首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Keil TA  Steiner C 《Tissue & cell》1991,23(6):821-851
During adult development of the male silkmoth Antheraea polyphemus, the anlagen of olfactory sensilla arise within the first 2 days post-apolysis in the antennal epidermis (stage 1-3). Approximately on the second day, the primary dendrites as well as the axons grow out from the sensory neurons (stage 4). The trichogen cells start to grow apical processes approximately on the third day, and these hair-forming 'sprouts' reach their definite length around the ninth day (stages 5-6). Then the secretion of cuticle begins, the cuticulin layer having formed on day 10 (stage 7a). The primary dendrites are shed, the inner dendritic segments as well as the thecogen cells retract from the prospective hair bases, and the inner tormogen cells degenerate around days 10/11 (stage 7b). The hair shafts of the basiconic sensilla are completed around days 12/13 (stage 7c), and those of the trichoid sensilla around days 14/15 (stage 7d). The trichogen sprouts retract from the hairs after having finished cuticle formation, and the outer dendritic segments grow out into the hairs: in the basiconic sensilla directly through, and in the trichoid sensilla alongside, the sprouts. The trichogen sprouts contain numerous parallel-running microtubules. Besides their cytoskeletal function, these are most probably involved in the transport of membrane vesicles. During the phase of cuticle deposition, large numbers of vesicles are transported anterogradely from the cell bodies into the sprouts, where they fuse with the apical cell membrane and release their electron-dense contents (most probably cuticle precursors) to the outside. As the cuticle grows in thickness, the surface area of the sprouts is reduced by endocytosis of coated vesicles. When finally the sprouts retract from the completed hairs, the number of endocytotic vesicles is further increased and numerous membrane cisterns seem to be transported retrogradely along the microtubules to the cell bodies. Here the membrane material will most probably be used again in the formation of the sensillum lymph cavities. Thus, the trichogen cells are characterized by an intensive membrane recycling. The sensillum lymph cavities develop between days 16-20 (stage 8), mainly via apical invaginations of the trichogen cells. The imago emerges on day 21.  相似文献   

2.
Summary Four envelope cells are responsible for the formation of the basiconical sensilla of Calliphora. They are the thecogen, trichogen, and tormogen cells, and envelope cell 4. In early stages of development the still subepithelial sensory cilia are completely enclosed by the innermost thecogen cell. The first formation movements are initiated by a growth thrust of the hair-forming cell into the exuvial space. The sensory cilia only begin to grow into the hair anlage when the hair-forming cell has almost reached its final length. As soon as growth is completed the trichogen cell, tormogen cell, and envelope cell 4 start to excrete cuticular material. The trichogen cell forms the perforated part of the hair shaft and the stimulus-conducting system consisting of the pore tubules. The tormogen cell is responsible for the excretion of the basal non-perforated hair shaft and sheath cell 4 forms the proximal part of the socket region. The thecogen cell only begin to produce dendritic sheath material when the sensory hair is almost complete.Approximately 7–8 days after pupation the tormogen cell degenerates, having, by this time, produced about two-thirds of the sensilla cuticle. The surrounding envelope cells incorporate cell fragments of the tormogen cell. The trichogen cell continues the secretion where the tormogen cell left off. When the secretion of cuticle is finished the sheath cells begin to withdraw towards the proximal direction and to form microvilli on the apical membrane. The resulting outer receptor lymph space is bordered by envelope cell 4 and the trichogen and thecogen cells. The tormogen cell is absent in the sensilla of the imago.Abbreviations DS dendritic sheath - E4 envelope cell 4 - Ex exuvial space - G glial cell - iD inner dendritic segment - iRL inner receptor lymph space - oRL outer receptor lymph space - oD outer dendritic segment - P pore - PT pore tubules - S sensory cell - T thecogen cell - TO tormogen cell - TR trichogen cell Part 1 of a dissertation accepted by the Faculty of Bio- and Geosciences, University of Karlsruhe  相似文献   

3.
Summary Odorant-binding proteins are supposed to play an important role in stimulus transport and/or inactivation in olfactory sense organs. In an attempt to precisely localize pheromone-binding protein in the antenna of moths, post-embedding immunocytochemistry was performed using an antiserum against purified pheromone-binding protein of Antheraea polyphemus. In immunoblots of antennal homogenates, the antiserum reacted exclusively with pheromone-binding protein of A. polyphemus, and cross-reacted with homologous proteins of Bombyx mori and Autographa gamma. On sections of antennae of male A. polyphemus and B. mori, exclusively the pheromone-sensitive sensilla trichodea are labelled; in A. gamma, label is restricted to a subpopulation of morphologically similar sensilla trichodea, which indicates that not all pheromone-sensitive sensilla contain the same type of pheromone-binding protein and accounts for a higher specificity of pheromone-binding protein than hitherto assumed. Within the sensilla trichodea, the extracellular sensillum lymph of the hair lumen and of the sensillum-lymph cavities is heavily labelled. Intracellular label is mainly found in the trichogen and tormogen cells: in endoplasmic reticulum, Golgi apparatus, and a variety of dense granules. Endocytotic pits and vesicles, multivesicular bodies and lysosome-like structures are also labelled and can be observed not only in these cells, but also in the thcogen cell and in the receptor cells. Cell membranes are not labelled except the border between thecogen cell and receptor cell and the autojunction of the thecogen cell. The intracellular distribution of label indicates that pheromone-binding protein is synthesized in the tormogen and trichogen cell along typical pathways of protein secretion, whereas its turnover and decomposition does not appear to be restricted to these cells but may also occur in the thecogen and receptor cells. The immunocytochemical findings are discussed with respect to current concepts of the function of pheromone-binding protein.  相似文献   

4.
Summary The structure and embryonic development of the two types (A, B) of basiconic sensilla on the antennae of Locusta migratoria were studied in material that had been cryofixed and freeze-substituted, or chemically fixed and dehydrated. Both types are single-walled wall-pore sensilla. Type-A sensilla comprise 20–30 sensory and 7 enveloping cells. One enveloping cell (thecogen cell secretes the dendrite sheath); four are trichogen cells, projections of which form the trichogen process during the 2nd embryonic molt. The trichogen cells form two concentric pairs proximally. Two tormogen cells secrete the cuticular socket of the sensillum. The dendritic outer segments of the sensory cells are branched. Bifurcate type-A sensilla have also been observed. Type-B sensilla comprise three sensory and four enveloping cells (one thecogen, two trichogen and one tormogen). The trichogen process is formed by the two trichogen cells, each of which gives rise to two projections. The trichogen cells are concentrically arranged. The dendritic outer segments of the sensory cells are unbranched. In the fully developed sensillum, all trichogen and tormogen cells border on the outer receptor lymph cavity. It is suggested that the multicellular organization of the type-A sensilla can be regarded as being advanced rather than primitive.Supported by the Dcutschc Forschungsgemeinschaft (SFB 4/G1)  相似文献   

5.
The distribution of diffusion barriers in silkmoth olfactory sensilla has been investigated with ionic lanthanum. The tracer was applied from the apical side of the sensory epithelium by first pinching off the hair tips and then dipping the antennal branches into the La(NO(3))(3) solution. The tracer neither passed the apical septate junctions between the dendrite and the thecogen cell nor those between thecogen, trichogen, and tormogen cells, nor the tight contact between the apical membrane of the tormogen cell and the cuticle. After perfusing the hemolymph space with La(NO(3))(3) solution, the tracer was found in the clefts between the thecogen, trichogen, tormogen, and epidermis cells, but not in those between the receptor cells and the thecogen cell, or between the axon and the glial envelope. Lanthanum neither entered the receptor-lymph space nor the subcuticular space. Therefore, (i) receptor-lymph space, subcuticular space, and hemolymph space are isolated from each other, and (ii) the cleft between thecogen and sensory cell is separated from the hemolymph as well as from the receptor-lymph spaces. Furthermore, the results indicate that pleated septate junctions form the diffusion barriers in silkmoth olfactory sensilla.  相似文献   

6.
Summary The thermo/hygroreceptive sensilla styloconica of the silkmoths Bombyx mori, Antheraea pernyi, and A. polyphemus were reconstructed from serial sections of cryofixed and chemically fixed specimens. The volume and surface area of the different sensillar cells were calculated from the area and circumference of consecutive section profiles. In addition, data are provided on the length and diameter of the outer and inner dendritic segments of the receptor cells. The morphometric data obtained from the three species are highly consistent and significantly different from those of olfactory sensilla trichodea of the same species. In each sensillum two type-1 receptor cells (hygroreceptors) are associated with one type-2 cell with a lamellated outer dendritic segment, a comparatively thick inner dendritic segment, and a particularly large soma (thermoreceptor). In contrast to olfactory sensilla, the thecogen cell is the largest auxiliary cell forming an extensive apical labyrinth bordering the inner sensillum-lymph space, whereas an inconspicuous trichogen cell and a medium-sized tormogen cell border a comparatively small outer sensillum-lymph cavity. Moreover, both sensillum-lymph spaces are separated from each other not only by the dendrite sheath, but also by the trichogen cell. The results are discussed with regard to recent electrophysiological observations and current hypotheses on the function of sensilla.  相似文献   

7.
马尾松毛虫雄蛾触角毛状感受器的细微结构   总被引:6,自引:0,他引:6  
马尾松毛虫Dendrolimus punctagus(Walker)雄蛾有一对羽毛状触角。在触角鞭节的每对侧枝的内侧(迎风面)着生许多毛状感受器。每个毛状感受器由几丁质表皮毛及位于其下的三个感觉神经原和三个呈同心排列的辅助细胞-鞘原细胞、毛原细胞和膜原细胞构成。几丁质表皮毛上有许多孔。毛腔内充满感受器淋巴液。感觉神经原发出的树状突伸入毛腔,浸浴于感受器淋巴液内。这些结构特征表明它是一种司嗅觉的化学感受器。雄蛾终生不取食,推断它的嗅觉感受器主要用以感受雌蛾释放的性外激素,帮助寻找配偶。  相似文献   

8.
A previously unknown type of sensillum with a thin cuticular dome and two pairs of pores is described in the amphipod Gammarus setosus. There is only one dome sensillum on each interantennal lobe of the head. The receptor is innervated by two sensory dendrites that bifurcate into two pairs of 9 + 0 cilia, concentrically enclosed by four auxiliary cells—two thecogen, one trichogen, and one tormogen and surrounded by a cluster of accessory cells. The ciliary regions are contained in small inner lymph cavities. The outer segments are sheathed by the apical extensions of the thecogen cells, are looped inside the outer lymph cavity, and come in close contact with lipid spheroids inside the dome. The basal bodies consist of microtubule doublets, which extend into the distal segments where they are interspersed with singlets. The nodal inner dendritic segments join the ventral suspension cord of the organ of Bellonci and enter its ganglion. The application of colloidal lanthanum resulted in intraciliary lanthanum deposits. The dome sensilla are presumed to be chemosensory because their cellular plan has similarities to that of some known olfactory and pheromone-sensitive sensilla in decapod crustaceans and insects. © 1994 Wiley-Liss, Inc.  相似文献   

9.
Summary The cellular organization of freeze-substituted antennal sensilla trichodea, which contain the sex pheromone receptors, was studied in male silkmoths of two species (Bombyx mori, Bombycidae; Antheraea pernyi, Saturniidae). The cellular architecture of these sensilla is complex, but very similar in both species. A three-dimensional reconstruction of a sensillum trichodeum of B. mori is presented. Two receptor cells (in A. pernyi 1–3) and three auxiliary cells are present. Of the latter, only the thecogen cell forms a true sheath around the receptor cells. A unique thecogen-receptor cell junction extends over the entire area of contact. Septate junctions occur between all sensillar cells apically, and in the region of the axonal origin basally. Gap junctions are also found between all cells except the receptor cells. The trichogen and tormogen cells show many structural indications of secretory activity and are thought to secrete the receptor lymph. Their apical membrane bordering the receptor-lymph space is enlarged by microvilli and microlamellae, but only those of the trichogen cell show regularly arranged membrane particles (portasomes), indicating secretory specialization among the auxiliary cells. Epidermal cells are found as slender pillars between sensilla, but extend apically along the non-sensillar cuticle and basally along the basal lamina.  相似文献   

10.
Immunocytochemistry with monoclonal antibodies was used to investigate the locations of muscarinic acetylcholine receptors (mAChR) and choline acetyltransferase (ChAT) in sections of the developing antennae of the moth Manduca sexta. The results were correlated with a previous morphological investigation in the developing antennae which allowed us to locate different cell types at various stages of development. Our findings indicated that the muscarinic cholinergic system was not restricted to the sensory neurons but was also present in glial and epidermal cells. By day 4–5 of adult development, immunoreactivity against both antibodies was present in the axons of the antennal nerve, and more intense labeling was present in sections from older pupae. At days 4–9, the cell bodies of the sensory neurons in the basal part of the epidermis were also intensely immunolabeled by the anti-mAChR antibody. In mature flagella, large numbers of cells, some with processes into hairs, were strongly labeled by both antibodies. Antennal glial cells were intensely immunolabeled with both antibodies by days 4–5, but in later stages, it was not possible to discriminate between glial and neural staining. At days 4–9, we observed a distinctly labeled layer of epidermal cells close to the developing cuticle. The expression of both ChAT and mAChRs by neurons in moth antennae may allow the regulation of excitability by endogenous ACh. Cholinergic communication between neurons and glia may be part of the system that guides axon elongation during development. The cholinergic system in the apical part of the developing epidermis could be involved in cuticle formation.This work was supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Canadian Foundation for Innovation, and the Nova Scotia Research and Innovation Trust to P.H.T. and a NSERC postdoctoral fellowship to J.C.  相似文献   

11.
Pheromone recognition in insects is thought to involve distinct receptor proteins in the dendritic membrane of antennal sensory neurons. We have generated antibodies directed against a peptide derived from the sequence of the candidate pheromone receptor HR13 from Heliothis virescens. The antibodies specifically labelled the cell bodies of a distinct neuron population housed in male-specific pheromone-sensitive sensilla. Combining antibody staining with in situ hybridization the reactive cells were found to express the HR13 gene. In addition, dendrites projecting into sensilla hairs as well as the axonal processes of immunoreactive cells were labelled. Labelling of axons has allowed visualization of their fasciculation within antennal segments and permits tracking of axons as they merge into the antennal nerve. The HR13 protein was first detected 1 day before eclosion. Thus, the distribution of HR13 protein in the antennal neurons of the male moth strongly suggests a role of the HR13 receptor in recognition of pheromones.  相似文献   

12.
We have investigated sensillum development in Drosophila embryos homozygous for mutations in the locus string (stg). In these embryos, cell division is blocked following blastoderm formation. This permits a study of the differentiative fate of undivided precursor cells, in particular those giving rise to the larval sensory organs (sensilla). Of the different cell fates normally represented in the sensilla (i.e., sensory neuron, thecogen cell, trichogen cell, tormogen cell, glia cell), only the phenotype of sensory neurons is expressed morphologically in stg embryos, suggesting that the neuronal fate predominates over the fates of the nonneuronal accessory cells. Consistent with this finding, the P element-lacZ insertion A1-2nd-29, which is a marker for trichogen and tormogen cells in the wild-type embryo, is not expressed in the body wall of the stg embryo. Some sensillum precursor cells appear to express a mixed fate in stg mutants: They express antigens (recognized by the monoclonal antibodies 22C10 and 21A6) which in the wild-type appear in separate cells (sensory neurons and thecogen cell, respectively). The differentiation of undivided cells in stg embryos is not restricted to the peripheral nervous system; in all types of tissues analyzed in this study (e.g., epidermis, intestine, muscle, CNS), precursor cells express characteristics normally exhibited by their progeny.  相似文献   

13.
Summary Receptor cell axons from the antennal flagellum terminate in the glomeruli of the ipsilateral deutocerebrum in Periplaneta americana and Locusta migratoria. Processes from several groups of deutocerebral neurons also enter the glomeruli and terminate in characteristic branching patterns. There, they contact the antennal axons. Connections are both convergent and divergent. Not only do single central neurons collect the inputs from many receptor cells, but receptor axons were often observed to branch and terminate at more than one deutocerebral neuron. The axons from a portion of the neurons go to form the deutocerebral bundle of the tractus olfactorioglobularis. These axons of the bundle terminate in the ipsilateral calyx of the corpus pedunculatum and in the lateral lobus protocerebri. The processes of the majority of the deutocerebral neurons stay within the deutocerebrum itself and may serve as local interneurons. Part of some antennal fibers terminate in the lobus dorsalis. The lobus glomeratus receives inputs from the maxillary palps and also from processes of deutocerebral neurons.Electron microscopy of synaptic connections and anatomical experiments reveal a complicated pattern of connections between receptor axons and higher order neurons as well as between higher order neurons themselves within the glomeruli.The ratio of the number of antennal fibers to that of relay fibers could easily lead to the interpretation, that the deutocerebrum merely serves as a device for reducing the number of transmission channels. However, coupled with physiological data, anatomical details such as conand divergence of input and interconnections between input channels suggest rather a filtering system and a highly complicated integrative network.  相似文献   

14.
Neurons in the developing (antennal) olfactory lobe of the moth Manduca sexta undergo a period of extensive process outgrowth and branching that coincides temporally with both a rising titer of the steroid hormone 20-hydroxyecdysone and the ingrowth of sensory axons from receptors in the antenna. To evaluate the contribution of these two influences to the morphological development of antennal-lobe neurons, we placed the neurons in cell culture. Antennal-lobe neurons were dissociated from normal and chronically unafferented lobes at different stages of development and were exposed to different doses of hormone. Six neuronal cell types with distinctive and stable morphologies appeared in cultures from all stages of pupal development. Morphological changes in these neuronal types were examined quantitatively by comparison of the total length and number of branches. We found that 20-hydroxyecdysone had little direct effect on the morphological development of antennal-lobe neurons, but brief exposure to sensory axons in vivo prior to dissociation significantly enhanced subsequent outgrowth in culture. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
16.
Antennae of the moth, Manduca sexta, are thickly populated with sensory neurons, which send axons through antennal nerves to the brain. These neurons arise by cell divisions and differentiate synchronously during the 18 days of metamorphosis from pupa to adult. Biochemical studies support the hypothesis that antennal neurons use acetylcholine (ACh) as a neurotransmitter: (1) Antennae incubated with [14C]choline synthesize and store [14C]ACh; several other transmitter candidates do not accumulate detectably when appropriate radioactive precursors are supplied; (2) antennae and antennal nerves contain endogenous ACh; and (3) extracts of mature antennae contain choline acetyltransferase (ChAc) and acetylcholinesterase (AChE) with properties similar to those reported for the enzymes from other arthropods. Levels of ACh, ChAc, and AChE begin to increase in antennae soon after the sensory neurons are “born.” Levels rise exponentially for over a week as the neurons differentiate and then reach a plateau, at about the time the neurons reach morphological maturity, that is maintained into adulthood. In contrast, levels of carnitine acetyltransferase, cholinesterase, and soluble protein, presumably not confined to nervous tissue, change little during metamorphosis. Levels of ACh, ChAc, and AChE rise in an intracranial segment of antennal nerve at about the same time as in the antenna, indicating that axons can transport neurotransmitter machinery at an early stage in their development.  相似文献   

17.
Keil TA  Steiner C 《Tissue & cell》1990,22(5):705-720
The antenna of the male silkmoth Antheraea polyphemus develops from a one-layered, flattened epidermal sac during the pupal phase. Within the first day post-apolysis (developmental stages 1 and 2), this epithelium differentiates into 'sensillogenic' and 'nonsensillogenic' regions, while numerous slender 'dark cells' interpreted as the precursor cells of sensilla arise in the former. Approximately between the first and second day post-apolysis (developmental stage 3), the dark cells retract to the apical pole of the epidermis, assume a round shape, and undergo a series of differential mitoses with spindles usually oriented parallel to the epidermal surface. These mitoses finally yield the Anlagen of the olfactory sensilla trichodea, each consisting of mostly 6-7 dark cells arranged side by side. In most of the Anlagen, 3-4 of these cells are situated more basally, each giving off a slender apical process which together are arranged in a fascicle. These are the prospective 2-3 sensory neurons plus the thecogen cell, which most probably is a sister cell of the former. Three additional cells are arranged more apically and partly enclose the fascicle of presumed sensory and thecogen cell processes. These are interpreted as the trichogen plus 2 tormogen cells, one of the latter degenerating later during development. In the basal region of the sensillogenic epidermis, massive signs of cell degeneration have been found. At stage 3, the basal epidermal feet in the non-sensillogenic regions have assumed a more uniform orientation as compared with the preceding stages.  相似文献   

18.
Summary The ontogeny of the chemoreceptive sensilla in the labial palp-pit organ was studied in Pieris rapae by examining twelve successive stages between pupation and emergence of the imago, which takes a period of 160 h under the experimental conditions. Mitoses occur until 20 h after pupation. They lead to anlagen of sensilla, 91% of which are comprised of three sensory cells. However, two sensory cells degenerate in each sensillum during a period of 28 h. The same process occurs in anlagen with four sensory cells resulting in bicellular sensilla. Axons grow out only after the number of sensory cells has been reduced. Further consecutive steps in sensory cell differentiation are: (a) outgrowth of dendritic outer segment and dendrite sheath; (b) outgrowth of trichogen process and change in structure of elongating dendrite sheath; (c) deposition of cuticle and pore tubules in the pegs; (d) retraction of trichogen process; (e) increase in diameter of dendritic outer segment accompanied by increase of microtubule number and appearance of regularly spaced electron-dense bodies at tubular doublets; (f) branching of dendritic outer segment; and (g) transformation of the dendritic branches into curled lamellae and partial destruction of the dendrite sheath. The unique process of sensory cell degeneration is interpreted as an event that revokes a step towards a possible functional improvement of the labial palp-pit organ during further evolutionSupported by the Deutsche Forschungsgemeinschaft (SFB 4/G1)  相似文献   

19.
Summary During metamorphic adult development, neurons and glial cells in the developing olfactory (antennal) lobes of the moth undergo characteristic and extensive changes in shape. These changes depend on an interplay among these two cell types and ingrowing sensory axons. All of the direct cellular interactions occur against a background of changing steroid hormone titers. Antennal-lobe (AL) neurons dissociated from stage-5 (of 18 stages) metamorphosing animals survive at least 3 wk in primary cell culture. We describe here the morphological influences on AL neurons of (1) exposure to the steroid hormone 20-hydroxyecdysone, (2) exposure to sensory axons, and (3) interactions among the AL neurons. Cultured AL neurons respond only weakly, if at all, to 20-hydroxyecdysone. They do, however, show greater total outgrowth and branching when they had been exposed in vivo to sensory axons. Because there is no direct contact between some of the neuronal types and the sensory axons at the time of dissociation, the increase in outgrowth must have been mediated via a diffusible factor(s). When AL cells (neurons and glia) are plated at high density in low volumes of medium, or when the cells are plated at low density but in the presence of medium conditioned by high-density cultures, neurite outgrowth and cell survival are increased. Nerve growth factor (NGF), epidermal growth factor (EGF), fibroblast growth factor-basic (bFGF), transforming growth factor-β (TGF β ) and insulin-like growth factor (ILGF) had no obvious effect on neuronal morphology and thus are unlikely to underlie these effects. Our results suggest that the mature shape of AL neurons depends on developmental interactions among a number of diffusible factors.  相似文献   

20.
Summary The embryonic development of antennal coeloconic sensilla was studied at four stages between 132 and 252 h after oviposition in Locusta migratoria. Initially the anlagen of the sensilla consist of 2–4 sensory cells and 3 enveloping cells. Two additional cells contribute later to the formation of socket and pit. The dendritic outer segments of the sensory cells elongate before the trichogen process grows out (ecdysis type I) with exception of one sensory cell in anlagen of poreless (np) sensilla. Other differences between np and double-walled wall pore (dw wp) sensilla are not visible until at least about 220 h after oviposition. Molting, which was studied in four stages, follows ecdysis type I in both sensillum types. The fourth enveloping cell maintains its tight connection to the socket of the sensillum even after apolysis. Its apical portion is torn off and shed together with the old cuticle. The electron-dense material between the dendritic sheath and the cuticular wall of the peg in np sensilla, which is regarded important for stimulus transmission, is not deposited during retraction of the trichogen cell. The concentric walls and spoke channels characteristic of dw wp sensilla result from deposition of cuticular material around wedge-shaped projections of the trichogen cell. The typical trilaminar 15 nm cuticulin layer is produced only on the ridges of these sensilla. The first cuticular lining of the spoke channels is only 7 nm thick and of a different structure. A flocculent material surrounds the outgrowing trichogen process. It is continuous with the filling of the spoke channels and can thus be considered as component of the stimulus-transmitting material in the functioning intermolt dw wp sensilla.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号