首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clumping factor A (ClfA) is a cell surface-associated protein of Staphylococcus aureus that promotes binding of this pathogen to both soluble and immobilized fibrinogen (Fg). Previous studies have localized the Fg-binding activity of ClfA to residues 221-559 within the A region of this protein. In addition, the C-terminal part of the A region (residues 484-550) has been implicated as being important for Fg binding. In this study, we further investigate the involvement of this part of ClfA in the interaction of this protein with Fg. Polyclonal antibodies generated against a recombinant protein encompassing residues 500-559 of the A region inhibited the interaction of both S. aureus and recombinant ClfA with immobilized Fg in a dose-dependent manner. Using site-directed mutagenesis, two adjacent residues, Glu(526) and Val(527), were identified as being important for the activity of ClfA. S. aureus expressing ClfA containing either the E526A or V527S substitution exhibited a reduced ability to bind to soluble Fg and to adhere to immobilized Fg. Furthermore, bacteria expressing ClfA containing both substitutions were almost completely defective in Fg binding. The E526A and V527S substitutions were also introduced into recombinant ClfA (rClfA-(221-559)) expressed in Escherichia coli. The single mutant rClfA-(221-559) proteins showed a significant reduction in affinity for both immobilized Fg and a synthetic fluorescein-labeled C-terminal gamma-chain peptide compared with the wild-type protein, whereas the double mutant rClfA-(221-559) protein was almost completely defective in binding to either species. Substitution of Glu(526) and/or Val(527) did not appear to alter the secondary structure of rClfA-(221-559) as determined by far-UV circular dichroism spectroscopy. These data suggest that the C terminus of the A region may contain at least part of the Fg-binding site of ClfA and that Glu(526) and Val(527) may be involved in ligand recognition.  相似文献   

2.
Staphylococcus aureus (S. aureus) pathogenesis is a complex process involving a diverse array of extracellular and cell wall components. ClfB, an MSCRAMM (Microbial Surface Components Recognizing Adhesive Matrix Molecules) family surface protein, described as a fibrinogen-binding clumping factor, is a key determinant of S. aureus nasal colonization, but the molecular basis for ClfB-ligand recognition remains unknown. In this study, we solved the crystal structures of apo-ClfB and its complexes with fibrinogen α (Fg α) and cytokeratin 10 (CK10) peptides. Structural comparison revealed a conserved glycine-serine-rich (GSR) ClfB binding motif (GSSGXGXXG) within the ligands, which was also found in other human proteins such as Engrailed protein, TCF20 and Dermokine proteins. Interaction between Dermokine and ClfB was confirmed by subsequent binding assays. The crystal structure of ClfB complexed with a 15-residue peptide derived from Dermokine revealed the same peptide binding mode of ClfB as identified in the crystal structures of ClfB-Fg α and ClfB-CK10. The results presented here highlight the multi-ligand binding property of ClfB, which is very distinct from other characterized MSCRAMMs to-date. The adherence of multiple peptides carrying the GSR motif into the same pocket in ClfB is reminiscent of MHC molecules. Our results provide a template for the identification of other molecules targeted by S. aureus during its colonization and infection. We propose that other MSCRAMMs like ClfA and SdrG also possess multi-ligand binding properties.  相似文献   

3.
Many pathogenic Gram-positive bacteria produce cell wall-anchored proteins that bind to components of the extracellular matrix (ECM) of the host. These bacterial MSCRAMMs (microbial surface components recognizing adhesive matrix molecules) are thought to play a critical role in infection. One group of MSCRAMMs, produced by staphylococci and streptococci, targets fibronectin (Fn, a glycoprotein found in the ECM and body fluids of vertebrates) using repeats in the C-terminal region of the bacterial protein. These bacterial Fn-binding proteins (FnBPs) mediate adhesion to host tissue and bacterial uptake into non-phagocytic host cells. Recent studies on interactions between the host and bacterial proteins at the residue-specific level and on the mechanism of host cell invasion are providing a much clearer picture of these processes.  相似文献   

4.
The fibrinogen (Fg) binding MSCRAMM Clumping factor A (ClfA) from Staphylococcus aureus interacts with the C-terminal region of the fibrinogen (Fg) γ-chain. ClfA is the major virulence factor responsible for the observed clumping of S. aureus in blood plasma and has been implicated as a virulence factor in a mouse model of septic arthritis and in rabbit and rat models of infective endocarditis. We report here a high-resolution crystal structure of the ClfA ligand binding segment in complex with a synthetic peptide mimicking the binding site in Fg. The residues in Fg required for binding to ClfA are identified from this structure and from complementing biochemical studies. Furthermore, the platelet integrin αIIbβ3 and ClfA bind to the same segment in the Fg γ-chain but the two cellular binding proteins recognize different residues in the common targeted Fg segment. Based on these differences, we have identified peptides that selectively antagonize the ClfA-Fg interaction. The ClfA-Fg binding mechanism is a variant of the “Dock, Lock and Latch” mechanism previously described for the Staphylococcus epidermidis SdrG–Fg interaction. The structural insights gained from analyzing the ClfANFg peptide complex and identifications of peptides that selectively recognize ClfA but not αIIbβ3 may allow the design of novel anti-staphylococcal agents. Our results also suggest that different MSCRAMMs with similar structural organization may have originated from a common ancestor but have evolved to accommodate specific ligand structures.  相似文献   

5.
The adjacent fibrinogen (Fg)- and fibronectin (Fn)-binding sites on Fn-binding protein A (FnBPA), a cell surface protein from Staphylococcus aureus, are implicated in the initiation and persistence of infection. FnBPA contains a single Fg-binding site (that also binds elastin) and multiple Fn-binding sites. Here, we solved the structure of the N2N3 domains containing the Fg-binding site of FnBPA in the apo form and in complex with a Fg peptide. The Fg binding mechanism is similar to that of homologous bacterial proteins but without the requirement for “latch” strand residues. We show that the Fg-binding sites and the most N-terminal Fn-binding sites are nonoverlapping but in close proximity. Although Fg and a subdomain of Fn can form a ternary complex on an FnBPA protein construct containing a Fg-binding site and single Fn-binding site, binding of intact Fn appears to inhibit Fg binding, suggesting steric regulation. Given the concentrations of Fn and Fg in the plasma, this mechanism might result in targeting of S. aureus to fibrin-rich thrombi or elastin-rich tissues.  相似文献   

6.
Clumping factor B (ClfB) from Staphylococcus aureus is a bifunctional protein that binds to human cytokeratin 10 (K10) and fibrinogen (Fg). ClfB has been implicated in S. aureus colonization of nasal epithelium and is therefore a key virulence factor. People colonized with S. aureus are at an increased risk for invasive staphylococcal disease. In this study, we have determined the crystal structures of the ligand-binding region of ClfB in an apo-form and in complex with human K10 and Fg α-chain-derived peptides, respectively. We have determined the structures of MSCRAMM binding to two ligands with different sequences in the same site showing the versatile nature of the ligand recognition mode of microbial surface components recognizing adhesive matrix molecules. Both ligands bind ClfB by parallel β-sheet complementation as observed for the clumping factor A·γ-chain peptide complex. The β-sheet complementation is shorter in the ClfB·Fg α-chain peptide complex. The structures show that several residues in ClfB are important for binding to both ligands, whereas others only make contact with one of the ligands. A common motif GSSGXG found in both ligands is part of the ClfB-binding site. This motif is found in many human proteins thus raising the possibility that ClfB recognizes additional ligands.  相似文献   

7.
Microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) are bacterial surface proteins mediating adherence of the microbes to components of the extracellular matrix of the host. On Staphylococci, the MSCRAMMs often have multiple ligands. Consequently, we hypothesized that the Staphylococcus aureus MSCRAMM bone sialoprotein-binding protein (Bbp) might recognize host molecules other than the identified bone protein. A ligand screen revealed that Bbp binds human fibrinogen (Fg) but not Fg from other mammals. We have characterized the interaction between Bbp and Fg. The binding site for Bbp was mapped to residues 561-575 in the Fg Aα chain using recombinant Fg chains and truncation mutants in Far Western blots and solid-phase binding assays. Surface plasmon resonance was used to determine the affinity of Bbp for Fg. The interaction of Bbp with Fg peptides corresponding to the mapped residues was further characterized using isothermal titration calorimetry. In addition, Bbp expressed on the surface of bacteria mediated adherence to immobilized Fg Aα. Also, Bbp interferes with thrombin-induced Fg coagulation. Together these data demonstrate that human Fg is a ligand for Bbp and that Bbp can manipulate the biology of the Fg ligand in the host.  相似文献   

8.
The primary habitat of Staphylococcus aureus in humans is the moist squamous epithelium of the anterior nares. We showed previously that S. aureus adheres to desquamated epithelial cells and that clumping factor B (ClfB), a surface-located MSCRAMM (microbial surface components recognizing adhesive matrix molecules) known for its ability to bind to the alpha-chain of fibrinogen, is partly responsible (O'Brien, L. M., Walsh, E. J., Massey, R. C., Peacock, S. J., and Foster, T. J. (2002) Cell. Microbiol. 4, 759-770). We identified cytokeratin 10 (K10) as the ligand recognized by ClfB. Here we have shown that purified recombinant human and murine K10 immobilized on a plastic surface supports adherence of S. aureus in a ClfB-dependent manner. Furthermore, the recombinant A domain of ClfB (rClfB 45-542) bound to immobilized K10 dose-dependently and saturably. Subdomains of human and murine K10 were expressed and purified. The N-terminal head domain (residues 1-145) did not support the binding of rClfB or adherence of S. aureus ClfB+. In contrast, the C-terminal tail domains (human rHK10 452-593, mouse rMK10 454-570) promoted avid binding and adherence. Isothermal titration microcalorimetry and intrinsic tryptophan fluorescence experiments gave dissociation constants for rClfB 45-542 binding to rMK10 454-570 of 1.4 and 1.7 microM, respectively. The tail region of K10 is composed largely of quasi-repeats of Tyr-(Gly/Ser)n. A synthetic peptide corresponding to a typical glycine loop (YGGGSSGGGSSGGY; Y-Y loop peptide) inhibited the adherence of S. aureus ClfB+ to immobilized MK10 to a level of 80%, whereas control peptides had no effect. The KD of rClfB 45-542 for the Y-Y loop peptide was 5.3 microm by intrinsic tryptophan fluorescence. Thus ClfB binds to the glycine loop region of the tail domain of keratin 10 where there are probably multiple binding sites. Binding is discussed in the context of the dock-lock-latch model for MSCRAMM-ligand interactions. We provide an explanation for the molecular basis for S. aureus adherence to the squamous epithelium and suggest that nasal colonization might be prevented by reagents that inhibit this interaction.  相似文献   

9.
The surface-located fibrinogen-binding protein (clumping factor; ClfA) of Staphylococcus aureus has an unusual dipeptide repeat linking the ligand binding domain to the wall-anchored region. Southern blotting experiments revealed several other loci in the S. aureus Newman genome that hybridized to a probe comprising DNA encoding the dipeptide repeat. One of these loci is analysed here. It also encodes a fibrinogen-binding protein, which we have called ClfB. The overall organization of ClfB is very similar to that of ClfA, and the proteins have considerable sequence identity in the signal sequence and wall attachment domains. However, the A regions are only 26% identical. Recombinant biotinylated ClfB protein bound to fibrinogen in Western ligand blots. ClfB reacted with the α- and β-chains of fibrinogen in the ligand blots in contrast to ClfA, which binds exclusively to the γ-chain. Analysis of proteins released from the cell wall of S. aureus Newman by Western immunoblotting using antibody raised against the recombinant A region of ClfB identified a 124 kDa protein as the clfB gene product. This protein was detectable only on cells that were grown to the early exponential phase. It was absent from cells from late exponential phase or stationary phase cultures. Using a clfB mutant isolated by allelic replacement alone and in combination with a clfA mutation, the ClfB protein was shown to promote (i) clumping of exponential-phase cells in a solution of fibrinogen, (ii) adherence of exponential-phase bacteria to immobilized fibrinogen in vitro, and (iii) bacterial adherence to ex vivo human haemodialysis tubing, suggesting that it could contribute to the pathogenicity of biomaterial-related infections. However, in wild-type exponential-phase S. aureus Newman cultures, ClfB activity was masked by the ClfA protein, and it did not contribute at all to interactions of cells from stationary-phase cultures with fibrinogen. ClfB-dependent bacterial adherence to immobilized fibrinogen was inhibited by millimolar concentrations of Ca2+ and Mn2+, which indicates that, like ClfA, ligand binding by ClfB is regulated by a low-affinity inhibitory cation binding site.  相似文献   

10.
Streptococcus dysgalactiae S2, a bovine mastitis isolate, expresses the fibronectin (Fn)-binding adhesin FnbB. Here, we describe a new fibronectin-binding domain called UFnBD, located 100 amino acid N-terminal to the primary repetitive Fn-binding domain (FnBRD-B) of FnbB. UFnBD interacted with N-terminal region of Fn (N29) and this binding was mostly mediated by type I module pair 2-3 of N29 fragment, whereas FnBRD-B mainly bound to type I module pair 4-5. Furthermore, UFnBD inhibited adherence of S. dysgalactiae to Fn but at lower level as compared to FnBRD-B. UFnBD exclusively shared antigenic properties with the Fn-binding unit Du of FnbpA from Staphylococcus aureus but not with ligand-binding domains or motifs of other adhesins, while Fn-induced determinants of FnBRD-B and other adhesins appeared to be conformationally related. Consistent with this, a monoclonal antibody 7E11 generated from a mouse immunized with FnbB, and that recognized UFnBD did not cross-react with FnBRD-B. The epitope for 7E11 was mapped to 40 amino acid long segment within UFnBD and interaction between the antibody and the epitope was specifically induced by Fn or N29. A similar antibody epitope was observed in Streptococcus pyogenes strains suggesting the presence of an adhesin bearing epitope related to FnbB.  相似文献   

11.
Staphylococcus aureus is an important cause of sepsis in both community and hospital settings, a major risk factor for which is nasal carriage of the bacterium. Eradication of carriage by topical antibiotics reduces sepsis rates in high-risk individuals, an important strategy for the reduction of nosocomial infection in targeted patient populations. Understanding the mechanisms by which S. aureus adheres to nasal epithelial cells in vivo may lead to alternative methods of decolonization that do not rely on sustained antimicrobial susceptibility. Here, we demonstrate for the first time that the S. aureus surface-expressed protein, clumping factor B (ClfB), promotes adherence to immobilized epidermal cytokeratins in vitro . By expressing a range of S. aureus adhesins on the surface of the heterologous host Lactococcus lactis , we demonstrated that adherence to epidermal cytokeratins was conferred by ClfB. Adherence of wild-type S. aureus was inhibited by recombinant ClfB protein or anti-ClfB antibodies, and S. aureus mutants defective in ClfB adhered poorly to epidermal cytokeratins. Expression of ClfB promoted adherence of L. lactis to human desquamated nasal epithelial cells, and a mutant of S. aureus defective in ClfB had reduced adherence compared with wild type. ClfB also promoted adherence of L. lactis cells to a human keratinocyte cell line. Cytokeratin 10 molecules were shown by flow cytometry to be exposed on the surface of both desquamated nasal epithelial cells and keratinocytes. Cytokeratin 10 was also detected on the surface of desquamated human nasal cells using immunofluorescence, and recombinant ClfB protein was shown to bind to cytokeratin K10 extracted from these cells. We also showed that ClfB is transcribed by S. aureus in the human nares. We propose that ClfB is a major determinant in S. aureus nasal colonization.  相似文献   

12.
The fibronectin (Fn)-binding ability of microorganisms is considered to be involved in their pathogenicities. Granulicatella adiacens, a member of the oral flora and a causative agent of culture-negative infective endocarditis, showed nearly maximum binding to immobilized Fn at pH 7.2 but greatly reduced binding at a slightly higher pH 7.4 and almost no binding at pH 7.6 in the presence of physiological concentration of NaCl (0.15 M). A similar pH-sensitive Fn-binding property was noted with Escherichia coli and Abiotrophia defectiva, but not with Streptococcus pyogenes nor Staphylococcus aureus. In contrast, bindings to laminin and fibrinogen observed for some of these strains were unaffected by the same pH changes. This fastidious pH-dependency of Fn-binding abilities of some bacteria warns that the pH condition must be seriously considered in the in vitro assay of bacterial adherence to fibronectin.  相似文献   

13.
Based on previous reports in the literature and the high homology between platelet glycoprotein (GP) IIIa 217-231 and similar portions of other beta subunits of integrin receptors, we hypothesized that this region may participate in ligand binding. Using a polyclonal antibody against GPIIIa 217-231(YC), we tested the interaction of a synthetic peptide representing this region with fibrinogen (Fg), in the enzyme-linked immunosorbent assay (ELISA) system. Results show a calcium-independent, dose-related, direct interaction between GPIIIa 217-231(Y) and immobilized Fg. This peptide also bound to von Willebrand Factor (vWF) and fibronectin (Fn), but did not attach to a 50 kDa Fn fragment which is deficient in the cell attachment site. In addition, purified GPIIb/IIIa displaced GPIIIa 217-231(Y) from Fg and vWF. Binding of 125I-GPIIIa 217-231(Y) to Fg coated tubes was inhibited by soluble Fg and by the GPIIb/IIIa complex. We synthesized this peptide with several alterations; similar peptides with Pro-219 replaced with an Ala showed significantly reduced binding to Fg and vWF. The decreased binding of the peptides with Pro-219 substitutes suggests that the confirmation of GPIIIa 217-230 is important for its ability to bind to adhesive ligands. In conclusion, the amino acid residues between 217 and 231 of GPIIIa appear to be involved in ligand binding and Pro-219 probably plays a significant role in this interaction.  相似文献   

14.
The Yersinia pestis adhesin molecule Ail interacts with the extracellular matrix protein fibronectin (Fn) on host cells to facilitate efficient delivery of cytotoxic Yop proteins, a process essential for plague virulence. A number of bacterial pathogens are known to bind to the N-terminal region of Fn, comprising type I Fn (FNI) repeats. Using proteolytically generated Fn fragments and purified recombinant Fn fragments, we demonstrated that Ail binds the centrally located 120-kDa fragment containing type III Fn (FNIII) repeats. A panel of monoclonal antibodies (mAbs) that recognize specific epitopes within the 120-kDa fragment demonstrated that mAb binding to (9)FNIII blocks Ail-mediated bacterial binding to Fn. Epitopes of three mAbs that blocked Ail binding to Fn were mapped to a similar face of (9)FNIII. Antibodies directed against (9)FNIII also inhibited Ail-dependent cell binding activity, thus demonstrating the biological relevance of this Ail binding region on Fn. Bacteria expressing Ail on their surface could also bind a minimal fragment of Fn containing repeats (9-10)FNIII, and this binding was blocked by a mAb specific for (9)FNIII. These data demonstrate that Ail binds to (9)FNIII of Fn and presents Fn to host cells to facilitate cell binding and delivery of Yops (cytotoxins of Y. pestis), a novel interaction, distinct from other bacterial Fn-binding proteins.  相似文献   

15.
Adhesion of pathogenic Leptospira spp. to mammalian cells is mediated by their adhesins interacting with host cell receptors. In a previous study, we have identified two potential fibronectin (Fn) binding sites in central variable region (LigBCen) and C-terminal variable region (LigBCtv) of LigB, an adhesin of pathogenic Leptospira spp. In this study, we have further localized the Fn-binding site on LigBCen and found a domain of LigB (LigBCen2) (amino acids 1014-1165) strongly bound to Fn. LigBCen2 bound to a 70kDa domain of Fn including N-terminal domain (NTD) and gelatin binding domain (GBD), but with a higher binding affinity to NTD (K(d)=272nM) than to GBD (K(d)=1200nM). Except Fn, LigBCen2 also bound laminin and fibrinogen. LigBCen2 could bind MDCK cells, and blocked the binding of Leptospira on MDCK cells by 45%. These results suggest that LigBCen2 contributed to high affinity binding on NTD or GBD of Fn, laminin, and fibrinogen and mediated Leptospira binding on host cells.  相似文献   

16.
The extracellular matrix protein fibronectin (FN) mediates the adhesion of bacteria as well as T lymphocytes. Mammalian cells express integrins alpha(4)beta(1) and alpha(5)beta(1) as the major FN-binding cell surface receptors. Bacteria such as Staphylococcus aureus, also express FN-binding receptors that are important for adherence to host tissue and initiation of infection. The S. aureus FN-binding protein, FnbpA, has been previously identified, and recombinant proteins that correspond to distinct functional regions of this protein have been made. Three recombinant truncated forms of FnbpA, rFnbpA(37-881), rFnbpA(37-605), and rFnbpA(620-881), were examined for effects on in vitro adhesion and coactivation of human T lymphocytes. These proteins, when coimmobilized with anti-CD3 mAb, activated T lymphocyte proliferation. The coactivation signal generated by the rFnbpA proteins required medium containing serum with FN. Furthermore, the costimulatory signal could be restored in FN-depleted serum when the rFnbpAs were preloaded with soluble FN. Monoclonal Ab blocking studies revealed that integrin alpha(5)beta(1) is the major receptor responsible for the rFnbpA costimulatory signal. Shear flow cell detachment assays confirmed that lymphocytes can bind to FN captured by the rFnbpA proteins. These results suggest that the S. aureus rFnbpA can interact with integrin alpha(5)beta(1) via an FN bridge to mediate adhesion and costimulatory signals to T lymphocytes.  相似文献   

17.
Binding of the group A streptococcus (GAS) to respiratory epithelium is mediated by the fibronectin (Fn)-binding adhesin, protein F1. Previous studies have suggested that certain GAS strains express Fn-binding proteins that are different from protein F1. In this study, we have cloned, sequenced, and characterized a gene ( prtF2 ) from GAS strain 100076 encoding a novel Fn-binding protein, termed protein F2. Insertional inactivation of prtF2 in strain 100076 abolishes its high-affinity Fn binding. prtF2 -related genes exist in most GAS strains that lack prtF1 (encoding protein F1) but bind Fn with high affinity. These observations suggest that protein F2 is a major Fn-binding protein in GAS. Protein F2 is highly homologous to Fn-binding proteins from Streptococcus dysgalactiae and Strep-tococcus equisimilis , particularly in its carboxy-terminal portion. Two domains are responsible for Fn binding by protein F2. One domain (FBRD) consists of three consecutive repeats, whereas the other domain (UFBD) resides on a non-repeated stretch of approximately 100 amino acids and is located 100 amino acids amino-terminal of FBRD. Each of these domains is capable of binding Fn when expressed as a separate protein. In strain 100076, protein F2 activity is regulated in response to alterations in the concentration of atmospheric oxygen.  相似文献   

18.
Staphylococcus aureus is an important human pathogen that is renowned both for its rapid transmission within hospitals and the community, and for the formation of antibiotic resistant biofilms on medical implants. Recently, it was shown that S. aureus is able to spread over wet surfaces. This motility phenomenon is promoted by the surfactant properties of secreted phenol-soluble modulins (PSMs), which are also known to inhibit biofilm formation. The aim of the present studies was to determine whether any cell surface-associated S. aureus proteins have an impact on colony spreading. To this end, we analyzed the spreading capabilities of strains lacking non-essential components of the protein export and sorting machinery. Interestingly, our analyses reveal that the absence of sortase A (SrtA) causes a hyper-spreading phenotype. SrtA is responsible for covalent anchoring of various proteins to the staphylococcal cell wall. Accordingly, we show that the hyper-spreading phenotype of srtA mutant cells is an indirect effect that relates to the sortase substrates FnbpA, FnbpB, ClfA and ClfB. These surface-exposed staphylococcal proteins are known to promote biofilm formation, and cell-cell interactions. The hyper-spreading phenotype of srtA mutant staphylococcal cells was subsequently validated in Staphylococcus epidermidis. We conclude that cell wall-associated factors that promote a sessile lifestyle of S. aureus and S. epidermidis antagonize the colony spreading motility of these bacteria.  相似文献   

19.
Keane FM  Clarke AW  Foster TJ  Weiss AS 《Biochemistry》2007,46(24):7226-7232
Staphylococcus aureus is an important human pathogen. Its virulence factors include a variety of MSCRAMMs (microbial surface component recognizing adhesive matrix molecules), each capable of binding specifically to the host extracellular matrix. The fibronectin-binding protein, FnBPA, has been shown previously to bind immobilized fibronectin, fibrinogen, and alpha-elastin peptides. Here we show that region A of FnBPA (rAFnBPA) binds to recombinant human tropoelastin. Binding occurs to three separate truncates of tropoelastin, encompassing domains 2-18, 17-27, and 27-36, signifying that the interaction occurs at multiple sites. The greatest affinity was for the N-terminal truncate. We observed a pH dependency for the rAFnBPA-tropoelastin interaction with strong, nonsaturable binding at low pH. The interaction ceased at higher pH. These data support a model of surface-surface interactions between the negative charges present on rAFnBPA and the positive lysines of tropoelastin. A protein lacking the negatively charged C-terminal fibronectin-binding motif of the A domain of FnBPA and another construct lacking subdomain N1 were both capable of binding immobilized tropoelastin with a lower affinity. The binding properties of five site-directed mutants of rAFnBPA were compared with wild-type rAFnBPA. There was no decreased affinity for immobilized tropoelastin, in contrast to the defective binding of these mutants to alpha-elastin and fibrinogen. The data indicate novel interactions between tropoelastin and FnBPA that include the use of surface charges. These results demonstrate that FnBPA is capable of directly binding tropoelastin prior to its incorporation into elastin.  相似文献   

20.
In addition to its pivotal role in hemostasis, fibrinogen (Fg) and provisional fibrin matrices play important roles in inflammation and regulate innate immune responses by interacting with leukocytes. Efb (the extracellular fibrinogen-binding protein) is a secreted Staphylococcus aureus protein that engages host Fg and complement C3. However, the molecular details underlying the Efb-Fg interaction and the biological relevance of this interaction have not been determined. In the present study, we characterize the interaction of Efb with Fg. We demonstrate that the Fg binding activity is located within the intrinsically disordered N-terminal half of Efb (Efb-N) and that the D fragment of Fg is the region that mediates Efb-N binding. More detailed studies of the Efb-N-Fg interactions using ELISA and surface plasmon resonance analyses revealed that Efb-N exhibits a much higher affinity for Fg than typically observed with Fg-binding MSCRAMMs (microbial surface components recognizing adhesive matrix molecules), and data obtained from ELISA analyses using truncated Efb-N constructs demonstrate that Efb-N contains two binding sites located within residues 30-67 and 68-98, respectively. Efb-N inhibits neutrophil adhesion to immobilized Fg by binding to Fg and blocking the interaction of the protein with the leukocyte integrin receptor, α(M)β(2). A motif in the Fg γ chain previously shown to be central to the α(M)β(2) interaction was shown to be functionally distinguishable from the Efb-N binding site, suggesting that the Fg-Efb interaction indirectly impedes Fg engagement by α(M)β(2). Taken together, these studies provide insights into how Efb interacts with Fg and suggest that Efb may support bacterial virulence at least in part by impeding Fg-driven leukocyte adhesion events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号