首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
Summary Endosperm Balance Number (EBN) is a genetic, dose-dependent crossability system functioning in tuber-bearing Solanum species. Each species has been assigned 1EBN, 2EBN, or 4EBN. Species thus designated cross only within their EBN group. Doubling of chromosome number also doubles the EBN. The ploidy: EBN ratio is not consistent among Solanum species. Some diploids are 2EBN while others are 1EBN. Some tetraploids are 4EBN while others are 2EBN. Species from Mexico typically have EBNs that are one-half of their ploidy [e.g. 2x(1EBN), 4x(2EBN)]. Hybrids of Mexican species and a South American species, 2x(1EBN) S. Commersonii, and its 4x(2EBN) colchicine derivative were made and crossed to 1, 2, and 4EBN standard testers to determine the relationship of the genetic organization of EBN among and within these species. Diploid hybrids crossed only to 1EBN standard testers. Hybrids of 4x(2EBN) S. commersonii and 4x(2EBN) Mexican species crossed almost exclusively to 2EBN standard testers. Complex tetraploid hybrids involving S. commersonii, S. stenophyllidium (a Mexican diploid), and Mexican tetraploids of series Longipedicellata also crossed only to 2EBN testers. The apparent lack of recombination and segregation for EBN in these hybrids indicates that the genomes of the Mexican diploid and tetraploid species carry EBN in a way genetically similar to that of the South American species S. Commersonii.Cooperative investigation of the U.S. Department of Agriculture, Agricultural Research Service and the Wisconsin Experiment Station. Supported in part by the USDA/Cooperative States Research Service Competitive Grant No. 83-CRCR-1-1253  相似文献   

2.
Summary A triploid hybrid (2n=3x=36) between a colchicine-induced 4x(2EBN) Solanum brevidens (a non-tuber-bearing species) and 2x(2EBN) S. chacoense (a tuber-bearing species) was used as a vehicle for germplasm transfer to S. tuberosum Group Tuberosum. The use of 2n gametes from the triploid allowed the unique opportunity for transferring exotic germplasm from Series Etuberosa to Gp. Tuberosum material. The triploid hybrid used had a pollen stainability of less than 0.1%. Observations of microsporogenesis revealed that metaphase I pairing configurations were primarily 12 bivalents and 12 univalents with occasional trivalents. Anaphase I separations were irregular, often with lagging univalents. Meiotic observations and pollen morphology suggest that the stainable pollen produced by the hybrid was 2n=3x=36. A single pentaploid hybrid (2n=5x=60) was produced by the fertilization of a rare 2n egg from the triploid with a normal male gamete from the clone Wis AG 231 (2n=4x=48). Limited crosses to other 1, 2 and 4EBN species and cultivars were unsuccessful. The pentaploid hybrid had a more regular meiosis than the triploid and dramatically improved pollen stainability (37% stainable pollen). Stylar blocks prevented estimates of male fertility in crosses. Female fertility in 47 crosses with nine cultivars averaged 19 seeds per fruit. Although S. brevidens is non-tuber-bearing, and the triploid produced only stolons, the pentaploid hybrid tuberized well under field conditions, despite being very late. Results suggest that the tuberization response is a dosage and/or threshold effect. This approach to the incorporation of 1EBN germplasm indicates the utility of the EBN concept coupled with 2n gametes. Further, it demonstrates a means for the introgression of 1EBN species genes into Gp. Tuberosum material.  相似文献   

3.
The cultivated potato Solanum tuberosum Dunal has many wild related species with desirable traits. Some of these wild tetraploids have disomic chromosome pairing, ready selfing with little inbreeding depression, but have strong crossing barriers with cultivars. They hybridize most easily with 2EBN forms (which include most diploid species). Chromosome doubling to the 8x level, use of 2n gametes, use of 2n gametes of 4x-2x triploid hybrids, and embryo rescue have been proposed to overcome the crossability barrier of these species with S. tuberosum. In this study, 2x S. commersonii (cmm) was used as a bridge species with S. acaule and series Longipedicellata species. Synthetic tetraploid 4x-cmm crossed readily to disomic 4x species, resulting in fertile F1 and F2 hybrids. Some of these had 2n gametes, which enabled direct crossing to tuberosum, resulting in 6x hybrids. The benefits of this scheme are (i) hybrids are relatively fertile, so many progeny may be produced for selection at each step, (ii) hybridization with cmm results in 2n gametes needed for crossing to tuberosum, and breaks up restricted recombination within disomic genomes, and (iii) simple techniques and tools are employed.  相似文献   

4.
Summary Three triploid (2n=3x=36) blueberry hybrids were obtained by hand-pollinating approximately 7,000 flowers of tetraploid highbush blueberry cultivars (based on Vaccinium corymbosum L.) with pollen from the diploid species V. elliottii Chapm. Meiotic analysis of these triploids revealed trivalents, bivalents and univalents in all metaphase I cells, with lagging chromosomes evident at anaphase I. Pollen of the three triploids was mostly aborted and did not stain with acetocarmine. However, the three triploids did produce from 0.9%–1.3% giant pollen grains that stained with acetocarmine and were present as monads, dyads or triads, rather than the normal tetrads. Pollination of 10,853 flowers of hexaploid V. ashei Reade cultivars with pollen from the triploids produced 266 berries, which averaged fewer than two fully-developed seeds per berry. One triploid clone showed partial female fertility when crossed to hexaploids, self-pollinated, or intercrossed with other triploids. Ploidy levels of the resulting hybrids were determined.Florida Agricultural Experiment Station Journal Series No. 8672  相似文献   

5.
Natural triploid hybrids (Senecio x londinensis Lousley) betweenS. squalidus L. (2n = 20) and 5. viscosus L. (2n = 40) are fairlyfrequently found in Britain. Under glasshouse conditions bothnatural and artificial hybrids displayed very low levels ofseed fertility and gave rise to morphologically diverse F2 plantsat about the triploid or pentaploid chromosome levels. By theF4 generation, progeny of a F2 pentaploid plant had somaticchromosome numbers near to the tetraploid level and considerablyincreased pollen and seed fertilities. Such fertile tetraploidsegregants of S. x londinensis permit the introgression of S.squalidus genes into S. viscosus, and may indicate the courseof introgression into other tetraploid species of Senecio. Senecio, hybridization, introgression  相似文献   

6.
Solanum bulbocastanum, a wild, diploid (2n=2x=24) Mexican species, is highly resistant to Phytophthora infestans, the fungus that causes late blight of potato. However this 1 EBN species is virtually impossible to cross directly with potato. PEG-mediated fusion of leaf cells of S. bulbocastanum PI 245310 and the tetraploid potato line S. tuberosum PI 203900 (2n=4x=48) yielded hexaploid (2n= 6x=72) somatic hybrids that retained the high resistance of the S. bulbocastanum parent. RFLP and RAPD analyses confirmed the hybridity of the materials. Four of the somatic hybrids were crossed with potato cultivars Katahdin or Atlantic. The BC1 progeny segregated for resistance to the US8 genotype (A-2 mating type) of P. Infestans. Resistant BC1 lines crossed with susceptible cultivars again yielded populations that segregated for resistance to the fungus. In a 1996 field-plot in Wisconsin, to which no fungicide was applied, two of the BC1 lines, from two different somatic hybrids, yielded 1.36 and 1.32 kg/plant under a severe late-blight epidemic. In contrast, under these same conditions the cultivar Russet Burbank yielded only 0.86 kg/plant. These results indicate that effective resistance to the late-blight fungus in a sexually incompatible Solanum species can be transferred into potato breeding lines by somatic hybridization and that this resistance can then be further transmitted into potato breeding lines by sexual crossing. Received: 27 October 1997 / Accepted: 11 November 1997  相似文献   

7.
 Crossing experiments were conducted to introduce resistance to the root-knot nematodes, Meloidogyne chitwoodi and M. fallax, from various polyploid Central American Solanum spp. into the cultivated potato, S. tuberosum ssp. tuberosum. The most effort was put into producing tetraploid hybrids through inter-EBN (Endosperm Balance Number) crosses. From the crosses of tetraploid S. tuberosum (4 EBN) with tetraploid S. stoloniferum and S. fendleri (both 2 EBN), few seeds were derived that led to viable plants. In vitro culture of immature seeds also yielded several hybrid plants. From crosses of diploid S. tuberosum (2 EBN) with hexaploid S. hougasii (4 EBN) four hybrids were obtained through in vitro culture. Backcrosses were made with selected hybrids and a variable number of seeds was produced depending on the hybrid genotype. The successful introgression of resistance into backcross populations is shown. A scheme is presented for the introgression of traits at a tetraploid level from allotetraploid Solanum species into autotetraploid S. tuberosum through sexual crosses. The relevance of EBN for potato breeding is discussed. Received: 25 November 1996 / Accepted: 14 February 1997  相似文献   

8.
Wild Mexican potato species are an important untapped source of useful variation for potato improvement. Introgression methods such as 2n gametes, chromosome doubling, and crossing with disomic 4x 2 endosperm balance number (EBN) bridge species have been used to overcome post-zygotic endosperm failure according to the EBN hypothesis. Stylar barriers can prevent zygote formation, bilaterally when zygote formation is blocked in both directions of the cross or unilaterally when zygote formation is blocked in self incompatible (SI) × self compatible (SC) crosses. In several Solanaceae species, the S-locus for SI has been implicated in interspecific incompatibility. The objectives of this research were to determine if: (1) disomic 4x 2EBN Solanum stoloniferum can be used as a bridge species for introgression of the Mexican 2x 1EBN species Solanum cardiophyllum and Solanum pinnatisectum, (2) pre- and/or post-zygotic barriers limit hybridization among EBN compatible Solanum inter-series crosses, and (3) reproductive barriers act unilaterally or bilaterally. Fruit formation and seed set was recorded for inter-pollinations of S. stoloniferum, 4x 2EBN chromosome doubled S. cardiophyllum and S. pinnatisectum, and 2x 2EBN S. tuberosum haploids (HAP) or haploid-species hybrids (H-S). In vivo pollen tube growth was analyzed for each cross combination with fluorescence microscopy. Attempts to create bridge hybrids between S. stoloniferum, and S. cardiophyllum or S. pinnatisectum were not successful. Pre- and post-zygotic barriers prevented seed formation in crosses involving S. cardiophyllum and S. pinnatisectum. Self compatibility in S. stoloniferum and S. pinnatisectum suggests that the S-locus does not contribute to the stylar barriers observed with these species. Alternatively, the presence of functional and nonfunctional (SC) S-alleles may explain interspecific incompatibility in intra- and inter-ploidy crosses. A non-stylar unilateral incongruity was discovered in H-S/HAP × S. stoloniferum crosses, indicating either a post-zygotic barrier, or a pre-zygotic barrier acting at or within the ovary. Furthermore, lack of S. stoloniferum pollen rejection may occur through absence of S. stoloniferum pollen-active genes needed to initiate pollen rejection, or through competitive interaction in S-locus heterozygous S. stoloniferum pollen. Introgression strategies using these species would benefit potato breeding by introducing genetic diversity for several traits simultaneously through co-current introgression.  相似文献   

9.
Solanum acaule Bitt., a wild potato species, is closely related to cultivated potato (Solanum. tuberosum L.). Incorporation of desirable traits from allotetraploid [2n=4x=48, 2 endosperm balance number (EBN)] S. acaule (acl) into autotetraploid (2n=4x=48, 4EBN) S. tuberosum (tbr) is difficult due to incongruity boundaries. In this study, three hybrid combinations, each with a specific genome constitution, were produced through protoplast fusion: (1) hexaploid 2x acl (+) 4x tbr, (2) tetraploid 2x acl (+) 2x tbr, and (3) hexaploid 4x acl (+) 2x tbr hybrids. In terms of glycoalkaloid aglycones, the hybrids produced demissidine, tomatidine and solanidine, similarly to the S. acaule parental species, but S. tuberosum synthesised only solanidine. Inoculations with Clavibacter michiganensis ssp. sepedonicus (Cms), which is the causal agent of bacterial ring rot in potato, yielded significantly lower total glycoalkaloid aglycone accumulation both in S. acaule plants and in interspecific hybrids in comparison with the corresponding mock-inoculated plants. However, in S. tuberosum the aglycone levels were either higher or unchanged as a result of infection by Cms. To incorporate the desirable traits of the interspecific somatic hybrids into 4EBN S. tuberosum, sexual backcrosses were carried out. The hexaploid 4x acl (+) 2x tbr hybrids with the hypothetical 4EBN showed the greatest capacity to undergo backcrosses with S. tuberosum.  相似文献   

10.
The breeding value of tetraploid F1 hybrids between tetrasomic tetraploid S. tuberosum and the disomic tetraploid wild species S. acaule was examined. The F1 hybrids showed a tuber yield and appearance comparable to those of their cultivated parent, indicating a potential as acceptable breeding stocks despite the 50% contribution to their pedigree from wild S. acaule. The cytological behavior of the tetraploid F1 hybrids was examined to determine the probability of recombination for the introgression of S. acaule genes. The majority of the meiotic configurations at metaphase I was bivalents and univalents with mean frequencies of 17.6 and 9.9, respectively. Further, a low frequency of trivalents and quadrivalents was observed. An acceptable low level of meiotic irregularities were observed at the later stages of microsporogenesis, and a reasonable level of pollen stainability was obtained. Therefore, these hybrids could likely be employed for further introgression. From the cytological observations, the following speculations were drawn: (1) some genomic differentiation exists between the S. acaule genomes, (2) at least one of the S. acaule genomes may be homoeologous to the S. tuberosum genomes, (3) intergenomic recombination would likely occur due to the nature of the genomic constitution of the hybrids, and (4) the nature of sesquiploidy of the hybrids may facilitate efficient introgression and establishment of unique aneuploid and euploid recombinant genetic stocks.  相似文献   

11.
Summary More than 28,000 pollinations were carried out between 5 Ipomoea batatas and 41 diploid I. trifida accessions of diverse origins to obtain 4x interspecific hybrids. From the resultant 730 seeds, 248 plants were finally obtained. Ploidy level determination of the progeny showed unexpected results: 52 individuals were hexaploid, 5 were pentaploid, 190 were tetraploid, as expected, and one was not determined. The existence of 5x and 6x progenies from 6x x 2x crosses not only confirmed the presence of 2n gametes but also their successful function in gene flow between ploidy levels and polyploidization within this genus. The progeny and their cultivated parents were planted in an observation field. The cultivated parents produced 0.49 kg/plant or less. Most 4x progenies did not produce storage roots or had very poor yields; nonetheless, and despite their cultivated parents' poor yields, 8 genotypes yielded between 0.81 and 1.50 kg/plant.A new scheme, using the 4x interspecific hybrids, is proposed for evaluating 2x and 4x wild accessions of the section Batatas to which the sweet potato belongs. Other possible uses of the 4x hybrids in breeding and genetics of the sweet potato are also discussed.  相似文献   

12.
The wild tetraploid (2n=28) oat species Avena magna and A. murphyi have been domesticated by having been transferred from the common oat, A sativa (2n=42), the characteristics of non-shedding spikelets glabrous and yellow lemma, and reduced awn formation. Domestication has been achieved by crossing the common oat with either of the tetraploid species and then backcrossing the pentaploid hybrids with pollen of the tetraploid wild parent. Among the BC plants obtained only a few produced some seeds. Fertile tetraploids exhibiting the domesticated syndrome have been selected for in the F2 generation. Although morphologically they were almost indistinguishable from the common oat, they were tetraploids. Wild x domesticated A. magna hybrids were vigorous and fertile. They retained their spikelets at maturity, lemma color and pubescence were intermediate between the parental lines, and awns were formed only on the lower floret of the spikelet. Each of these characteristics segregated in a 31 fashion, indicating single gene control, as in the common oat. These four characteristics formed a linkage group in one F2 family and two linkage groups in the other two families. The usefulness of the domesticated tetraploids for oat research and production has been discussed. Taxonomically, the domesticated tetraploids were ranked as subspecies: A. magna ssp. domestica, and A. murphyi ssp. rigida.  相似文献   

13.
Thirty-six percent of the wild potato (Solanum L. section Petota Dumort.) species are polyploid, and about half of the polyploids are tetraploid species (2n = 4x = 48). Determination of the type of polyploidy and development of the genome concept for members of section Petota traditionally has been based on the analysis of chromosome pairing in species and their hybrids and, most recently, DNA sequence phylogenetics. Based on these data, the genome designation AABB was proposed for Mexican tetraploid species of series Longipedicellata Buk. We investigated this hypothesis with genomic in situ hybridization (GISH) for both representatives of the series, S. stoloniferum Schltdl. and S. hjertingii Hawkes. GISH analysis supports an AABB genome constitution for these species, with S. verrucosum Schltdl. (or its progenitor) supported as the A genome donor and another North or Central American diploid species (S. cardiophyllum Lindl., S. ehrenbergii (Bitter) Rydb., or S. jamesii Torrey) as the B genome donor. GISH analysis of chromosome pairing of S. stoloniferum also confirms the strict allopolyploid nature of this species. In addition, fluorescence in situ hybridization data suggest that 45S rDNA regions of the two genomes of S. stoloniferum were changed during coevolution of A and B genomes of this allotetraploid species.  相似文献   

14.
Summary A high gene frequency for ps (parallel spindles) is expected in cultivated tetraploid potatoes, S. tuberosum Group Tuberosum, if 2n pollen produced by ancestral diploid plants which were psps was involved in the origin and evolution of the potato. Fifty-six North American cultivars (varieties and advanced selections) were pollinated by diploid clones, either W 5295.7 or W 5337.3 which are homozygous recessive for ps. The segregation ratios in regard to 2n pollen production in derived tetraploid progenies, from 4x×2x crosses, reveal the genotype of ps in the cultivars. Microsporogenesis of 2n pollen producing 4x progeny was observed to avoid an overestimation of the frequency of 2n pollen producing plants due to mechanisms other than parallel spindles. More than 50% of the 56 cultivars are simplex (Pspspsps), since in each of these cultivars about 50% of their progeny produced 2n pollen. The ps gene frequency in the 56 cultivars was estimated as high as 0.69. The high frequency of ps in the tetraploid cultivars clearly supports the hypothesis that 2n pollen produced by plants homozygous recessive for ps have been involved in the origin of cultivated tetraploid potatoes, since a higher frequency of ps in the tetraploid than in the ancestral diploid population can be expected from sexual polyploidization but not from somatic doubling. The importance of meiotic mutants such as ps for the successful evolution of polysomic polyploids is emphasized.  相似文献   

15.
Pollen-mediated gene transfer from stress tolerant or herbicide-resistant transgenic plants may cause environmental or agronomic problems. Apomictic seed production found in some bahiagrass cultivars may serve as a natural transgene containment system. Under greenhouse conditions, the average gene transfer frequency from an herbicide-resistant apomictic tetraploid to a population of sexual diploid bahiagrass genotypes or apomictic tetraploid bahiagrass was 0.16% when the transgenic pollen donor was placed at 0.5–1.5 m distance from the non-transgenic pollen receptors. The herbicide-resistant hybrids were characterized for transgene integration, expression and ploidy, by Southern blot analysis, immuno-chromatography and flow cytometry, respectively. Hybrids resulting from open pollination of non-transgenic diploid female plants with transgenic tetraploid male plants were triploids or near-triploids, with 2n = 26–34. These hybrids displayed a wide range of phenotypic variability, including some non-persistent or non-flowering dwarf-type hybrids with good vigor, or hybrids with vegetative growth similar to non-transgenic plants, but with significantly reduced seed set. Non-flowering aneu-triploids with good vigor/field performance will provide the highest level of transgene containment. Embryo sac analysis of pollinated spikelets confirmed a high proportion of aborted ovules. An apospory-linked RFLP marker was detected in 13 of the 15 near-triploid hybrids. All flowering aneuploid hybrids displayed significantly reduced seed set, and none of the sexual near-triploid hybrids produced any seeds. All tetraploid gene transfer events carried the apospory-linked RFLP marker, suggesting that despite the presence of the aposporus locus, a low degree of sexuality co-exists in apomictic tetraploid cultivars. Thus, tetraploid apomictic bahiagrass does not provide complete transgene containment, although intra-specific gene transfer is drastically reduced compared to sexually reproducing perennial grasses.  相似文献   

16.
We studied hybridization between the diploid Centaurea pseudophrygia and the tetraploid C. jacea by performing crossing experiments and screening natural populations using flow cytometry. The experiments confirm that the studied species exhibit strong reproductive isolation. Interspecific hybrids were formed at a low frequency, including triploids (originating from reduced gametes) and tetraploids (involving unreduced gametes of the diploids). In contrast, hybrids were almost absent among seeds and adult plants of natural mixed populations and among the offspring from experimental pollinations with a mixture of pollen of both ploidy levels. We found that mixed pollination is an important mechanism for preventing hybridization between plants of different ploidy levels and sustaining the reproduction of the tetraploids. A mentor effect (induced selfing in the presence of pollen of different ploidy levels) was observed in both diploids and tetraploids, reinforcing the reproductive isolation between cytotypes. Higher ploidy levels (pentaploid, hexaploid) involving unreduced gametes of the tetraploid species were identified. Notably, pentaploids were discovered for the first time in Centaurea sect. Jacea. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 104 , 93–106.  相似文献   

17.
Summary Crossability between the diploid species S. circaeifolium subsp. circaeifolium (crc) and other diploid species, primarily diploid S. tuberosum subsp. tuberosum (tbr-2x), was studied. Forty-seven hybrids were obtained from crosses between crc as female parent and tbr-2x and some other species from series Tuberosa as male parents. Of these hybrids 17% were diploids; the other 83% were triploids, probably carrying two genomes of crc. Female fertility was sufficient to obtain offspring from backcrosses with the cultivated parent. Pollen stainability of the f1 varied, and micro-pollen as well as unreduced pollen occurred. During meiosis of the diploids and triploids a rather high proportion of univalents was found, and in the triploids on average two or three trivalents per cell were found. All hybrids were resistant to Globodera pallida pathotypes 2 and 3, and 75% of the tested genotypes were highly resistant to Phytophthora infestans. Solanidine, tomatidine, tomatidenol, and demissidine glycosides were found in tubers of the hybrids. Comparisons with somatic hybrids between crc and tbr-2x are made. It is concluded that crc is a valuable Solanum species that can and should be included in potato breeding programs.  相似文献   

18.
Investigation of chromosome numbers of allAzolla species, and for the first time of hybrids, has been undertaken. Removal of wax from the leaf surface proved invaluable in achieving clear cytological preparations and providing unambiguous chromosome numbers. In contrast to previous records, the speciesA. pinnata, A. filiculoides, A. filiculoides var.rubra, A. caroliniana, A. microphylla, andA. mexicana were found to be 2n=44, andA. nilotica to be 2n=52. Several triploids (2n=66) and one tetraploid (2n=88) were identified. No geographical pattern could be observed in the distribution of triploids which probably derive from the function of unreduced gametes. The chromosome number of hybrids occasionally deviates from the diploid chromosome number (2n=44). The small chromosome size limits karyotypic analysis and only differences in overall chromosome size can be observed. Taxonomic implications of chromosome numbers and sizes are discussed.  相似文献   

19.
The inheritance of endosperm balance number (EBN), a genetic, dose-dependent crossability system functioning in tuber-bearing Solanum (potato) species, was investigated for certain wild potato species having an EBN equal to one half of their ploidy. The EBN of Solanum acaule, a disomic 4(2EBN) South American species, was investigated by producing F1 and F2 hybrids with artificial 4x(2EBN) S. commersonii. This allowed assessment of recombination among the two genomes of disomic S. acaule and that of S. commersonii. When crossability of the hybrids with 1EBN, 2EBN and 4EBN standards was tested, no variation for EBN was detected. The apparent lack of recombination and segregation for EBN in these hybrids indicates that the genomes of S. acaule and S. commersonii carry EBN in a genetically-similar way. Combined with previous reports, these data indicate that the inheritance of EBN is similar in widely-separated taxa from South America and Mexico.  相似文献   

20.
P. E. Brandham 《Genetica》1982,59(1):29-42
In reciprocal crosses between diploid and triploid Aloineae the progeny are largely diploid or diploid plus one or two chromosomes, but in reciprocal crosses between triploids and tetraploids they are tetraploid or nearly so. Thus the triploids contribute circa haploid gametes to the progeny when crossed with diploids but circa diploid gametes when crossed with tetraploids. These results are compared with those of a number of earlier workers. It is concluded that the bias in the frequency of progeny types towards diploidy or tetraploidy, depending on the ploidy level of the plant which is crossed with the triploid, is caused by inter-embryo competition. Those embryos with an endosperm/embryo factor of 1.5, the value found in normal diploid/diploid crosses having triploid endosperms, are selected in preference to those with factors higher or lower than 1.5.Inter-gamete competition also occurs among the euploid and aneuploid gametes produced by the triploids. This is more pronounced on the male side, because the degree of survival of aneuploid pollen from the triploids into the next generation is much lower than that of aneuploid egg nuclei.Non-reduction in the triploids gives rise to occasional pentaploid progeny in crosses with tetraploids, but it is more probable that in diploid/triploid crosses tetraploid progeny are the products of non-reduction in the diploid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号