首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2014,49(8):1231-1237
The fermentability of four different side streams produced in sulfite pulping has been compared in ethanol production with Saccharomyces cerevisiae. The results show that the fermentability of the different side streams varies, depending on where in the process they are produced, and the additional treatment applied to them. Side streams spent sulfite liquor, spent sulfite liquor derivative and spent sulfite liquor after ethanol fermentation that were fermentable benefited from the main cooking process, during which 90% of the sulfite was removed, whereas the side stream produced in the first cooking step, containing 11.0 g/L sulfite, was unfermentable. The fermentation of the side streams resulted in lower yields and productivity than fermentation in a defined medium. Furthermore, the fermentability of the side streams was improved after over-liming, evaporation, and laccase treatment. Over-liming was the most efficient means of detoxifying the side-streams, resulting in better fermentability. Sulfite treatment, however, had a counterproductive effect on fermentation due to the toxicity of this chemical to yeast metabolism. When the side-streams were detoxified by over-liming, loss of sugars was observed. Laccase treatment was less efficient, but it should be further explored as it offers a sustainable method of detoxifying side streams in situ.  相似文献   

2.
Aim:  To identify fungi that are capable of increasing ethanol production from lignocellulose in spent sulfite liquor.
Methods and Results:  In a batch fermentation study, the fungal mix could produce 24·61 g l−1 ethanol using spent sulfite liquor as substrate. The fungal mix grew well on glucose, xylose, hemicellulose and cellulose. In addition, we were able to identify the fungal mix by use of PCR-amplification of DNA and sequencing, and they were identified as Chalara parvispora and Trametes hirsuta/T. versicolor. In a reconstitution study, the identified fungi were shown to produce equal amount of ethanol as the fungal mix. We were also able to show that C. parvispora could produce ethanol from xylose.
Conclusion:  The present study has shown that ethanol production from biomass can be increased by use of C. parvispora and T. versicolor when compared with fermentation using only S. cerevisiae .
Significance and Impact of the Study:  The study shows that refining biomass by ethanol production from spent sulfite liquor, a lignocellulose material, can be increased by adding C. parvispora and T. versicolor , and it is thus of great potential economical impact.  相似文献   

3.
When purified xylanases from Trichoderma harzianum E58 or from a clone of Bacillus circulans were incubated with various low-yield wood pulps, little of the original enzyme activity could be detected in the filtrate at the end of the reaction. Partial bleaching of the pulps prior to enzymatic treatment generally resulted in an increased recovery of the xylanase activity. It appears that both nonspecific adsorption and soluble inhibitors may be responsible for the loss of much of the xylanase activity. However, xylanases from Aureobasidium pullulans and Schizophyllum commune were not as inhibited by the pulps, and the activity of the latter enzyme actually increased after incubation with several high-yield pulps. Although a lignin preparation from spent sulfite liquor at a concentration of 0.06 mg/mL could inhibit the xylanase activity of T. harzianum and B. circulans by 65% and 50%, respectively, xylanases from Thermoascus aurantiacus, S. commune, and A. pullulans were activated at similar lignin concentrations. At higher concentrations these latter xylanases were also inhibited. Water-soluble lignins extracted from a variety of pulps and used at a lignin concentration of 2.5 mug/mL resulted in inhibition of more than 65% of the original activity of the xylanase from T. harzianum. Kinetic studies showed that lignin from spent sulfite liquor resulted in noncompetitive inhibition of this enzyme.  相似文献   

4.
Spent sulfite liquor (SSL) is a waste effluent from sulfite pulping that contains monomeric sugars which can be fermented to ethanol. However, fermentative yeasts used for the fermentation of the sugars in SSL are adversely affected by the inhibitory substances in this complex feedstock. To overcome this limitation, evolutionary engineering of Saccharomyces cerevisiae was carried out using genome-shuffling technology based on large-scale population cross mating. Populations of UV-light-induced yeast mutants more tolerant than the wild type to hardwood spent sulfite liquor (HWSSL) were first isolated and then recursively mated and enriched for more-tolerant populations. After five rounds of genome shuffling, three strains were isolated that were able to grow on undiluted HWSSL and to support efficient ethanol production from the sugars therein for prolonged fermentation of HWSSL. Analyses showed that greater HWSSL tolerance is associated with improved viability in the presence of salt, sorbitol, peroxide, and acetic acid. Our results showed that evolutionary engineering through genome shuffling will yield robust yeasts capable of fermenting the sugars present in HWSSL, which is a complex substrate containing multiple sources of inhibitors. These strains may not be obtainable through classical evolutionary engineering and can serve as a model for further understanding of the mechanism behind simultaneous tolerance to multiple inhibitors.  相似文献   

5.
Mixtures of carbon-rich wastes andS. maxima algal biomass increase markedly the performance of anaerobic digestion. A mixture of 507 sewage sludge and algae increases the methane yield and the productivity over twofold. Peat hydrolyzate and sewage sludge, when added to algae, have shown a synergistic effect and spent sulfite liquor added at concentrations over 307 V/V has inhibited methanogenic activity.  相似文献   

6.
The growth kinetics of the yeast Saccharomyces cerevisiae and the production rate of ethanol have been studied in batch fermentation under anaerobic conditions in a 20-L fermentor. Two substrates were used in fermentation trials: a synthetic mixture of three fermentable sugars, D-glucose, D-mannose, and D-galactose, and a low-yield liquor originating from a bisulfite cooking process. The Monod model adequately described the system in relation to the specific growth rate mu(x) and the specific product formation rate mu(P). Different fermentation parameters (growth rate, substrate utilization, and product formation) were determined for the synthetic mixture and the bisulfite liquor. It was observed that the specific growth rate is much lower in spent sulfite liquor than in a synthetic medium. However, the specific product formation rate remains the same in both media.  相似文献   

7.
From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose fermentation, even when galactose utilization was induced, i.e., when they were grown in the presence of galactose, prior to fermentation. Without acetic acid present, both baker's yeast and isolate 3 fermented glucose and galactose sequentially. Galactose fermentation with baker's yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5. The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some of the isolates as well as in two strains of S. cerevisiae (ATCC 24860 and baker's yeast) and Pichia stipitis CBS 6054. The S. cerevisiae strains manifested xylose reductase activity that was 2 orders of magnitude less than the corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein).  相似文献   

8.
From a continuous spent sulfite liquor fermentation plant, two species of yeast were isolated, Saccharomyces cerevisiae and Pichia membranaefaciens. One of the isolates of S. cerevisiae, no. 3, was heavily flocculating and produced a higher ethanol yield from spent sulfite liquor than did commercial baker's yeast. The greatest difference between isolate 3 and baker's yeast was that of galactose fermentation, even when galactose utilization was induced, i.e., when they were grown in the presence of galactose, prior to fermentation. Without acetic acid present, both baker's yeast and isolate 3 fermented glucose and galactose sequentially. Galactose fermentation with baker's yeast was strongly inhibited by acetic acid at pH values below 6. Isolate 3 fermented galactose, glucose, and mannose without catabolite repression in the presence of acetic acid, even at pH 4.5. The xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) activities were determined in some of the isolates as well as in two strains of S. cerevisiae (ATCC 24860 and baker's yeast) and Pichia stipitis CBS 6054. The S. cerevisiae strains manifested xylose reductase activity that was 2 orders of magnitude less than the corresponding P. stipitis value of 890 nmol/min/mg of protein. The xylose dehydrogenase activity was 1 order of magnitude less than the corresponding activity of P. stipitis (330 nmol/min/mg of protein).  相似文献   

9.
Fermentation of lignocellulose hydrolysates as spent sulfite liquor or as hydrolysate from sulfur-dioxide-treated wood to ethanol has been controlled by using biosensors for glucose and ethanol. Yield and productivity were studied with respect to concentration level of the metabolites in a continuous hollow-fiber reactor. High constant yield was achieved by controlling the glucose to low concentration levels. Reduced productivity were obtained when fermenting at high ethanol concentrations as an effect of inhibition of the yeast cells. The observations emphasize the advantage of controlling the process to favorable concentrations of monosaccharides and ethanol.  相似文献   

10.
In the fodder yeast production from sulfite spent liquor (SSL) the content of yeast-poisons in the SSL is of particular importance. The negative influence of sulfur dioxide has been known for a long time. Furfural is also named as a pollutant. Our own works showed that there is only an influence on the RS-analysis and in this way a decrease of yield is simulated but not genuine. Practical results and theoretical calculations showed that 1.0 gram of furfural is equivalent to 1.88 g RS. This knowledge is of importance for carrying out the production process by simultaneous change of the furfural concentration. In this way the charge of the fermenter with carbohydrate can be too high or too low.  相似文献   

11.
Conditions have been optimized for fermentation of pretreated hardwood spent sulfite liquor (HSSL) using an adapted strain of Pichia stipitis. The pretreatments, consisting of boiling and overliming with Ca(OH)2 of HSSL, to partially remove inhibitors, and adaptation of the yeast strain to HSSL, were both critical for a successful fermentation. Ethanol concentration was increased from 6.7 to 20.2 g l−1 using adapted P. stipitis (A) and pretreated HSSL. The maximum ethanol yield (Y p/s) and productivity (Q p) were 0.41 g g−1 and 0.44 g l−1 h−1, respectively, at an oxygen transfer rate of 2.0 mmol O2 l−1 h−1. The optimized results with this strain were compared to those of other xylose-fermenting yeasts and Saccharomyces cerevisiae (SSL-acclimatized) currently used at an industrial plant for the fermentation of spent sulfite liquor. Journal of Industrial Microbiology & Biotechnology (2001) 26, 145–150. Received 23 June 2000/ Accepted in revised form 21 October 2000  相似文献   

12.
The spent liquor (SL) of a neutral sulfite semichemical (NSSC) pulping process contains a considerable amount of lignocelluloses and is treated in wastewater systems. The lignocelluloses, however, can be used for producing value‐added products if they are isolated from the SL. In this article, solvent treatment (mixing acetone, ethanol, or isopropyl with SL) was used as a method for isolating lignosulfonate from SL. The maximum lignosulfonate removal was obtained via mixing isopropyl alcohol with SL at the weight ratio of 20/80, room temperature, and 5.7 pH. The results also showed that the molecular weight and anionic charge density of the precipitates were in the range of 5,000–70,000 g/mol and 0.2–1.8 meq/g, respectively. Based on these results, a process was proposed for isolating lignosulfonate from SL and converting the NSSC process to an NSSC‐based biorefinery. © 2015 American Institute of Chemical Engineers Biotechnol. Prog., 31:1508–1514, 2015  相似文献   

13.
An iron-oxidizing factor was identified in the spent culture medium of the iron- and manganese-oxidizing bacterial strain Leptothrix discophora SS-1. It appeared to be a protein, with an apparent molecular weight of approximately 150,000. Its activity could be demonstrated after fractionation of the spent medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A spontaneous mutant of L. discophora SS-1 was isolated which excreted neither manganese- nor iron-oxidizing activity, whereas excretion of other proteins seemed to be unaffected. Although the excretion of both metal-oxidizing factors was probably linked, the difference in other properties suggests that manganese and iron oxidation represent two different pathways. With a dot-blot assay, it was established that different bacterial species have different metal-oxidizing capacities. Whereas L. discophora oxidized both iron and manganese, Sphaerotilus natans oxidized only iron and two Pseudomonas spp. oxidized only manganese.  相似文献   

14.
An iron-oxidizing factor was identified in the spent culture medium of the iron- and manganese-oxidizing bacterial strain Leptothrix discophora SS-1. It appeared to be a protein, with an apparent molecular weight of approximately 150,000. Its activity could be demonstrated after fractionation of the spent medium by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. A spontaneous mutant of L. discophora SS-1 was isolated which excreted neither manganese- nor iron-oxidizing activity, whereas excretion of other proteins seemed to be unaffected. Although the excretion of both metal-oxidizing factors was probably linked, the difference in other properties suggests that manganese and iron oxidation represent two different pathways. With a dot-blot assay, it was established that different bacterial species have different metal-oxidizing capacities. Whereas L. discophora oxidized both iron and manganese, Sphaerotilus natans oxidized only iron and two Pseudomonas spp. oxidized only manganese.  相似文献   

15.
The effects of NH(4)Cl concentration, organic nitrogen compounds, glucose concentration, dissolved oxygen concentration, and flow rate on the attached growth of pure cultures of Sphaerotilus natans and of a mixed population in a continuous-flow apparatus are described. Low concentrations of NH(4)Cl and oxygen, and high flow rates resulted in attached populations that were dominated by Sphaerotilus. The conditions that allowed maximal attached growth in pure culture did not correspond to the conditions that promoted attached growth of Sphaerotilus in a mixed population.  相似文献   

16.
Summary Sulphate in concentrations of 500 and 1000 mg SO4-S/l did not inhibit methanation of synthetic waste-water (acetate + methanol + glucose) by sludge from a digester treating neutral spent sulphite process effluents. The role of sulphate reducers in the conversion of those substrates was minor although sulphate-reducing bacteria were present with a viable count similar to that of methane-producing bacteria in the sludge. Neutral spent sulphite liquor was partially converted to methane (40% of chemical oxygen demand) under these conditions.Molybdate (20 mM) inhibited methanation of both synthetic waste-water and neutral spent sulphite liquor. Acetate accumulated in glucose plus molybdate media. Molybdate had a direct inhibitory effect on enriched acetoclastic methane-producing bacteria. Molybdate was bacteriocidic to sulphate-reducing bacteria and bacteriostatic to methane-producing bacteria.  相似文献   

17.
利用肌苷发酵废液生产单细胞蛋白的研究   总被引:1,自引:0,他引:1  
我国在利用微生物降解酒精废液、造纸厂废液和味精厂废液等方面已有许多报道,但是,利用肌苷发酵废液作为底物进行单细胞生产还未见报道。同时,提取肌苷后的发酵废液,其营养成份仍很丰富,其中,还原糖含量约为2%,总氮含量为300mg/L~400mg/L,以及一些无机盐。COD值高达186276mg/L。目前,一般肌苷生产厂都将废液排放掉,这不仅严重地污染了环境,而且造成很大的浪费。有鉴于此,本课题进行了菌种的筛选和驯化以及工艺方面的试验。  相似文献   

18.
A marine organism (Bacillus M1) isolated from Indian Ocean manganese nodules was characterized. The organism grew well in artificial seawater medium, at near neutral pH, 30°C and 0.25 M NaCl, and showed MnO2-reducing activity. Growing cultures of Bacillus M1 as well as cell-free spent liquor from fully-grown cultures were employed to extract metals from the nodules. The spent liquor of cultures of the organism could dissolve around 45% cobalt (Co) at a pH of 8.2 in 2 h. Co recovery by this treatment was comparable to that in acidic leaching with 2.5 M hydrochloric acid solutions, and was independent of pulp density (w/v ratio). The amount of Co dissolved was beyond the thermodynamic solubility limit in aqueous solution at a pH of 8.2. It is inferred that the metabolites present in the spent liquor played a pivotal role in complexing the Fe (III) phase, solubilizing Co in the process. Partial characterization of spent liquor by spot tests, UV visible spectroscopy and FTIR spectroscopy, showed the presence of siderophore-like phenolic compound(s) with an attached carboxyl group that might form soluble organic complexes with Fe (III).  相似文献   

19.
Bioethanol and enzymes were produced from fiber sludges through sequential microbial cultivations. After a first simultaneous saccharification and fermentation (SSF) with yeast, the bioethanol concentrations of sulfate and sulfite fiber sludges were 45.6 and 64.7 g/L, respectively. The second SSF, which included fresh fiber sludges and recycled yeast and enzymes from the first SSF, resulted in ethanol concentrations of 38.3 g/L for sulfate fiber sludge and 24.4 g/L for sulfite fiber sludge. Aspergillus niger carrying the endoglucanase-encoding Cel7B gene of Trichoderma reesei was grown in the spent fiber sludge hydrolysates. The cellulase activities obtained with spent hydrolysates of sulfate and sulfite fiber sludges were 2,700 and 2,900 nkat/mL, respectively. The high cellulase activities produced by using stillage and the significant ethanol concentrations produced in the second SSF suggest that onsite enzyme production and recycling of enzyme are realistic concepts that warrant further attention.  相似文献   

20.
A phylogenetic in situ/ex situ analysis of a sulfur mat formed by colorless filamentous sulfur bacteria in a thermal sulfide stream (northern spur of the main Caucasian ridge) was carried out. Nine phylotypes were revealed in the mat. Thiothrix sp. and Sphaerotilus sp. were the dominant phylotypes (66.3% and 26.3%, respectively). The 16S rRNA gene nucleotide sequence of Spahaerotilus sp. phylotype from the clone library was identical to the sequences of the seven Sphaerotilus strains isolated from the same source. A very high degree of similarity of Sphaerotilus strains revealed by ERIC-PCR fingerprints indicated little or no population diversity of this species in the mat. Thiothrix phylotype from the clone library and two Thiothrix strains isolated from the same mat sample differed in one to three nucleotides of 16S rRNA genes; this is an indication of this organism's population variability in the mat. 16S rRNA genes of the strains and clones of Thiothrix sp. exhibited the highest similarity (ca. 99%) with Thiothrix unzii; the strains and clones of Sphaerotilus had 99% similarity with the type species Sphaerotilus natans (the only species of this genus) and therefore can be assigned to this species. The minor seven components belong to the phylotypes from the Proteobacteria (3%), as well as the Chlorobia, Cyanobacteria, Clostridia, and Bacteroidetes phylogenetic groups, each of them constituting not more than 1%. Intracellular accumulation of elemental sulfur by Sphaerotilus similar to other filamentous sulfur bacteria was demonstrated for the first time (both in the population of the sulfur spring and in cultures with sulfide). Although mass growth of Sphaerotilus and Thiothrix is typical of bacterial populations of anthropogenic ecosystems (the activated sludge of treatment facilities), stable communities of these bacteria have not been previously found in the sulfur mats or "threads" of natural sulfide springs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号