首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 218 毫秒
1.
Missing value imputation for epistatic MAPs   总被引:1,自引:0,他引:1  

Background  

Epistatic miniarray profiling (E-MAPs) is a high-throughput approach capable of quantifying aggravating or alleviating genetic interactions between gene pairs. The datasets resulting from E-MAP experiments typically take the form of a symmetric pairwise matrix of interaction scores. These datasets have a significant number of missing values - up to 35% - that can reduce the effectiveness of some data analysis techniques and prevent the use of others. An effective method for imputing interactions would therefore increase the types of possible analysis, as well as increase the potential to identify novel functional interactions between gene pairs. Several methods have been developed to handle missing values in microarray data, but it is unclear how applicable these methods are to E-MAP data because of their pairwise nature and the significantly larger number of missing values. Here we evaluate four alternative imputation strategies, three local (Nearest neighbor-based) and one global (PCA-based), that have been modified to work with symmetric pairwise data.  相似文献   

2.
Gene expression microarray experiments frequently generate datasets with multiple values missing. However, most of the analysis, mining, and classification methods for gene expression data require a complete matrix of gene array values. Therefore, the accurate estimation of missing values in such datasets has been recognized as an important issue, and several imputation algorithms have already been proposed to the biological community. Most of these approaches, however, are not particularly suitable for time series expression profiles. In view of this, we propose a novel imputation algorithm, which is specially suited for the estimation of missing values in gene expression time series data. The algorithm utilizes Dynamic Time Warping (DTW) distance in order to measure the similarity between time expression profiles, and subsequently selects for each gene expression profile with missing values a dedicated set of candidate profiles for estimation. Three different DTW-based imputation (DTWimpute) algorithms have been considered: position-wise, neighborhood-wise, and two-pass imputation. These have initially been prototyped in Perl, and their accuracy has been evaluated on yeast expression time series data using several different parameter settings. The experiments have shown that the two-pass algorithm consistently outperforms, in particular for datasets with a higher level of missing entries, the neighborhood-wise and the position-wise algorithms. The performance of the two-pass DTWimpute algorithm has further been benchmarked against the weighted K-Nearest Neighbors algorithm, which is widely used in the biological community; the former algorithm has appeared superior to the latter one. Motivated by these findings, indicating clearly the added value of the DTW techniques for missing value estimation in time series data, we have built an optimized C++ implementation of the two-pass DTWimpute algorithm. The software also provides for a choice between three different initial rough imputation methods.  相似文献   

3.
MOTIVATION: Gene expression data often contain missing expression values. Effective missing value estimation methods are needed since many algorithms for gene expression data analysis require a complete matrix of gene array values. In this paper, imputation methods based on the least squares formulation are proposed to estimate missing values in the gene expression data, which exploit local similarity structures in the data as well as least squares optimization process. RESULTS: The proposed local least squares imputation method (LLSimpute) represents a target gene that has missing values as a linear combination of similar genes. The similar genes are chosen by k-nearest neighbors or k coherent genes that have large absolute values of Pearson correlation coefficients. Non-parametric missing values estimation method of LLSimpute are designed by introducing an automatic k-value estimator. In our experiments, the proposed LLSimpute method shows competitive results when compared with other imputation methods for missing value estimation on various datasets and percentages of missing values in the data. AVAILABILITY: The software is available at http://www.cs.umn.edu/~hskim/tools.html CONTACT: hpark@cs.umn.edu  相似文献   

4.

Missing values in mass spectrometry metabolomic datasets occur widely and can originate from a number of sources, including for both technical and biological reasons. Currently, little is known about these data, i.e. about their distributions across datasets, the need (or not) to consider them in the data processing pipeline, and most importantly, the optimal way of assigning them values prior to univariate or multivariate data analysis. Here, we address all of these issues using direct infusion Fourier transform ion cyclotron resonance mass spectrometry data. We have shown that missing data are widespread, accounting for ca. 20% of data and affecting up to 80% of all variables, and that they do not occur randomly but rather as a function of signal intensity and mass-to-charge ratio. We have demonstrated that missing data estimation algorithms have a major effect on the outcome of data analysis when comparing the differences between biological sample groups, including by t test, ANOVA and principal component analysis. Furthermore, results varied significantly across the eight algorithms that we assessed for their ability to impute known, but labelled as missing, entries. Based on all of our findings we identified the k-nearest neighbour imputation method (KNN) as the optimal missing value estimation approach for our direct infusion mass spectrometry datasets. However, we believe the wider significance of this study is that it highlights the importance of missing metabolite levels in the data processing pipeline and offers an approach to identify optimal ways of treating missing data in metabolomics experiments.

  相似文献   

5.
Missing values in mass spectrometry metabolomic datasets occur widely and can originate from a number of sources, including for both technical and biological reasons. Currently, little is known about these data, i.e. about their distributions across datasets, the need (or not) to consider them in the data processing pipeline, and most importantly, the optimal way of assigning them values prior to univariate or multivariate data analysis. Here, we address all of these issues using direct infusion Fourier transform ion cyclotron resonance mass spectrometry data. We have shown that missing data are widespread, accounting for ca. 20% of data and affecting up to 80% of all variables, and that they do not occur randomly but rather as a function of signal intensity and mass-to-charge ratio. We have demonstrated that missing data estimation algorithms have a major effect on the outcome of data analysis when comparing the differences between biological sample groups, including by t test, ANOVA and principal component analysis. Furthermore, results varied significantly across the eight algorithms that we assessed for their ability to impute known, but labelled as missing, entries. Based on all of our findings we identified the k-nearest neighbour imputation method (KNN) as the optimal missing value estimation approach for our direct infusion mass spectrometry datasets. However, we believe the wider significance of this study is that it highlights the importance of missing metabolite levels in the data processing pipeline and offers an approach to identify optimal ways of treating missing data in metabolomics experiments.  相似文献   

6.
Missing value estimation methods for DNA microarrays   总被引:39,自引:0,他引:39  
MOTIVATION: Gene expression microarray experiments can generate data sets with multiple missing expression values. Unfortunately, many algorithms for gene expression analysis require a complete matrix of gene array values as input. For example, methods such as hierarchical clustering and K-means clustering are not robust to missing data, and may lose effectiveness even with a few missing values. Methods for imputing missing data are needed, therefore, to minimize the effect of incomplete data sets on analyses, and to increase the range of data sets to which these algorithms can be applied. In this report, we investigate automated methods for estimating missing data. RESULTS: We present a comparative study of several methods for the estimation of missing values in gene microarray data. We implemented and evaluated three methods: a Singular Value Decomposition (SVD) based method (SVDimpute), weighted K-nearest neighbors (KNNimpute), and row average. We evaluated the methods using a variety of parameter settings and over different real data sets, and assessed the robustness of the imputation methods to the amount of missing data over the range of 1--20% missing values. We show that KNNimpute appears to provide a more robust and sensitive method for missing value estimation than SVDimpute, and both SVDimpute and KNNimpute surpass the commonly used row average method (as well as filling missing values with zeros). We report results of the comparative experiments and provide recommendations and tools for accurate estimation of missing microarray data under a variety of conditions.  相似文献   

7.
Microarray gene expression data often contains multiple missing values due to various reasons. However, most of gene expression data analysis algorithms require complete expression data. Therefore, accurate estimation of the missing values is critical to further data analysis. In this paper, an Iterated Local Least Squares Imputation (ILLSimpute) method is proposed for estimating missing values. Two unique features of ILLSimpute method are: ILLSimpute method does not fix a common number of coherent genes for target genes for estimation purpose, but defines coherent genes as those within a distance threshold to the target genes. Secondly, in ILLSimpute method, estimated values in one iteration are used for missing value estimation in the next iteration and the method terminates after certain iterations or the imputed values converge. Experimental results on six real microarray datasets showed that ILLSimpute method performed at least as well as, and most of the time much better than, five most recent imputation methods.  相似文献   

8.

Background  

It is an important pre-processing step to accurately estimate missing values in microarray data, because complete datasets are required in numerous expression profile analysis in bioinformatics. Although several methods have been suggested, their performances are not satisfactory for datasets with high missing percentages.  相似文献   

9.
Gan X  Liew AW  Yan H 《Nucleic acids research》2006,34(5):1608-1619
Gene expressions measured using microarrays usually suffer from the missing value problem. However, in many data analysis methods, a complete data matrix is required. Although existing missing value imputation algorithms have shown good performance to deal with missing values, they also have their limitations. For example, some algorithms have good performance only when strong local correlation exists in data while some provide the best estimate when data is dominated by global structure. In addition, these algorithms do not take into account any biological constraint in their imputation. In this paper, we propose a set theoretic framework based on projection onto convex sets (POCS) for missing data imputation. POCS allows us to incorporate different types of a priori knowledge about missing values into the estimation process. The main idea of POCS is to formulate every piece of prior knowledge into a corresponding convex set and then use a convergence-guaranteed iterative procedure to obtain a solution in the intersection of all these sets. In this work, we design several convex sets, taking into consideration the biological characteristic of the data: the first set mainly exploit the local correlation structure among genes in microarray data, while the second set captures the global correlation structure among arrays. The third set (actually a series of sets) exploits the biological phenomenon of synchronization loss in microarray experiments. In cyclic systems, synchronization loss is a common phenomenon and we construct a series of sets based on this phenomenon for our POCS imputation algorithm. Experiments show that our algorithm can achieve a significant reduction of error compared to the KNNimpute, SVDimpute and LSimpute methods.  相似文献   

10.
A problem that impedes the progress in Brain-Computer Interface (BCI) research is the difficulty in reproducing the results of different papers. Comparing different algorithms at present is very difficult. Some improvements have been made by the use of standard datasets to evaluate different algorithms. However, the lack of a comparison framework still exists. In this paper, we construct a new general comparison framework to compare different algorithms on several standard datasets. All these datasets correspond to sensory motor BCIs, and are obtained from 21 subjects during their operation of synchronous BCIs and 8 subjects using self-paced BCIs. Other researchers can use our framework to compare their own algorithms on their own datasets. We have compared the performance of different popular classification algorithms over these 29 subjects and performed statistical tests to validate our results. Our findings suggest that, for a given subject, the choice of the classifier for a BCI system depends on the feature extraction method used in that BCI system. This is in contrary to most of publications in the field that have used Linear Discriminant Analysis (LDA) as the classifier of choice for BCI systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号