservation of the uptake and release of D-Asp in the DCN relative to the AVCN and PVCN. These residual activities in the DCN may be mediated by the axonal endings of the granule cells of the cochlear nucleus. The present findings support the hypothesis that the granule cells of the cochlear nucleus, as well as the cochlear nerve fibers, use l -Glu and/or l -Asp as transmitters.  相似文献   

14.
Liu X  Yan Y  Wang Y  Yan J 《PloS one》2010,5(11):e14038

Background

Cortical neurons implement a high frequency-specific modulation of subcortical nuclei that includes the cochlear nucleus. Anatomical studies show that corticofugal fibers terminating in the auditory thalamus and midbrain are mostly ipsilateral. Differently, corticofugal fibers terminating in the cochlear nucleus are bilateral, which fits to the needs of binaural hearing that improves hearing quality. This leads to our hypothesis that corticofugal modulation of initial neural processing of sound information from the contralateral and ipsilateral ears could be equivalent or coordinated at the first sound processing level.

Methodology/Principal Findings

With the focal electrical stimulation of the auditory cortex and single unit recording, this study examined corticofugal modulation of the ipsilateral cochlear nucleus. The same methods and procedures as described in our previous study of corticofugal modulation of contralateral cochlear nucleus were employed simply for comparison. We found that focal electrical stimulation of cortical neurons induced substantial changes in the response magnitude, response latency and receptive field of ipsilateral cochlear nucleus neurons. Cortical stimulation facilitated auditory response and shortened the response latency of physiologically matched neurons whereas it inhibited auditory response and lengthened the response latency of unmatched neurons. Finally, cortical stimulation shifted the best frequencies of cochlear neurons towards those of stimulated cortical neurons.

Conclusion

Our data suggest that cortical neurons enable a high frequency-specific remodelling of sound information processing in the ipsilateral cochlear nucleus in the same manner as that in the contralateral cochlear nucleus.  相似文献   

15.
The specific-binding properties of l-[3H]quinuclidinyl benzilate, a muscarinic acetylcholine-receptor antagonist, were investigated in synaptic and other membrane preparations of the guinea pig cochlear nucleus and auditory nerve. Binding parameters for all experiments were consistent with a single binding site with a Hill coefficient of 1.0. The binding of the ligand was specific and of high affinity, with values of KD in the range of 30-80 pM. Bmax was 0.352 +/- 0.023 pmol/mg protein for the dorsal cochlear nucleus and 0.215 +/- 0.011 pmol/mg protein for the ventral cochlear nucleus. The dorsal cochlear nucleus/ventral cochlear nucleus ratio for density of muscarinic receptors (1.6/1.0) was maintained across two different buffer systems, which varied with respect to the inclusion of proteolysis inhibitors. The results for auditory nerve indicated a level of binding much below that of the cochlear nucleus, with Bmax = 0.052 +/- 0.011 pmol/mg protein. The results of specific-binding experiments for l-[3H]quinuclidinyl benzilate support a role for acetylcholine as a neurotransmitter in the cochlear nucleus. The greater density of muscarinic receptors in the dorsal cochlear nucleus may indicate greater cholinergic activity in the dorsal relative to the ventral cochlear nucleus.  相似文献   

16.
The possible existence of GABA-transmitter neurons in the lower auditory system of the guinea pig has been investigated by means of three different experimental approaches: (1) the regional distribution of GABA and its related enzymes, (2) the subcellular distribution of glutamate decarboxylase, and (3) the effect of selected nerve lesions on glutamate decarboxylase concentrations in the auditory nuclei. Within the regions investigated considerable variations in glutamate decarboxylase activity and GABA concentration were found, with the highest values observed in the inferior colliculus. The dorsal cochlear nucleus also contained significant amounts of both glutamate decarboxylase and GABA, in addition to high concentrations of GABA transaminase. The subcellular distribution of glutamate decarboxylase was bimodal in both the cochlear nucleus and inferior colliculus with most enzyme activity recovered in the soluble and synaptosomal fractions. Neither end organ (cochlea) nor trapezoid body lesions induced a significant loss of glutamate decarboxylase activity in either the cochlear nucleus or inferior colliculus. The results suggest the presence of short axon GABAergic interneurons in the cochlear nucleus, most of which appear to terminate within the dorsal cochlear nucleus.  相似文献   

17.
The tuberculo-ventral tract represents a short nervous circuit within the auditory cochlear nuclei. Tuberculo-ventral neurons of the dorsal cochlear nucleus send isofrequency inhibitory inputs to bushy cells of the ventral cochlear nucleus. Injection of wheat germ agglutinin conjugated to horseradish peroxidase into the rat ventral cochlear nucleus, labelled tuberculo-ventral neurons retrogradely in the deep polymorphic layer of the ipsilateral dorsal cochlear nucleus. Five to 20% of the perimeter of these cells was covered by synaptic boutons, most of which contained flat and pleomorphic vesicles. These boutons contained glycine and sometimes GABA. Occasional small axo-somatic boutons contained round vesicles and were immunonegative for both glycine and GABA. This study shows that the synaptic profile of tuberculo-ventral neurons is different from that of other medium-size glycinergic neurons within the polymorphic layer or more superficial regions of the dorsal cochlear nucleus like cartwheel neurons. In fact the latter mostly receive boutons that contain pleomorphic vesicles.  相似文献   

18.
To determine the level at which certain response characteristics originate, we compared monaural auditory responses of neurons in ventral cochlear nucleus, nuclei of lateral lemniscus and inferior colliculus. Characteristics examined were sharpness of frequency tuning, latency variability for individual neurons and range of latencies across neurons.Exceptionally broad tuning curves were found in the nuclei of the lateral lemniscus, while exceptionally narrow tuning curves were found in the inferior colliculus. Neither specialized tuning characteristic was found in the ventral cochlear nuclei.All neurons in the columnar division of the ventral nucleus of the lateral lemniscus maintained low variability of latency over a broad range of stimulus conditions. Some neurons in the cochlear nucleus (12%) and some in the inferior colliculus (15%) had low variability in latency but only at best frequency.Range of latencies across neurons was small in the ventral cochlear nucleus (1.3–5.7 ms), intermediate in the nuclei of the lateral lemniscus (1.7–19.8 ms) and greatest in the inferior colliculus (2.9–42.0 ms).We conclude that, in the nuclei of the lateral lemniscus and in the inferior colliculus, unique tuning and timing properties are built up from ascending inputs.Abbreviations AVCN anteroventral cochlear nucleus - BF best frequency - CV coefficient of variation - DCN dorsal cochlear nucleus - FM frequency modulation - IC inferior colliculus - NLL nuclei of lateral lemniscus - PSTH post stimulus time histogram - PVCN posteroventral cochlear nucleus - SD standard deviation - SPL sound pressure level - VCN ventral cochlear nuclei - VNLLc ventral nucleus of the lateral lemniscus, columnar division  相似文献   

19.
Dolphins have developed a specialized system for sound reception. Their pinnae are reduced and shifted under the skin, and sound is transduced via the lower jaw to the auditory ossicles. In line with their auditory functions (notably echolocation), most auditory nuclei in the brain stem of dolphins are extremely well‐developed. In contrast, the dorsal cochlear nucleus is drastically reduced. In the La Plata dolphin the volume of the dorsal cochlear nucleus is 4 mm3, while that of the ventral cochlear nucleus is 98 mm3. The reduction in size of the dorsal cochlear nucleus is also seen in baleen whales, which do not echolocate and are, in contrast to dolphins, tuned to deep frequencies. However, dolphins and baleen whales have the reduction of the outer ear in common. In humans, cats, bats and seals, there is a correlation between the development of pinnae and the dorsal cochlear nucleus. So, we conclude that the function of the dorsal cochlear nucleus in mammals could be to eliminate “auditory artifacts”; arising from the operation of the pinnae.  相似文献   

20.
The human cochlear nuclei are composed of a ventral and a dorsal nucleus which are similar, though not identical, in their cytoarchitecture to those of other mammals. The ventral cochlear nucleus (VCN) consists of a rostral area of spherical cells, a central area of multipolar and globular cells, a posterior area of octopus cells, and laterodorsal cap of small neurons. The interareal boundaries are less distinct in man than in the cat. The central region of multipolar cells and the cap area of small cells constitute the bulk of the human VCN. The spherical, globular, and octopus cells appear relatively less numerous in man than in other mammals. The dorsal cochlear nucleus (DCN) in man is relatively large, but lacks the typical stratification seen in other mammals, with only vestiges of the granular and molecular layers remaining. Virtually the entire DCN consists of an area of cochlear fiber neuropil containing pyramidal cells, small neurons, and occasional giant cells. The pyramidal cells have lost their typical radial orientation and lie scattered within the cochlear neuropil. Thus the entire human DCN may be equivalent to layers 2 and 3 of this nucleus in other mammals. In spite of the relatively large DCN, the acoustic striae appear small. This is in contrast to the large trapezoid body leaving the VCN. Intrinsic and descending fiber pathways to the cochlear nuclei are not clearly defined and may be less prominent in man than in the cat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号