共查询到10条相似文献,搜索用时 93 毫秒
1.
Ayan Pradhan Aniruddha Bagchi Soumita De Sneha Mitra Shibabrata Mukherjee Parasar Ghosh 《Free radical research》2019,53(7):768-779
Rheumatoid arthritis (RA) is a systemic inflammatory autoimmune disorder wherein the contributory role of oxidative stress has been established in the synovial fluid. As availability of synovial fluid is limited, this study aimed to evaluate in the peripheral blood of patients with RA, the relationship if any, between the extent of oxidative stress in terms of generation of reactive oxygen species (ROS) in neutrophils, plasma NADPH oxidase and myeloperoxidase activity with markers of oxidative damage, circulating cytokines and disease activity score (DAS28). In patients with RA, neutrophils in peripheral blood demonstrated an enhanced generation of ROS, coupled with depletion of free radical scavenging activity. Furthermore, the NADPH oxidase and myeloperoxidase activity was enhanced as were markers of damage. There was a positive correlation between the DAS 28 and generation of ROS, NADPH oxidase and myeloperoxidase activity as also with oxidative stress mediated protein carbonylation. Patients with RA demonstrated an increase in proinflammatory (IL-17, IL-23, and IFN-γ) and some anti-inflammatory (IL-4, IL-5, and TGF-β) cytokines. Although the levels of IL-17 correlated positively with generation of ROS, myeloperoxidase, markers of protein damage and DAS28, IL-23 correlated positively only with protein damage, and negatively with free radical scavenging activity. Importantly, incubation of neutrophils from healthy donors with plasma or SF from patients with RA translated into an enhanced generation of ROS, along with an elevation of intracellular proinflammatory cytokines. Taken together, in patients with RA, circulating neutrophils mediated a shift in the oxidant/antioxidant balance favouring the former, which translated into protein damage and contributed towards disease progression. 相似文献
2.
《Free radical research》2013,47(11):894-904
AbstractChronic alcohol consumption is a well-known risk factor for liver disease, which represents a major cause of morbidity and mortality worldwide. The pathological process of alcohol-induced liver disease is characterized by a broad spectrum of morphological changes ranging from steatosis with minimal injury to more advanced liver damage, including steato-hepatitis and fibrosis/cirrhosis. Experimental and clinical studies increasingly show that the oxidative damage induced by ethanol contribute in many ways to the pathogenesis of alcohol hepatotoxicity. This article describes the contribution of oxidative mechanisms to liver damage by alcohol. 相似文献
3.
Sneha Mitra Sritama De Sarkar Ayan Pradhan Ayan K. Pati Richeek Pradhan Debolina Mondal 《Free radical research》2017,51(11-12):986-994
Vitiligo is an autoimmune depigmenting skin disease characterised by loss of melanocytes wherein oxidative stress is proposed to be the initial triggering factor with subsequent immune dysregulation. This study aimed to evaluate the relationship, if any, between the generation of reactive oxygen species (ROS), markers of oxidative damage and circulating cytokines in patients with active vitiligo. The generation of ROS in erythrocytes and neutrophils was significantly higher in patients with active vitiligo than healthy controls. Alongside, markers of oxidative stress-mediated damage namely lipid peroxidation, DNA damage and protein carbonylation were evaluated. Patients with active vitiligo demonstrated increased lipid and DNA damage but minimal protein damage. There was a significant decline in the free radical scavenging capacity of active vitiligo cases. A positive correlation existed between baseline levels of ROS and lipid peroxidation as also DNA damage. Patients with active vitiligo demonstrated an increase in several proinflammatory (IL-6, TNF-α, IL-1β, IFN-γ and IL-8) and some anti-inflammatory/immunoregulatory (IL-5 and IL-10) cytokines. Importantly, the levels of IFN-γ and IL-10 consistently correlated with the generation of ROS, markers of damage and their free radical scavenging capacity. Taken together, patients with active vitiligo demonstrated an enhanced generation of ROS in erythrocytes and neutrophils which mediated lipid peroxidation, DNA damage and coupled with a decline in their antioxidant capacity created a pro-oxidant milieu that favoured tissue damage and potential generation of neoantigens, accounting for disease progression. 相似文献
4.
Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. 总被引:6,自引:0,他引:6
Bing Tian Yuanyuan Wu Duohong Sheng Zhiguo Zheng Guanjun Gao Yuejin Hua 《Luminescence》2004,19(2):78-84
Free radical scavenging effects of the cellular protein extracts from two strains of Deinococcus radiodurans and Escherichia coli against O2-, H2O2 and *OH were investigated by chemiluminescence (CL) methods. The cellular protein extracts of D. radiodurans R1 and KD8301 showed higher scavenging effects on O2- than that of E. coli. D. radiodurans R1 and KD8301 also strongly scavenged H2O2 with an EC50 (50% effective concentration) of 0.12 and 0.2 mg/mL, respectively, compared to that of E. coli (EC50 = 3.56 mg/mL). The two strains of D. radiodurans were effective in scavenging *OH generated by the Fenton reaction, with EC50 of 0.059 and 0.1 mg/mL, respectively, compared to that of E. coli (EC50 > 1 mg/mL). Results from the chemiluminescence assay of *OH-induced DNA damage and the plasmid pUC18 DNA double-strand break (DSB) model in vitro showed that D. radiodurans had remarkably inhibitory effect on the *OH-induced oxidative damage of DNA. The scavenging effects of D. radiodurans on reactive oxygen species (ROS) played an important role in the response to oxidation stress and preventing against DNA oxidative damage, and may be attributed to intracellular scavenging proteins, including superoxide dismutase (SOD) and catalase. 相似文献
5.
Peroxynitrite (PON, ONOO(-)), formed by nitric oxide synthase-generated nitric oxide radical ( NO) and superoxide radical (O(2) (-)), is a crucial player in post-traumatic oxidative damage. In the present study, we determined the spatial and temporal characteristics of PON-derived oxidative damage after a moderate contusion injury in rats. Our results showed that 3-nitrotyrosine (3-NT), a specific marker for PON, rapidly accumulated at early time points (1 and 3 h) and a significant increase compared with sham rats was sustained to 1 week after injury. Additionally, there was a coincident and maintained increase in the levels of protein oxidation-related protein carbonyl and lipid peroxidation-derived 4-hydroxynonenal (4-HNE). The peak increases of 3-NT and 4-HNE were observed at 24 h post-injury. In our immunohistochemical results, the co-localization of 3-NT and 4-HNE results indicates that PON is involved in lipid peroxidative as well as protein nitrative damage. One of the consequences of oxidative damage is an exacerbation of intracellular calcium overload, which activates the cysteine protease calpain leading to the degradation of several cellular targets including cytoskeletal protein (alpha-spectrin). Western blot analysis of alpha-spectrin breakdown products showed that the 145-kDa fragments of alpha-spectrin, which are specifically generated by calpain, were significantly increased as soon as 1 h following injury although the peak increase did not occur until 72 h post-injury. The later activation of calpain is most likely linked to PON-mediated secondary oxidative impairment of calcium homeostasis. Scavengers of PON, or its derived free radical species, may provide an improved antioxidant neuroprotective approach for the treatment of post-traumatic oxidative damage in the injured spinal cord. 相似文献
6.
7.
《Free radical research》2013,47(9):1070-1084
AbstractIn addition to serving as the power house of mammalian cells, mitochondria are crucial for the maintenance of cellular homeostasis in response to physiological or environmental changes. Several lines of evidence suggest that posttranslational modification (PTM) of proteins plays a pivotal role in the regulation of the bioenergetic function of mitochondria. Among them, reversible lysine acetylation of mitochondrial proteins has been established as one of the key mechanisms in cellular response to energy demand by modulating the flux of a number of key metabolic pathways. In this article, we focus on the role of Sirt3-mediated deacetylation in: (1) flexibility of energy metabolism, (2) activation of antioxidant defense, and (3) maintenance of cellular redox status in response to dietary challenge and oxidative stress. We suggest that oxidative stress-elicited down-regulation of Sirt3 plays a role in the pathophysiology of diabetes, cardiac hypotrophy, mitochondrial diseases, and age-related diseases. Besides, the physiological role of newly identified lysine acylation mediated by Sirt5 and its biochemical effects on oxidative metabolism are also discussed. Moreover, we have integrated the regulatory function of several protein kinases that are involved in the phosphorylation of mitochondrial enzymes during oxidative stress. Finally, the functional consequence of the synergistic regulation through diverse protein modifications is emphasized on the maintenance of the bioenergetic homeostasis and metabolic adaptation of the animal and human cells. Together, we have provided an updated review of PTM in mitochondrial biology and their implications in aging and human diseases through an intricate regulation of energy metabolism under oxidative stress. 相似文献
8.
Hatasu Kobayashi Kiyoshi Fukuhara† Saeko Tada-Oikawa Yuki Yada Yusuke Hiraku Mariko Murata Shinji Oikawa 《Journal of neurochemistry》2009,108(2):397-407
Tetrahydroisoquinoline (TIQ) derivatives are putative neurotoxins that may contribute to the degeneration of dopaminergic neurons in Parkinson's disease. One TIQ, norsalsolinol (NorSAL), is present in dopamine-rich areas of human brain, including the substantia nigra. Here, we demonstrate that NorSAL reduces cell viability and induces apoptosis via cytochrome c release and caspase 3 activation in SH-SY5Y human neuroblastoma cells. Cytochrome c release, caspase 3 activation, and apoptosis induction were all inhibited by the antioxidant N -acetylcysteine. Thus, reactive oxygen species (ROS) contribute to apoptosis induced by NorSAL. Treatment with NorSAL also increased levels of oxidative damage to DNA, a stimulus for apoptosis, in SH-SY5Y. To clarify the mechanism of intracellular DNA damage, we examined the DNA damage caused by NorSAL using 32 P-5'-end-labeled isolated DNA fragments. NorSAL induced DNA damage in the presence of Cu(II). Catalase and bathocuproine, a Cu(I) chelator, inhibited this DNA damage, suggesting that ROS such as the Cu(I)-hydroperoxo complex derived from the reaction of H2 O2 with Cu(I), promote DNA damage by NorSAL. In summary, NorSAL-generated ROS induced oxidative DNA damage, which led to caspase-dependent apoptosis in neuronal cells. 相似文献
9.
Jang YC Liu Y Hayworth CR Bhattacharya A Lustgarten MS Muller FL Chaudhuri A Qi W Li Y Huang JY Verdin E Richardson A Van Remmen H 《Aging cell》2012,11(5):770-782
Age-related loss of muscle mass and function, sarcopenia, has a major impact on the quality of life in the elderly. Among the proposed causes of sarcopenia are mitochondrial dysfunction and accumulated oxidative damage during aging. Dietary restriction (DR), a robust dietary intervention that extends lifespan and modulates age-related pathology in a variety of species, has been shown to protect from sarcopenia in rodents. Although the mechanism(s) by which DR modulates aging are still not defined, one potential mechanism is through modulation of oxidative stress and mitochondrial dysfunction. To directly test the protective effect of DR against oxidative stress-induced muscle atrophy in vivo, we subjected mice lacking a key antioxidant enzyme, CuZnSOD (Sod1) to DR (60% of ad libitum fed diet). We have previously shown that the Sod1(-/-) mice exhibit an acceleration of sarcopenia associated with high oxidative stress, mitochondrial dysfunction, and severe neuromuscular innervation defects. Despite the dramatic atrophy phenotype in the Sod1(-/-) mice, DR led to a reversal or attenuation of reduced muscle function, loss of innervation, and muscle atrophy in these mice. DR improves mitochondrial function as evidenced by enhanced Ca(2+) regulation and reduction of mitochondrial reactive oxygen species (ROS). Furthermore, we show upregulation of SIRT3 and MnSOD in DR animals, consistent with reduced mitochondrial oxidative stress and reduced oxidative damage in muscle tissue measured as F(2) -isoprostanes. Collectively, our results demonstrate that DR is a powerful mediator of mitochondrial function, mitochondrial ROS production, and oxidative damage, providing a solid protection against oxidative stress-induced neuromuscular defects and muscle atrophy in vivo even under conditions of high oxidative stress. 相似文献
10.
Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases 总被引:1,自引:0,他引:1
Keating DJ 《Journal of neurochemistry》2008,104(2):298-305
A common feature in the early stages of many neurodegenerative diseases lies in mitochondrial dysfunction, oxidative stress, and reduced levels of synaptic transmission. Many genes associated with neurodegenerative diseases are now known to regulate either mitochondrial function, redox state, or the exocytosis of neurotransmitters. Mitochondria are the primary source of reactive oxygen species and ATP and control apoptosis. Mitochondria are concentrated in synapses and significant alterations to synaptic mitochondrial localization, number, morphology, or function can be detrimental to synaptic transmission. Mitochondrial by-products are capable of regulating various steps of neurotransmission and mitochondrial dysfunction and oxidative stress occur in the early stages of many neurodegenerative diseases. This mini-review will highlight the prospect that mitochondria regulates synaptic exocytosis by controlling synaptic ATP and reactive oxygen species levels and that dysfunctional exocytosis caused by mitochondrial abnormalities may be a common underlying phenomenon in the initial stages of some human neurodegenerative diseases. 相似文献