首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The effect of long-term food restriction on the sensitivity of the pituitary to exogenously administered chicken luteinizing hormone releasing hormone I (cLHRH-I) was investigated in three groups of broiler breeder females fed ad libitum, fed a restricted quantity of food or fed a restricted quantity of food to obtain an intermediate body weight between those of the first two groups. At 16 weeks of age, basal FSH release was higher in ad libitum fed birds, culminating in ovarian development and subsequent oestradiol production by the small follicles. At this age, LH secretion was independent of ovarian feedback factors. In all groups, cLHRH-I was most active in releasing LH in intact and ovariectomized animals and, to a lesser extent, in releasing FSH in ovariectomized birds. At 39 weeks of age, basal FSH concentrations were similar among intact animals of all groups, whereas LH concentrations differed among groups, with higher values in the restricted birds. This food effect was enhanced in ovariectomized birds. Furthermore, the high response to cLHRH-I in the ovariectomized, restricted birds compared with the ad libitum, ovariectomized group suggests an improved sensitivity of the hypothalamic-pituitary axis. In conclusion, birds fed ad libitum showed the highest responsiveness to ovarian factors and to cLHRH-I in releasing FSH in the period before sexual maturity. No effect of amount of feeding could be observed for LH. However, during the egg laying period, LH release by cLHRH-I was highly dependent on amount of feeding and on ovarian feedback regulation. This finding indicates that the amount of feeding can modify the sensitivity of the pituitary to cLHRH-I, and possibly to gonadal hormones, during the laying period.  相似文献   

2.
Artificial illumination is widely used in modern poultry houses and different wavelengths of light affect poultry production and behaviour. In this study, we measure mRNA and protein abundance of estrogen receptors (ERs) and progesterone receptors (PRs) in order to investigate the effect of monochromatic light on egg production traits and gonadal hormone function in chicken ovarian follicles. Five hundred and fifty-two 19-wk-old laying hens were exposed to three monochromatic lights: red (RL; 660 nm), green (GL; 560 nm), blue (BL; 480 nm) and control cool white (400–760 nm) light with an LED (light-emitting diode). There were 4 identical light-controlled rooms (n = 138) each containing 3 replicate pens (46 birds per pen). Water was supplied ad libitum and daily rations were determined according to the nutrient suggestions for poultry. Results showed that under BL conditions there was an increase in the total number of eggs at 300 days of age and egg-laying rate during the peak laying period. The BL and GL extended the duration of the peak laying period. Plasma melatonin was lowest in birds reared under BL. Plasma estradiol was elevated in the GL-exposed laying hens, and GL and BL increased progesterone at 28 wk of age. In the granulosa layers of the fifth largest preovulatory follicle (F5), the third largest preovulatory follicle (F3) and the largest preovulatory follicle (F1), ERα mRNA was increased by BL and GL. Treatment with BL increased ERβ mRNA in granulosa layers of F5, F3 and F1, while GL increased ERβ mRNA in F5 and F3. There was a corresponding increase in abundance of the proteins in the granulosa layers of F5, with an increase in PR-B, generated via an alternative splice site, relative to PR-A. Treatment with BL also increased expression of PR mRNA in all of the granulosa layers of follicles, while treatment with GL increased expression of PR mRNA in granulosa layers of SYF(small yellow follicle), F5 and F1. These results indicate that blue and green monochromatic lights promote egg production traits via stimulating gonadal hormone secretion and up-regulating expression of ERs and PRs. Changes in PR-B protein suggest that this form of the progesterone receptor is predominant for progesterone action in the granulosa layers of preovulatory follicles in chickens during light stimulation.  相似文献   

3.
Ovine LH and ovine FSH stimulated progesterone production in granulosa cells isolated from the F1, F2 and F3 follicles of hypophysectomized and control (sham-operation) hens when they were collected 6 h after operation, but the steroidogenic response to LH was greater for granulosa cells from hypophysectomized hens. At 15 h after operation progesterone production by granulosa cells was stimulated by LH in all 3 follicle types of control hens, but only in the F1 follicles of hypophysectomized hens. The response to FSH at 15 h was similar for control and hypophysectomized hens. The time after hypophysectomy therefore appears to affect the LH-stimulated progesterone production by granulosa cells of the F2 and F3 follicles.  相似文献   

4.
Undifferentiated granulosa cells from prehierarchal (6- to 8-mm-diameter) hen follicles express very low to undetectable levels of LH receptor (LH-R) mRNA, P450 cholesterol side chain cleavage (P450scc) enzyme activity, and steroidogenic acute regulatory (StAR) protein, and produce negligible progesterone, in vitro, following an acute (3-h) challenge with either FSH or LH. It has previously been established that culturing such cells with FSH for 18-20 h induces LH-R, P450scc, and StAR expression, which enables the initiation of progesterone production. The present studies were conducted to characterize the ability of activin and transforming growth factor (TGF) beta, both alone and in combination with FSH, to promote hen granulosa cell differentiation, in vitro. A 20-h culture of prehierarchal follicle granulosa cells with activin A or transforming growth factor beta (TGFbeta)1 increased LH-R mRNA levels compared with control cultured cells. Activin A and TGFbeta1 also promoted FSH-receptor (FSH-R) mRNA expression when combined with FSH treatment. Neither activin A nor TGFbeta1 alone stimulated progesterone production after 20 h culture. However, preculture with either factor for 20 h (to induce gonadotropin receptor mRNA expression) followed by a 3-h challenge with FSH or LH potentiated StAR expression and progesterone production compared with cells challenged with gonadotropin in the absence of activin A or TGFbeta1 preculture. Significantly, activation of the mitogen-activated protein (MAP) kinase pathway with transforming growth factor alpha (TGFalpha) (monitored by Erk phosphorylation) blocked TGFbeta1-induced LH-R expression, and this effect was associated with the inhibition of Smad2 phosphorylation. We conclude that a primary differentiation-inducing action of activin A and TGFbeta1 on hen granulosa cells from prehierarchal follicles is directed toward LH-R expression. Enhanced LH-R levels subsequently sensitize granulosa cells to LH, which in turn promotes StAR plus P450scc expression and subsequently an increase in P4 production. Significantly, the finding that TGFbeta signaling is negatively regulated by MAP kinase signaling is proposed to represent a mechanism that prevents premature differentiation of granulosa cells.  相似文献   

5.
In hens, the ovarian follicles committed to ovulation are arranged in an ordered follicular hierarchy. In standard broiler breeders hens genetically selected for high growth rate the reproductive function is clearly dysfunctional. Feed restriction is needed during reproductive development to limit the formation of excessive numbers of ovarian yellow follicles arranged in multiple hierarchies. To determine whether leptin is involved in the nutritional and reproductive interactions controlling follicular hierarchy in hens, blood leptin levels and ovarian expression of the leptin receptor mRNA were determined during follicle maturation in three chicken lines; a slow growing broiler "Label" genotype without reproductive dysfunction, a fast growing "Standard" genotype fed ad libitum or restricted and a fast growing "Experimental" line with intermediate reproductive performance levels. Whereas expression of the leptin receptor mRNA did not change in the theca, it clearly decreased with follicular differentiation in the granulosa of slow growing hens. In fast growing standard hens fed ad libitum and presenting significant reproductive dysfunction, the decrease was disrupted and dramatic up-regulation of granulosa cell expression of the leptin receptor was observed. On the other hand, feed restriction decreased the overall level of expression of the leptin receptor mRNA and restored the decrease with follicular growth. The level of expression of the leptin receptor probably modulates the action of leptin on follicular differentiation. Since blood leptin and other metabolic factors were not affected by the genotype or by nutritional state, the factors involved in the regulation of leptin receptor gene expression remain to be determined. This study demonstrates the involvement of leptin in the nutritional control of reproduction in birds. Leptin action on the ovary probably controls follicular hierarchy through the regulation of steroidogenesis.  相似文献   

6.
In sheep, the presence of the Booroola F gene has several important consequences for ovarian function. This study investigated the consequences of the presence of the F gene for the insulin-like growth factor (IGF) system in the ewe ovary. Studies were undertaken in ovaries from F+ and ++ Mérinos d'Arles ewes to determine 1) the levels of type I IGF receptors and IGF binding proteins (IGFBPs) in follicular cells by quantitative autoradiography of [(125)]-IGF-I binding sites on ovarian sections; 2) the pattern of intrafollicular IGFBPs, by Western-ligand blotting on follicular fluids; and 3) the effects of IGF-I and FSH on proliferation and differentiation of granulosa cells in vitro, assessed by progesterone secretion and cytochrome P450 side-chain cleavage (P450(scc)) expression. The amounts of type I IGF receptors were similar in F+ and ++ follicular cells; however, at the same follicular size, F+ healthy follicles contained lower concentrations of IGFBPs smaller than 40 kDa (particularly IGFBP-2) than ++ healthy follicles. In vitro, in basal conditions as well as in IGF-I- or FSH-stimulated conditions (or both), granulosa cells from F+ follicles had a lower proliferative activity, secreted higher amounts of progesterone, and expressed higher levels of P450(scc) than granulosa cells from ++ follicles of the same size. When F+ and ++ preovulatory follicles were compared at the end of the follicular phase, IGFBPs <40 kDa concentrations were slightly higher, and responsiveness of granulosa cells to FSH in vitro was lower in F+ than in ++ follicles, suggesting that terminal maturation of F+ follicles, although precocious, was less complete than it was in ++ follicles. The early decrease in intrafollicular IGFBPs <40 kDa concentrations observed in F+ antral follicles, which likely leads to an early increase in IGF bioavailability, may at least partly account for the increased ovulation rate that characterizes F-carrier ewes.  相似文献   

7.
The purpose of this study was to determine if the granulosa cells of the small preovulatory follicles of the domestic hen are a target tissue for follicle-stimulating hormone (FSH). The third largest (F3), fourth largest (F4), and fifth largest (F5) follicles were removed from hens at 20, 12, 6 and 2 h before ovulation of the F1 follicle. Basal, FSH- and luteinizing hormone (LH)-stimulable adenylyl cyclase (AC) activities were measured in the granulosa cells. Isolated granulosa cells of the F5 follicle, obtained 20 h before ovulation of the F1 follicle, were incubated with ovine (o) or turkey (t) FSH and progesterone (P4) was assayed in the medium. Basal AC activity was similar for F5, F4 and F3 granulosa cells except for an increase (P less than 0.01) in F3 follicles removed 2 h before ovulation of the F1 follicle. The FSH-stimulable AC activity of F5, F4 and F3 granulosa cells was elevated over basal (P less than 0.01). The greatest responsiveness was seen in the F5 follicle and the least in the F3 follicle. LH-stimulable AC activity was absent in the F5 follicle but present in the F4 and F3 follicles with the greater responsiveness in the F3 follicle. Isolated F5 granulosa cells secreted significant amounts of P4 in response to oFSH and tFSH. The data indicate that: 1) FSH stimulates the AC system of granulosa cells of the smaller preovulatory follicles (F5 greater than F4 greater than F3) while LH stimulates the AC system of granulosa cells of the larger follicles (F3 greater than F4), and 2) FSH promotes P4 production by granulosa cells of F5 follicles.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The objective of this study was to identify factors that would allow the establishment of a serum-free culture system that could support follicular and oocyte growth, antrum formation, and estradiol-17beta (E(2)) production in preantral follicles of bovine ovaries. Large preantral follicles (145-170 micro m in diameter) were microsurgically dissected from ovaries, embedded in 0.15% type I collagen gels, and maintained in a serum-free medium for up to 13 days at 38.5 degrees C in 5% CO(2) in air. This culture environment allowed most preantral follicles to maintain a three-dimensional structure with the presence of a thecal layer and basement membrane surrounding the granulosa cells throughout the entire culture period. The effects of insulin, insulin-like growth factor (IGF)-I, IGF-II, FSH, and LH on preantral follicle growth were investigated in serum-free medium. Follicular diameters were significantly larger in the presence of insulin, IGF-I, IGF-II, or FSH after 13 days in culture. Oocyte diameters were also significantly larger in the presence of all hormones tested. The single addition of insulin, IGF-I, or FSH induced antrum formation between Days 7 and 13 of culture. Insulin progressively induced E(2) secretion by follicles after antrum formation, but IGF-I and FSH had no apparent effect. FSH and LH caused an increase in oocyte diameter in the presence of insulin. The addition of three hormones (insulin, FSH, and LH) initiated antrum formation and E(2) production earlier than insulin-containing medium alone. Furthermore, maximal E(2) secretion was maintained steadily between 7 and 13 days in this culture condition. From these results, we have demonstrated that insulin, FSH, and LH play substantial roles in the growth and development of bovine large preantral follicles in a serum-free medium.  相似文献   

9.
Preantral follicles from pro-oestrous and oestrous hamsters were isolated enzymically (Stages 1-5) and by microdissection (Stage 6) and cultured for up to 168 h in the absence or presence of 100 ng ovine FSH or LH separately or combined or 1 or 10 micrograms progesterone or estradiol-17 beta in serum-free defined medium and exposed to 1 muCi [3H]thymidine for 24 h before termination. In the presence of insulin and hydrocortisone but not gonadotrophins, the morphology of follicles from pro-oestrous animals at Stages 1-4 (1-4 layers granulosa cells; no theca) were unaffected for up to 48 h whereas for Stages 5 (5-6 layers granulosa cells and developing theca) and 6 (7-8 layers granulosa cells and theca), atresia was prominent by 24 h. FSH significantly reduced the percentage of atretic follicles in Stages 1-5 throughout the culture period; but was effective only up to 96 h for Stage-6 follicles. LH was also effective, albeit to a lesser extent. FSH increased follicular labelling indexes during every 24-h labelling period and, during a pulse-chase period, follicular DNA content and granulosa cell numbers. FSH, but not LH, induced differentiation by 96 h of preantral follicles at Stage 6 into small antral stages (Stages 7-8). FSH and LH together induced almost the same effect as FSH alone. However, neither progesterone nor oestradiol had any significant long-term effects on DNA synthesis and oestradiol induced atresia beyond 24 h. Both FSH and LH induced follicular maturation in vitro as evident from increases in progesterone, androstenedione and oestradiol production. Follicles (Stages 1-4) collected from oestrous hamsters responded to FSH to a lesser extent than did those from pro-oestrous animals, possibly because of in-vivo exposure to periovulatory changes in gonadotrophins; however, an antrum formed in Stage-6 follicles by 72 h.  相似文献   

10.
This study demonstrates the effects of recombinant human tumour necrosis factor a (rhTNF-alpha) and conditioned medium of the HD11-transformed chicken macrophage cell line on cultured chicken granulosa cells. Effects were studied on basal, IGF-I- and LH-stimulated progesterone production and cell proliferation. Recombinant human TNF-alpha stimulated basal progesterone production in a dose-dependent manner in the granulosa cells of the largest follicle but had no effect on cells from the third largest follicle. TNF-alpha stimulated and sometimes inhibited progesterone production stimulated by IGF-I and LH alone or in combination depending on the size of the follicle and the concentration of LH or IGF-I applied. However, the inhibitory effect of TNF-alpha was significantly more pronounced in cells from the third largest follicle when high concentrations of IGF-I, LH or a combination of both were applied. TNF-alpha had no effect on basal cell proliferation in both the largest and the third largest follicles, but regulated responses to IGF-I and a combination IGF-I and LH in the cells of the third largest follicle but not those of the largest follicle. The data indicate that the normal hierarchy of follicles is maintained in the chicken ovary through the regulation of the activity of IGF-I and its interaction with LH. Conditioned medium of LPS-activated HD11 macrophages mimicked the effects of TNF-alpha and its interaction with IGF-I and LH on progesterone production and cell proliferation. The observation that the HD11-conditioned medium contained TNF-alpha indicates that TNF-alpha produced by macrophages found in chicken follicles modulates granulosa cell growth and differentiation.  相似文献   

11.
The influence of follicular maturation on progesterone production by collagenase-dispersed hen granulosa cells was measured in short-term incubations. Granulosa cells of the largest follicle (F1) produced up to ten times more progesterone than cells from smaller follicles (F3-F5), not only in response to luteinizing hormone (LH), but also when stimulated by exogenous cyclic AMP or forskolin, both of which raise intracellular cyclic AMP levels by nonreceptor-mediated mechanisms. Moreover, when granulosa cell progesterone synthesis was stimulated by incorporating 25-hydroxy-cholesterol into the incubation medium, an identical pattern was obtained. This could be attributed to a corresponding increase in the specific activity of the mitochondrial cholesterol side-chain cleavage enzyme (20,22 desmolase). An increase in the apparent Vmax was observed without a change in the apparent Km values. Pregnenolone substrate at concentrations which raised progesterone production to levels similar to those observed in response to LH stimulation was utilized equally by granulosa cells of mature and developing follicles. However, at high pregnenolone concentrations, granulosa cells of mature follicles converted significantly more of the precursor to progesterone. Assay of 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD) showed that the enzyme has two Kms: a low Km present in cells of both mature and developing follicles, and a high Km found only in granulosa cells of more mature follicles. It is concluded that LH-promoted progesterone synthesis in granulosa cells of developing chicken follicles is restricted not so much by the availability of receptors and the competence of the adenylate cyclase/cyclic AMP system, but by the activity of key enzymes, principally the cholesterol-20,22 desmolase.  相似文献   

12.
This experiment concerned the changing patterns in secretion of luteinizing hormone (LH), follicle-stimulating hormone (FSH), and growth hormone (GH) under conditions of food restriction and subsequent catch-up growth. Weanling male rats were given either restricted (4 g food/day) or unrestricted access to food until 60 days of age. At this age, food-restricted rats weighed only 25% as much as rats fed ad libitum. Food restriction resulted in a dramatic decrease in the frequency of LH and GH pulses, and in the amplitude of GH pulses. It also slightly but significantly decreased mean blood levels of FSH (which was not secreted in a pulsatile manner in 60-day-old controls fed ad libitum). When restricted rats were given unrestricted access to food, frequency of LH and GH pulses and mean levels of FSH increased significantly and simultaneously within 2 days in half of the animals. Only an additional 8-10% of their body weight decrement was recovered at this time. After 10 days of food restoration, when restricted rats still weighed 50% less than controls, their secretory patterns of all three hormones were not significantly different from those of controls. Thus, recovery of gonadotropin and GH secretion was relatively rapid. Except for the quantitatively lesser impact of food restriction on FSH secretion, there was no evidence of any priorities in the secretion of the three hormones. Under conditions of rapid catch-up growth, the secretory patterns of LH, FSH, and GH appeared to develop simultaneously.  相似文献   

13.
Modulation of glucose metabolic capacity of human preantral follicles in vitro by gonadotropins and intraovarian growth factors was evaluated by monitoring the activities of phosphofructokinase (PFK) and pyruvate kinase (PK), two regulatory enzymes of the glycolytic pathway, and malate dehydrogenase (MDH), a key mitochondrial enzyme of the Krebs cycle. Preantral follicles in classes 1 and 2 from premenopausal women were cultured separately in vitro in the absence or presence of FSH, LH, epidermal growth factor (EGF), insulin-like growth factor (IGF-I), or transforming growth factor beta1 (TGFbeta1) for 24 h. Mitochondrial fraction was separated from the cytosolic fraction, and both fractions were used for enzyme assays. FSH and LH significantly stimulated PFK and PK activities in class 1 and 2 follicles; however, a 170-fold increase in MDH activity was noted for class 2 follicles that were exposed to FSH. Although both EGF and TGFbeta1 stimulated glycolytic and Krebs cycle enzymes for class 1 preantral follicles, TGFbeta1 consistently stimulated the activities of both glycolytic enzymes more than that of EGF. IGF-I induced PK and MDH activities in class 1 follicles but negatively influenced PFK activity for class 1 follicles. In general, only gonadotropins consistently stimulated both glycolytic and Krebs cycle enzyme activities several-fold in class 2 follicles. These results suggest that gonadotropins and ovarian growth factors differentially influence follicular energy-producing capacity from glucose. Moreover, gonadotropins may either directly influence glucose metabolism in class 2 preantral follicles or do so indirectly through factors other than the well-known intraovarian growth factors. Because growth factors modulate granulosa cell mitosis and functionality, their role on energy production may be related to specific cellular activities.  相似文献   

14.
In mice deficient in progesterone receptor (PR), follicles of ovulatory size develop but fail to ovulate, providing evidence for an essential role for progesterone and PR in ovulation in mice. However, little is known about the expression and regulation of PR mRNA in preovulatory follicles of ruminant species. One objective of this study was to determine whether and when PR mRNA is expressed in bovine follicular cells during the periovulatory period. Luteolysis and the LH/FSH surge were induced with prostaglandin F(2alpha) and a GnRH analogue, respectively, and the preovulatory follicle was obtained at 0, 3.5, 6, 12, 18, or 24 h after GnRH treatment. RNase protection assays revealed a transient increase in levels of PR mRNA, which peaked at 6 h after GnRH and declined to the time 0 value by 12 h and a second increase at 24 h. The second objective was to investigate the mechanisms that regulate PR mRNA expression through in vitro studies on follicular cells of preovulatory follicles obtained before the LH/FSH surge. Theca and granulosa cells were isolated and cultured with or without a luteinizing dose of LH or FSH, progesterone, LH + progesterone, or LH + antiprogestin (RU486). Levels of PR mRNA increased in a time-dependent manner in granulosa cells cultured with LH or FSH and in theca cells cultured with LH, peaking at 10 h of culture. In contrast, progesterone (200 ng/ml) did not upregulate mRNA for its own receptor, and neither progesterone nor RU486 affected LH-stimulated PR mRNA accumulation. Furthermore, RU486 completely blocked LH-stimulated expression of oxytocin mRNA, indicating that PR induced by LH in vitro is functional. These results show that the gonadotropin surge induces a rapid and transient increase in expression of PR mRNA in both theca and granulosa cells of bovine periovulatory follicles followed by a second rise close to the time of ovulation and that the first increase in PR mRNA can be mimicked in vitro by gonadotropins but not by progesterone. These results suggest multiple and time-dependent roles for progesterone and PR in the regulation of periovulatory events in cattle.  相似文献   

15.
The authors have investigated in the different classes of ovarian follicles the vascular area, the blood vessel distribution, the vascular endothelial growth factor (VEGF) mRNA expression and the VEGF secretion during equine chorionic gonadotropin (eCG) induced follicle growth in prepubertal gilts fed ad libitum or fasted. Immunohistochemistry staining of Von Willebrand factor showed that fasting caused a dramatic increase in the vascular area of medium-large tertiary follicles. The increase involved the two concentric vessel networks and the area between them that, becoming crossed by several anastomosis, modified the whole vessel architecture. Both in situ hybridization and in vitro culture experiments demonstrate that granulosa cells from medium-large follicles are engaged in a copious VEGF production upon eCG stimulation both in gilts fed ad libitum or fasted. More surprisingly, the production of VEGF becomes diffuse amongst theca cells of fasted animals thus recruiting a compartment that in condition of normal feeding regimen appears nearly quiescent. In conclusion, the data presented describe a local angiogenic process that develops in the follicle wall of growing antral follicle in case of acute severe food restriction. The mechanism, essentially confined to follicles that potentially approach ovulation, appears to assume the meaning of a local compensatory mechanism that may help maintaining adequate nutrient delivery to follicles that undergo ovulation.  相似文献   

16.
In addition to pituitary gonadotropins and paracrine factors, ovarian follicle development is also modulated by oocyte factors capable of stimulating granulosa cell proliferation but suppressing their differentiation. The nature of these oocyte factors is unclear. Because growth differentiation factor-9 (GDF-9) enhanced preantral follicle growth and was detected in the oocytes of early antral and preovulatory follicles, we hypothesized that this oocyte hormone could regulate the proliferation and differentiation of granulosa cells from these advanced follicles. Treatment with recombinant GDF-9, but not FSH, stimulated thymidine incorporation into cultured granulosa cells from both early antral and preovulatory follicles, accompanied by increases in granulosa cell number. Although GDF-9 treatment alone stimulated basal steroidogenesis in granulosa cells, cotreatment with GDF-9 suppressed FSH-stimulated progesterone and estradiol production. In addition, GDF-9 cotreatment attentuated FSH-induced LH receptor formation. The inhibitory effects of GDF-9 on FSH-induced granulosa cell differentiation were accompanied by decreases in the FSH-induced cAMP production. These data suggested that GDF-9 is a proliferation factor for granulosa cells from early antral and preovulatory follicles but suppresses FSH-induced differentiation of the same cells. Thus, oocyte-derived GDF-9 could account, at least partially, for the oocyte factor(s) previously reported to control cumulus and granulosa cell differentiation.  相似文献   

17.
Luminal nutrients stimulate structural and functional regeneration in the intestine through mechanisms thought to involve insulin-like growth factor I (IGF-I) and glucagon-like peptide-2 (GLP-2). We investigated the relationship between IGF-I and GLP-2 responses and mucosal growth in rats fasted for 48 h and then refed for 2 or 4 days by continuous intravenous or intragastric infusion or ad libitum feeding. Fasting induced significant decreases in body weight, plasma concentrations of IGF-I and bioactive GLP-2, jejunal mucosal cellularity (mass, protein, DNA, and villus height), IGF-I mRNA, and ileal proglucagon mRNA. Plasma IGF-I concentration was restored to fed levels with 2 days of ad libitum refeeding but not with 4 days of intravenous or intragastric refeeding. Administration of an inhibitor of endogenous GLP-2 (rat GLP-2 3-33) during ad libitum refeeding partially attenuated mucosal growth and prevented the increase in plasma IGF-I to fed levels; however, plasma GLP-2 and jejunal IGF-I mRNA were restored to fed levels. Intragastric refeeding restored intestinal cellularity and functional capacity (sucrase activity and sodium-glucose transporter-1 expression) to fed levels, whereas intravenous refeeding had no effect. Intestinal regeneration after 4 days of intragastric or 2 days of ad libitum refeeding was positively associated with increases in plasma concentrations of GLP-2 and jejunal IGF-I mRNA. These data suggest that luminal nutrients stimulate intestinal growth, in part, by increased expression of both GLP-2 and IGF-I.  相似文献   

18.
Little is known regarding the hormonal regulation of granulosa cell steroidogenesis and the ovarian insulin-like growth factor (IGF) system in the mare. The objectives of this study were to determine, first, if estradiol, insulin, and/or FSH affect steroid production by equine granulosa cells (experiment 1) and, second, if the components of the IGF system are produced by equine granulosa cells in culture as well as whether estradiol, insulin, and/or FSH affects IGF and/or IGF-binding protein (IGFBP) production by equine granulosa cells (experiment 2). Granulosa cells from small (6-15 mm), medium (16-25 mm), and large (25-48 mm) follicles were collected from cyclic mares (n = 14), cultured for 2 days in medium containing 10% fetal calf serum, washed, and then treated for an additional 2 days in serum-free medium with or without added hormones. In experiment 1, large-follicle granulosa cells produced less progesterone and more estradiol than did medium- and/or small-follicle granulosa cells (P < 0.05). Progesterone production was inhibited (P < 0.05) by FSH and insulin in small- and medium- but not in large-follicle granulosa cells; estradiol was without effect. Insulin increased (P < 0.05) estradiol production in small- and medium-follicle granulosa cells but had no effect in large-follicle granulosa cells. In experiment 2, IGF-I production was inhibited (P < 0.05) by insulin across all follicle sizes but was not affected by estradiol or FSH. Granulosa cells of medium and large follicles produced more IGF-II than did granulosa cells of small follicles (P < 0.05). Insulin and FSH inhibited (P < 0.05) IGF-II production by granulosa cells of large and medium but not of small follicles; estradiol was without effect. Only IGFBP-2 and -5 were produced by equine granulosa cells. Production of IGFBP-2 was less (P < 0.10) in granulosa cells of large versus those of small and medium follicles, whereas medium-follicle granulosa cells produced more (P < 0.05) IGFBP-5 than did small- or large-follicle granulosa cells. Averaged across follicle sizes, estradiol increased (P < 0.05) IGFBP-2 production, FSH increased (P < 0.10) IGFBP-2 and -5 production, and insulin was without effect. These results indicate that IGF-I, IGF-II, IGFBP-2, and IGFBP-5 are produced by equine granulosa cells and that insulin, FSH, and estradiol play a role in the regulation of steroidogenesis and the IGF system of equine granulosa cells.  相似文献   

19.
Members of the transforming growth factor-beta (TGF-beta) superfamily have wide-ranging influences on many tissue and organ systems including the ovary. Two recently discovered TGF-beta superfamily members, growth/differentiation factor-9 (GDF-9) and bone morphogenetic protein-15 (BMP-15; also designated as GDF-9B) are expressed in an oocyte-specific manner from a very early stage and play a key role in promoting follicle growth beyond the primary stage. Follicle growth to the small antral stage does not require gonadotrophins but appears to be driven by local autocrine/paracrine signals from both somatic cell types (granulosa and theca) and from the oocyte. TGF-beta superfamily members expressed by follicular cells and implicated in this phase of follicle development include TGF-beta, activin, GDF-9/9B and several BMPs. Acquisition of follicle-stimulating hormone (FSH) responsiveness is a pre-requisite for growth beyond the small antral stage and evidence indicates an autocrine role for granulosa-derived activin in promoting granulosa cell proliferation, FSH receptor expression and aromatase activity. Indeed, some of the effects of FSH on granulosa cells may be mediated by endogenous activin. At the same time, activin may act on theca cells to attenuate luteinizing hormone (LH)-dependent androgen production in small to medium-size antral follicles. Dominant follicle selection appears to depend on differential FSH sensitivity amongst a growing cohort of small antral follicles. Activin may contribute to this selection process by sensitizing those follicles with the highest "activin tone" to FSH. Production of inhibin, like oestradiol, increases in selected dominant follicles, in an FSH- and insulin-like growth factor-dependent manner and may exert a paracrine action on theca cells to upregulate LH-induced secretion of androgen, an essential requirement for further oestradiol secretion by the pre-ovulatory follicle. Like activin, BMP-4 and -7 (mostly from theca), and BMP-6 (mostly from oocyte), can enhance oestradiol and inhibin secretion by bovine granulosa cells while suppressing progesterone secretion; this suggests a functional role in delaying follicle luteinization and/or atresia. Follistatin, on the other hand, may favor luteinization and/or atresia by bio-neutralizing intrafollicular activin and BMPs. Activin receptors are expressed by the oocyte and activin may have a further intrafollicular role in the terminal stages of follicle differentiation to promote oocyte maturation and developmental competence. In a reciprocal manner, oocyte-derived GDF-9/9B may act on the surrounding cumulus granulosa cells to attenuate oestradiol output and promote progesterone and hyaluronic acid production, mucification and cumulus expansion.  相似文献   

20.
Androgens acting via the androgen receptor (AR) have been implicated in regulation of folliculogenesis in many animal species. These effects are possibly mediated via enhancement of FSH and/or insulin-like growth factor (IGF)-I activity in granulosa cells, which contain high levels of AR protein. We examined the in vitro effect of dihydrotestosterone (DHT) on DNA synthesis and progesterone secretion by follicular cells in response to FSH and IGF-I, alone or in combination. Cells from separate pools of 1- to 3-mm and 3- to 5-mm antral follicles were aspirated from gilt ovaries and fractioned into mural granulosa cells (MGCs) and cumulus-oocyte complexes (COCs) for subsequent cell culture. Androgen alone or with any combination of mitogen had minimal effect on proliferative and no effect on steroidogenic responses of MGCs from 3- to 5-mm antral follicles. Conversely, in MGCs from 1- to 3-mm follicles, DHT significantly enhanced IFG-I-stimulated proliferation and had variable influence on progesterone secretion. The effects of DHT on proliferative responses of COCs were also dependent on follicle size: DHT significantly augmented either IGF-I-stimulated proliferation (1- to 3-mm follicles) or FSH-stimulated proliferation (3- to 5-mm follicles). However, the steroidogenic responses of all COCs were identical, whereby DHT significantly suppressed progesterone secretion, predominantly in the presence of FSH. Addition of an AR antagonist, hydroxyflutamide, generally reversed the proliferative responses invoked by DHT but not the steroidogenic responses. We conclude that androgen-receptor-mediated activity in granulosa cells of antral follicles is dependent on follicle size, is influenced by proximity of cells to the oocyte, and possibly involves both classic and nonclassic steroid mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号