首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 239 毫秒
1.
Knowledge of structural class plays an important role in understanding protein folding patterns. In this study, a simple and powerful computational method, which combines support vector machine with PSI-BLAST profile, is proposed to predict protein structural class for low-similarity sequences. The evolution information encoding in the PSI-BLAST profiles is converted into a series of fixed-length feature vectors by extracting amino acid composition and dipeptide composition from the profiles. The resulting vectors are then fed to a support vector machine classifier for the prediction of protein structural class. To evaluate the performance of the proposed method, jackknife cross-validation tests are performed on two widely used benchmark datasets, 1189 (containing 1092 proteins) and 25PDB (containing 1673 proteins) with sequence similarity lower than 40% and 25%, respectively. The overall accuracies attain 70.7% and 72.9% for 1189 and 25PDB datasets, respectively. Comparison of our results with other methods shows that our method is very promising to predict protein structural class particularly for low-similarity datasets and may at least play an important complementary role to existing methods.  相似文献   

2.
Ding S  Zhang S  Li Y  Wang T 《Biochimie》2012,94(5):1166-1171
Knowledge of structural classes plays an important role in understanding protein folding patterns. In this paper, features based on the predicted secondary structure sequence and the corresponding E–H sequence are extracted. Then, an 11-dimensional feature vector is selected based on a wrapper feature selection algorithm and a support vector machine (SVM). Among the 11 selected features, 4 novel features are newly designed to model the differences between α/β class and α + β class, and other 7 rational features are proposed by previous researchers. To examine the performance of our method, a total of 5 datasets are used to design and test the proposed method. The results show that competitive prediction accuracies can be achieved by the proposed method compared to existing methods (SCPRED, RKS-PPSC and MODAS), and 4 new features are demonstrated essential to differentiate α/β and α + β classes. Standalone version of the proposed method is written in JAVA language and it can be downloaded from http://web.xidian.edu.cn/slzhang/paper.html.  相似文献   

3.
《Genomics》2020,112(2):1941-1946
In this paper, a step-by-step classification algorithm based on double-layer SVM model is constructed to predict the secondary structure of proteins. The most important feature of this algorithm is to improve the prediction accuracy of α+β and α/β classes through transforming the prediction of two classes of proteins, α+β and α/β classes, with low accuracy in the past, into the prediction of all-α and all-β classes with high accuracy. A widely-used dataset, 25PDB dataset with sequence similarity lower than 40%, is used to evaluate this method. The results show that this method has good performance, and on the basis of ensuring the accuracy of other three structural classes of proteins, the accuracy of α+β class proteins is improved significantly.  相似文献   

4.
The Dynameomics project aims to simulate a representative sample of all globular protein metafolds under both native and unfolding conditions. We have identified protein unfolding transition state (TS) ensembles from multiple molecular dynamics simulations of high-temperature unfolding in 183 structurally distinct proteins. These data can be used to study individual proteins and individual protein metafolds and to mine for TS structural features common across all proteins. Separating the TS structures into four different fold classes (all proteins, all-α, all-β, and mixed α/β and α + β) resulted in no significant difference in the overall protein properties. The residues with the most contacts in the native state lost the most contacts in the TS ensemble. On average, residues beginning in an α-helix maintained more structure in the TS ensemble than did residues starting in β-strands or any other conformation. The metafolds studied here represent 67% of all known protein structures, and this is, to our knowledge, the largest, most comprehensive study of the protein folding/unfolding TS ensemble to date. One might have expected broad distributions in the average global properties of the TS relative to the native state, indicating variability in the amount of structure present in the TS. Instead, the average global properties converged with low standard deviations across metafolds, suggesting that there are general rules governing the structure and properties of the TS.  相似文献   

5.
《Biochimie》2013,95(9):1741-1744
In this study, a 12-dimensional feature vector is constructed to reflect the general contents and spatial arrangements of the secondary structural elements of a given protein sequence. Among the 12 features, 6 novel features are specially designed to improve the prediction accuracies for α/β and α + β classes based on the distributions of α-helices and β-strands and the characteristics of parallel β-sheets and anti-parallel β-sheets. To evaluate our method, the jackknife cross-validating test is employed on two widely-used datasets, 25PDB and 1189 datasets with sequence similarity lower than 40% and 25%, respectively. The performance of our method outperforms the recently reported methods in most cases, and the 6 newly-designed features have significant positive effect to the prediction accuracies, especially for α/β and α + β classes.  相似文献   

6.
Zhang S  Ding S  Wang T 《Biochimie》2011,93(4):710-714
Information on the structural classes of proteins has been proven to be important in many fields of bioinformatics. Prediction of protein structural class for low-similarity sequences is a challenge problem. In this study, 11 features (including 8 re-used features and 3 newly-designed features) are rationally utilized to reflect the general contents and spatial arrangements of the secondary structural elements of a given protein sequence. To evaluate the performance of the proposed method, jackknife cross-validation tests are performed on two widely used benchmark datasets, 1189 and 25PDB with sequence similarity lower than 40% and 25%, respectively. Comparison of our results with other methods shows that our proposed method is very promising and may provide a cost-effective alternative to predict protein structural class in particular for low-similarity datasets.  相似文献   

7.
Jia C  Liu T  Chang AK  Zhai Y 《Biochimie》2011,93(4):778-782
Mitochondrial proteins of Plasmodium falciparum are considered as attractive targets for anti-malarial drugs, but the experimental identification of these proteins is a difficult and time-consuming task. Computational prediction of mitochondrial proteins offers an alternative approach. However, the commonly used subcellular location prediction methods are unsuited for P. falciparum mitochondrial proteins whereas the organism and organelle-specific methods were constructed on the basis of a rather small dataset. In this study, a novel dataset termed PfM233, which included 108 mitochondrial and 125 non-mitochondrial proteins with sequence similarity below 25%, was established and the methods for predicting mitochondrial proteins of P. falciparum were described. Both bi-profile Bayes and split amino acid composition were applied to extract the features from the N- and C-terminal sequences of these proteins, which were then used to construct two SVM based classifiers (PfMP-N25 and PfMP-30). Using PfM233 as the dataset, PfMP-N25 and PfMP-30 achieved accuracies (MCCs) of 90.13% (0.80) and 90.99% (0.82). When tested with the commonly used 40 mitochondrial proteins in PfM175 and the 108 mitochondrial proteins in PfM233, these two methods obviously outperformed the existing general, organelle-specific and organism and organelle-specific methods.  相似文献   

8.
Protein–DNA complexes play vital roles in many cellular processes by the interactions of amino acids with DNA. Several computational methods have been developed for predicting the interacting residues in DNA-binding proteins using sequence and/or structural information. These methods showed different levels of accuracies, which may depend on the choice of data sets used in training, the feature sets selected for developing a predictive model, the ability of the models to capture information useful for prediction or a combination of these factors. In many cases, different methods are likely to produce similar results, whereas in others, the predictors may return contradictory predictions. In this situation, a priori estimates of prediction performance applicable to the system being investigated would be helpful for biologists to choose the best method for designing their experiments. In this work, we have constructed unbiased, stringent and diverse data sets for DNA-binding proteins based on various biologically relevant considerations: (i) seven structural classes, (ii) 86 folds, (iii) 106 superfamilies, (iv) 194 families, (v) 15 binding motifs, (vi) single/double-stranded DNA, (vii) DNA conformation (A, B, Z, etc.), (viii) three functions and (ix) disordered regions. These data sets were culled as non-redundant with sequence identities of 25 and 40% and used to evaluate the performance of 11 different methods in which online services or standalone programs are available. We observed that the best performing methods for each of the data sets showed significant biases toward the data sets selected for their benchmark. Our analysis revealed important data set features, which could be used to estimate these context-specific biases and hence suggest the best method to be used for a given problem. We have developed a web server, which considers these features on demand and displays the best method that the investigator should use. The web server is freely available at http://www.biotech.iitm.ac.in/DNA-protein/. Further, we have grouped the methods based on their complexity and analyzed the performance. The information gained in this work could be effectively used to select the best method for designing experiments.  相似文献   

9.
Efforts to predict protein secondary structure have been hampered by the apparent structural plasticity of local amino acid sequences. Kabsch and Sander (1984, Proc. Natl. Acad. Sci. USA 81, 1075–1078) articulated this problem by demonstrating that identical pentapeptide sequences can adopt distinct structures in different proteins. With the increased size of the protein structure database and the availability of new methods to characterize structural environments, we revisit this observation of structural plasticity. Within a set of proteins with less than 50% sequence identity, 59 pairs of identical hexapeptide sequences were identified. These local structures were compared and their surrounding structural environments examined. Within a protein structural class (α/α, β/β, α/β, α + β), the structural similarity of sequentially identical hexapeptides usually is preserved. This study finds eight pairs of identical hexapeptide sequences that adopt β-strand structure in one protein and α-helical structure in the other. In none of the eight cases do the members of these sequence pairs come from proteins within the same folding class. These results have implications for class dependent secondary structure prediction algorithms.  相似文献   

10.
Type E botulinum neurotoxin is produced byClostridium botulinum along with a neurotoxin binding protein which helps protect the neurotoxin from adversepH, temperature, and proteolytic conditions. The neurotoxin binding protein has been purified as a 118-kDa protein. Secondary structure content of the neurotoxin binding protein as revealed by far-UV circular dichroism spectroscopy was 19% α-helix, 50%β-sheets, 28% random coils, and 3%β-turns. This compared to 22% α-helix, 44%β-sheets, 34% random coils, and noβ-turns of the type E botulinum neurotoxin. The complex of the two proteins revealed 25%α-helix, 45%β-sheets, 27% random coils, and 3%β-turns, suggesting a significant alteration at least in theα-helical folding of the two proteins upon their interaction. Tyrosine topography is altered considerably (28%) when the neurotoxin and its binding protein are separated, indicating strong interaction between the two proteins. Gel filtration results suggested that type E neurotoxin binding protein clearly complexes with type E neurotoxin. The interaction is favored at lowpH as indicated by an initial binding rate of 8.4 min?1 atpH 5.7 compared to 4.0 min?1 atpH 7.5 as determined using a fiber optic-based biosensor. The neurotoxin and its binding protein apparently are of equivalent antigenicity, as both reacted equally on enzyme-linked immunosorbent assay to polyclonal antibodies raised against the toxoid of their complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号