首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 526 毫秒
1.
Herpes simplex virus‐1 (HSV‐1) is a large enveloped DNA virus that belongs to the family of Herpesviridae. It has been recently shown that the cytoplasmic membranes that wrap the newly assembled capsids are endocytic compartments derived from the plasma membrane. Here, we show that dynamin‐dependent endocytosis plays a major role in this process. Dominant‐negative dynamin and clathrin adaptor AP180 significantly decrease virus production. Moreover, inhibitors targeting dynamin and clathrin lead to a decreased transport of glycoproteins to cytoplasmic capsids, confirming that glycoproteins are delivered to assembly sites via endocytosis. We also show that certain combinations of glycoproteins colocalize with each other and with the components of clathrin‐dependent and ‐independent endocytosis pathways. Importantly, we demonstrate that the uptake of neutralizing antibodies that bind to glycoproteins when they become exposed on the cell surface during virus particle assembly leads to the production of non‐infectious HSV‐1. Our results demonstrate that transport of viral glycoproteins to the plasma membrane prior to endocytosis is the major route by which these proteins are localized to the cytoplasmic virus assembly compartments. This highlights the importance of endocytosis as a major protein‐sorting event during HSV‐1 envelopment.   相似文献   

2.
Several exogenous and endogenous cargo proteins are internalized independently of clathrin, including the bacterial Shiga toxin. The mechanisms underlying early steps of clathrin‐independent uptake remain largely unknown. In this study, we have designed a protocol to obtain gradient fractions containing Shiga toxin internalization intermediates. Using stable isotope labeling with amino acids in cell culture (SILAC) and quantitative mass spectrometry, Rab12 was found in association with these very early uptake carriers. The localization of the GTPase on Shiga toxin‐induced plasma membrane invaginations was shown by fluorescence microscopy in cells transfected with GFP‐Rab12. Furthermore, using a quantitative biochemical assay, it was found that the amount of receptor‐binding B‐subunit of Shiga toxin reaching the trans‐Golgi/TGN membranes was decreased in Rab12‐depleted cells, and that cells were partially protected against intoxication by Shiga‐like toxin 1 under these conditions. These findings demonstrate the functional importance of Rab12 for retrograde toxin trafficking. Among several other intracellular transport pathways, only the steady‐state localizations of TGN46 and cation‐independent mannose‐6‐phosphate receptor were affected. These data thus strongly suggest that Rab12 functions in the retrograde transport route.   相似文献   

3.
In this study, we have investigated how clathrin‐dependent endocytosis is affected by exogenously added lysophospholipids (LPLs). Addition of LPLs with large head groups strongly inhibits transferrin (Tf) endocytosis in various cell lines, while LPLs with small head groups do not. Electron and total internal reflection fluorescence microscopy (EM and TIRF) reveal that treatment with lysophosphatidylinositol (LPI) with the fatty acyl group C18:0 leads to reduced numbers of invaginated clathrin‐coated pits (CCPs) at the plasma membrane, fewer endocytic events per membrane area and increased lifetime of CCPs. Also, endocytosis of Tf becomes dependent on actin upon LPI treatment. Thus, our results demonstrate that one can regulate the kinetics and properties of clathrin‐dependent endocytosis by addition of LPLs in a head group size‐ and fatty acyl‐dependent manner. Furthermore, studies performed with optical tweezers show that less force is required to pull membrane tubules outwards from the plasma membrane when LPI is added to the cells. The results are in agreement with the notion that insertion of LPLs with large head groups creates a positive membrane curvature which might have a negative impact on events that require plasma membrane invagination, while it may facilitate membrane bending toward the cell exterior.   相似文献   

4.
How clathrin‐mediated endocytosis (CME) retrieves vesicle proteins into newly formed synaptic vesicles (SVs) remains a major puzzle. Besides its roles in stimulating clathrin‐coated vesicle formation and regulating SV size, the clathrin assembly protein AP180 has been identified as a key player in retrieving SV proteins. The mechanisms by which AP180 recruits SV proteins are not fully understood. Here, we show that following acute inactivation of AP180 in Drosophila, SV recycling is severely impaired at the larval neuromuscular synapse based on analyses of FM 1‐43 uptake and synaptic ultrastructure. More dramatically, AP180 activity is important to maintain the integrity of SV protein complexes at the plasma membrane during endocytosis. These observations suggest that AP180 normally clusters SV proteins together during recycling. Consistent with this notion, SV protein composition and distribution are altered in AP180 mutant flies. Finally, AP180 co‐immunoprecipitates with SV proteins, including the vesicular glutamate transporter and neuronal synaptobrevin. These results reveal a new mode by which AP180 couples protein retrieval to CME of SVs. AP180 is also genetically linked to Alzheimer's disease. Hence, the findings of this study may provide new mechanistic insight into the role of AP180 dysfunction in Alzheimer's disease.   相似文献   

5.
The membrane origin of autophagosomes has long been a mystery and it may involve multiple sources. In this punctum, we discuss our recent finding that the plasma membrane contributes to the formation of pre-autophagic structures via clathrin-mediated endocytosis. Our study suggests that Atg16L1 interacts with clathrin heavy-chain/AP2 and is also localized on vesicles (positive for clathrin or cholera toxin B) close to the plasma membrane. Live-cell imaging studies revealed that the plasma membrane contributes to Atg16L1-positive structures and that this process and autophagosome formation are impaired by knockdowns of genes regulating clathrin-mediated endocytosis.Key words: autophagy, plasma membrane, endocytosis, phagophore, originWhere do autophagosomes get their membrane from? Although the field of autophagy has grown tremendously since its discovery a few decades ago, the origin(s) of the membranes that contribute to autophagosome biogenesis has been a mystery among autophagy researchers until recently. Mammalian autophagosomes are formed randomly throughout the cytoplasm via a process that involves elongation and fusion of phagophores to form double-membraned autophagosomes. This process involves two ubiquitin-like conjugation systems: conjugation of Atg12 to Atg5 that later forms a macromolecular complex with Atg16L1, and conjugation of phosphatidylethanolamine (PE) with Atg8/LC3-I. The Atg12-Atg5-Atg16L1 complex is targeted to the preautophagic structures, which then acquire Atg8. Atg12-Atg5-Atg16L1 dissociates from completed autophagosomes, while LC3-PE (LC3-II) is associated both with pre-autophagic structures and completed autophagosomes.Some recent studies have explored the contribution of membranes from different organelles supporting the general idea that autophagosomes derive membranes from pre-existing organelles. It is quite possible that there may be multiple membrane sources involved. A few groups have revisited the hypothesis that the endoplasmic reticulum (ER) may be one of the membrane donors. High-resolution 2D electron microscopy (EM) and 3D EM-tomography studies have revealed connections between the ER and the growing autophagosomes. Whether the ER contributes to general autophagy or a specific form of autophagy, reticulophagy, remains to be determined. In addition, it has not been shown if ER membrane is required for autophagosome formation. Recently another study has reported that autophagosomes receive lipids from the outer mitochondrial membrane, but only under starvation conditions, again fueling the multiple-membrane source hypothesis.We have now found evidence for plasma membrane contribution to pre-autophagic structures via endocytosis. Unlike the previous studies, which have focused on LC3- positive structures, we looked specifically at the Atg5-, Atg12- and Atg16-positive pre-autophagic structures, an idea that stemmed from our finding that clathrin heavy-chain immunoprecipitates with Atg16L1. We think that this interaction is partly mediated by the adaptor protein AP2, since knockdown of AP2 decreases the clathrin heavy-chain-Atg16L1 interaction. Immunogold EM also shows clathrin localization on Atg16L1-labeled vesicles close to the plasma membrane.These findings led us to test whether knockdown of proteins involved in clathrin-mediated endocytosis affected Atg16L1-positive pre-autophagic structures. Indeed, knockdown of key proteins in the clathrin-mediated endocytic pathway results in a decrease in the formation of Atg16L1-positive structures both under basal or autophagy-induced conditions (starvation or trehalose treatment). This correlates with a decrease in the number of LC3-labeled autophagosomes. When we directly analyzed vesicle fusion by livecell microscopy, we observed that vesicles endocytosed from the plasma membrane fuse to the Atg16L1-positive vesicles close to the plasma membrane. This was confirmed by immuno-EM when we found cholera toxin B-labeling (used to label plasma membrane that is subsequently internalized by endocytosis) on Atg16L1-vesicles. We noticed that overexpression of an Atg16L1 mutant that does not bind clathrin heavy-chain does not form Atg16L1-vesicular structures in the way we see with wild-type Atg16L1, suggesting that the binding of Atg16L1 to AP2/clathrin is required for the subsequent formation of the Atg16L1 vesicles.When we blocked endocytic vesicle scission (using both genetic and chemical inhibitors) we found that Atg16L1 strongly immunoprecipitates with clathrin-heavy chain probably due to the accumulation of clathrin-Atg16L1 structures at the plasma membrane that failed to pinch off. This was strongly supported by our fluorescence microscopy and immuno-EM studies that showed what we predicted—accumulation of Atg16L1 at the plasma membrane. This suggests that Atg16L1 in a complex with AP2/clathrin is targeted to the plasma membrane and subsequently internalized as Atg16L1-positive structures. Thus, our data strongly suggest that plasma membrane contributes to early autophagic precursors that subsequently mature to form phagophores (Fig. 1).Open in a separate windowFigure 1Plasma membrane contributes to the formation of early autophagic precursors. Previous studies show that delivery of fully formed autophagosomes to lysosomes requires fusion of such autophagosomes with early or late endosomes to form amphisomes, which are Atg16L1-negative, LC3-positive and are also positive for endosomal markers. We show that blocking clathrin-mediated endocytosis inhibits formation of Atg16L1-positive structures that mature to form phagophores and later autophagosomes. These Atg16L1-vesicles are positive for other early autophagosomal markers like Atg5 and Atg12, but are negative for early endosomal markers like EEA1, suggesting that they are high up in the autophagosome biogenesis cascade. Inhibition of dynamin with Dynsasore or the use of a dominant negative K44A mutant blocks scission and results in Atg16L1 accumulation on the plasma membrane, suggesting that endosomal scission is critical for this process.Although previous studies suggest that completely formed autophagosomes need to fuse with early or late endosomes in order for subsequent autophagosomelysosome fusion to occur, they did not look at the formation of pre-autophagic structures. Our study shows that active endocytosis is required both for the formation of autophagosomes, when very early endocytic intermediates immediately pinching off the plasma membrane (not early endosomes) fuse with Atg16L1-positive structures to form phagophores, and also for maturation of autophagosomes when early or late endosomes fuse with Atg16L1-negative but LC3-positive autophagosomes to form amphisomes. Since blocking clathrin-mediated endocytosis does not completely abrogate autophagosome formation, we believe that other endocytic pathways may have a similar role. Depending on the cell type or the physiological conditions, the contributions from the different endocytic pathways may vary accordingly. It will be interesting to know if the endocytic pathway continuously delivers membrane for early steps in autophagy as the preautophagic structures grow and mature to form autophagosomes, deriving membrane from other sources.  相似文献   

6.
Clathrin‐mediated endocytosis is a fundamental transport pathway that depends on numerous protein‐protein interactions. Testing the importance of the adaptor protein‐clathrin interaction for coat formation and progression of endocytosis in vivo has been difficult due to experimental constrains. Here, we addressed this question using the yeast clathrin adaptor Sla1, which is unique in showing a cargo endocytosis defect upon substitution of 3 amino acids in its clathrin‐binding motif (sla1AAA) that disrupt clathrin binding. Live‐cell imaging showed an impaired Sla1‐clathrin interaction causes reduced clathrin levels but increased Sla1 levels at endocytic sites. Moreover, the rate of Sla1 recruitment was reduced indicating proper dynamics of both clathrin and Sla1 depend on their interaction. sla1AAA cells showed a delay in progression through the various stages of endocytosis. The Arp2/3‐dependent actin polymerization machinery was present for significantly longer time before actin polymerization ensued, revealing a link between coat formation and activation of actin polymerization. Ultimately, in sla1AAA cells a larger than normal actin network was formed, dramatically higher levels of various machinery proteins other than clathrin were recruited, and the membrane profile of endocytic invaginations was longer. Thus, the Sla1‐clathrin interaction is important for coat formation, regulation of endocytic progression and membrane bending.   相似文献   

7.
《Autophagy》2013,9(8):1184-1186
The membrane origin of autophagosomes has long been a mystery and it may involve multiple sources. In this punctum, we discuss our recent finding that the plasma membrane contributes to the formation of pre-autophagic structures via clathrin-mediated endocytosis. Our study suggests that Atg16L1 interacts with clathrin heavy-chain/AP2 and is also localized on vesicles (positive for clathrin or cholera toxin B) close to the plasma membrane. Live-cell imaging studies revealed that the plasma membrane contributes to Atg16L1-positive structures and that this process and autophagosome formation are impaired by knockdowns of genes regulating clathrin-mediated endocytosis.  相似文献   

8.
We studied the endocytosis of fluorescent glycosphingolipid (GSL) analogs in various cell types using pathway-specific inhibitors and colocalization studies with endocytic markers and DsRed caveolin-1 (cav-1). Based on inhibitor studies, all GSLs tested were internalized predominantly (>80%) by a clathrin-independent, caveolar-related mechanism, regardless of cell type. In addition, fluorescent lactosylceramide (LacCer) colocalized with DsRed-cav-1 in vesicular structures upon endocytosis in rat fibroblasts. The internalization mechanism for GSLs was unaffected by varying the carbohydrate headgroup or sphingosine backbone chain length; however, a fluorescent phosphatidylcholine analog was not internalized via caveolae, suggesting that the GSL ceramide core may be important for caveolar uptake. Internalization of fluorescent LacCer was reduced 80-90% in cell types with low cav-1, but was dramatically stimulated by cav-1 overexpression. However, even in cells with low levels of cav-1, residual LacCer internalization was clathrin independent. In contrast, cholera toxin B subunit (CtxB), which binds endogenous GM1, was internalized via clathrin-independent endocytosis in cells with high cav-1 expression, whereas significant clathrin-dependent uptake occurred in cells with low cav-1. Fluorescent GM1, normally internalized by clathrin-independent endocytosis in HeLa cells with low cav-1, was induced to partially internalize via the clathrin pathway in the presence of CtxB. These results suggest that GSL analogs are selectively internalized via a caveolar-related mechanism in most cell types, whereas CtxB may undergo "pathway switching" when cav-1 levels are low.  相似文献   

9.
Variable requirements for actin during clathrin‐mediated endocytosis (CME) may be related to regional or cellular differences in membrane tension. To compensate, local regulation of force generation may be needed to facilitate membrane curving and vesicle budding. Force generation is assumed to occur primarily through actin polymerization. Here we examine the role of myosin II using loss of function experiments. Our results indicate that myosin II acts on cortical actin scaffolds primarily in the plane of the plasma membrane (bottom arrow) to generate changes that are critical for enhancing CME progression.   相似文献   

10.
Clostridium botulinum C2 toxin is an ADP‐ribosyltransferase, causing depolymerization of the actin cytoskeleton in eukaryotic cells. The C2 toxin is a binary toxin consisting of the enzymatic subunit C2I and the binding subunit C2II. Proteolytical activation of the binding subunit triggers the formation of heptameric structures (C2IIa), which bind to cellular receptors. C2I is able to bind to C2IIa oligomers, and it has been suggested that the whole complex is internalized by a raft‐dependent mechanism. Here we analysed by which mechanism C2 toxin is endocytosed. In HeLa cells expressing a dominant‐negative dynamin mutant, cytotoxicity and C2 toxin uptake were blocked. Furthermore, siRNA‐mediated knockdown of flotillins or inhibition of Arf6 function, proteins suggested to be involved in dynamin‐independent endocytosis, did not affect C2 toxicity. Knockdown of caveolin did not inhibit endocytosis of C2 toxin, whereas inhibition of clathrin function reduced the uptake of C2 toxin and delayed the cytotoxic effect. Finally, we found evidence for a Rho‐mediated uptake of C2 toxin. In conclusion, C2 toxin is endocytosed by dynamin‐dependent mechanisms and we provide evidence for involvement of clathrin and Rho.  相似文献   

11.
Circuit formation in the brain requires neurite outgrowth throughout development to establish synaptic contacts with target cells. Active endocytosis of several adhesion molecules facilitates the dynamic exchange of these molecules at the surface and promotes neurite outgrowth in developing neurons. The endocytosis of N‐cadherin, a calcium‐dependent adhesion molecule, has been implicated in the regulation of neurite outgrowth, but the mechanism remains unclear. Here, we identified that a fraction of N‐cadherin internalizes through clathrin‐mediated endocytosis (CME). Two tyrosine‐based motifs in the cytoplasmic domain of N‐cadherin recognized by the μ2 subunit of the AP‐2 adaptor complex are responsible for CME of N‐cadherin. Moreover, β‐catenin, a core component of the N‐cadherin adhesion complex, inhibits N‐cadherin endocytosis by masking the 2 tyrosine‐based motifs. Removal of β‐catenin facilitates μ2 binding to N‐cadherin, thereby increasing clathrin‐mediated N‐cadherin endocytosis and neurite outgrowth without affecting the steady‐state level of surface N‐cadherin. These results identify and characterize the mechanism controlling N‐cadherin endocytosis through β‐catenin‐regulated μ2 binding to modulate neurite outgrowth.   相似文献   

12.
Many studies have investigated the intracellular trafficking of Shiga toxin, but very little is known about the underlying dynamics of its cellular receptor, the glycosphingolipid globotriaosyl ceramide. In this study, we show that globotriaosyl ceramide is required not only for Shiga toxin binding to cells, but also for its intracellular trafficking. Shiga toxin induces globotriaosyl ceramide recruitment to detergent-resistant membranes, and subsequent internalization of the lipid. The globotriaosyl ceramide pool at the plasma membrane is then replenished from internal stores. Whereas endocytosis is not affected in the recovery condition, retrograde transport of Shiga toxin to the Golgi apparatus and the endoplasmic reticulum is strongly inhibited. This effect is specific, as cholera toxin trafficking on GM(1) and protein biosynthesis are not impaired. The differential behavior of both toxins is also paralleled by the selective loss of Shiga toxin association with detergent-resistant membranes in the recovery condition, and comparison of the molecular species composition of plasma membrane globotriaosyl ceramide indicates subtle changes in favor of unsaturated fatty acids. In conclusion, this study demonstrates the dynamic behavior of globotriaosyl ceramide at the plasma membrane and suggests that globotriaosyl ceramide-specific determinants, possibly its molecular species composition, are selectively required for efficient retrograde sorting on endosomes, but not for endocytosis.  相似文献   

13.
Signaling by epidermal growth factor receptor (EGFR) is controlled by endocytosis. However, mechanisms of EGFR endocytosis remain poorly understood. Here, we found that the EGFR mutant lacking known ubiquitylation, acetylation and clathrin adaptor AP‐2‐binding sites (21KRΔAP2) was internalized at relatively high rates via the clathrin‐dependent pathway in human duodenal adenocarcinoma HuTu‐80 cells. RNA interference analysis revealed that this residual internalization is strongly inhibited by depletion of Grb2 and the E2 ubiquitin‐conjugating enzyme UbcH5b/c, and partially affected by depletion of the E3 ubiquitin ligase Cbl and ubiquitin‐binding adaptors, indicating that an ubiquitylation process is involved. Several new ubiquitin conjugation sites were identified by mass spectrometry in the 21KRΔAP2 mutant, suggesting that cryptic ubiquitylation may mediate endocytosis of this mutant. Total internal reflection fluorescence microscopy imaging of HuTu‐80 cells transfected with labeled ubiquitin adaptor epsin1 demonstrated that the ubiquitylation‐deficient EGFR mutant was endocytosed through a limited population of epsin‐enriched clathrin‐coated pits (CCPs), although with a prolonged CCP lifetime. Native EGFR was recruited with the same efficiency into CCPs containing either AP‐2 or epsin1 that were tagged with fluorescent proteins by genome editing of MDA‐MD‐231 cells. We propose that two redundant mechanisms, ubiquitylation and interaction with AP‐2, contribute to EGFR endocytosis via CCPs in a stochastic fashion.   相似文献   

14.
Shiga toxin can be internalized by clathrin-dependent endocytosis in different cell lines, although it binds specifically to the glycosphingolipid Gb3. It has been demonstrated previously that the toxin can induce recruitment of the toxin-receptor complex to clathrin-coated pits, but whether this process is concentration-dependent or which part of the toxin molecule is involved in this process, have so far been unresolved issues. In this article, we show that the rate of Shiga toxin uptake is dependent on the toxin concentration in several cell lines [HEp-2, HeLa, Vero and baby hamster kidney (BHK)], and that the increased rate observed at higher concentrations is strictly dependent on the presence of the A-subunit of cell surface-bound toxin. Surface-bound B-subunit has no stimulatory effect. Furthermore, this increase in toxin endocytosis is dependent on functional clathrin, as it did not occur in BHK cells after induction of antisense to clathrin heavy chain, thereby blocking clathrin-dependent endocytosis. By immunofluorescence, we show that there is an increased colocalization between Alexa-labeled Shiga toxin and Cy5-labeled transferrin in HeLa cells upon addition of unlabeled toxin. In conclusion, the data indicate that the Shiga toxin A-subunit of cell surface-bound toxin stimulates clathrin-dependent uptake of the toxin. Possible explanations for this phenomenon are discussed.  相似文献   

15.
In contrast to clathrin‐mediated endocytosis (CME) which is well characterized and understood, little is known about the regulation and machinery underlying clathrin‐independent endocytosis (CIE). There is also a wide variation in the requirements each individual CIE cargo has for its internalization. Recent studies have shown that CIE is affected by glycosylation and glycan interactions. We briefly review these studies and explore how these studies mesh with one another. We then discuss what this sensitivity to glycan interactions could indicate for the regulation of CIE. We address the spectrum of responses CIE has been shown to have with respect to changes in glycan interactions and attempt to reconcile disparate observations onto a shared conceptual landscape. We focus on the mechanisms by which cells can alter the glycan interactions at the plasma membrane and propose that glycosylation and glycan interactions could provide cells with a tool box with which cells can manipulate CIE. Altered glycosylation is often associated with a number of diseases and we discuss how under different disease settings, glycosylation‐based modulation of CIE could play a role in disease progression.   相似文献   

16.
The chemokine receptor CXCR2 is vital for inflammation, wound healing, angiogenesis, cancer progression and metastasis. Adaptor protein 2 (AP2), a clathrin binding heterotetrameric protein comprised of α, β2, μ2 and σ2 subunits, facilitates clathrin‐mediated endocytosis. Mutation of the LLKIL motif in the CXCR2 carboxyl‐terminal domain (CTD) results in loss of AP2 binding to the receptor and loss of ligand‐mediated receptor internalization and chemotaxis. AP2 knockdown also results in diminished ligand‐mediated CXCR2 internalization, polarization and chemotaxis. Using knockdown/rescue approaches with AP2‐μ2 mutants, the binding domains were characterized in reference to CXCR2 internalization and chemotaxis. When in an open conformation, μ2 Patch 1 and Patch 2 domains bind tightly to membrane PIP2 phospholipids. When AP2‐μ2, is replaced with μ2 mutated in Patch 1 and/or Patch 2 domains, ligand‐mediated receptor binding and internalization are not lost. However, chemotaxis requires AP2‐μ2 Patch 1, but not Patch 2. AP2‐σ2 has been demonstrated to bind dileucine motifs to facilitate internalization. Expression of AP2‐σ2 V88D and V98S dominant negative mutants resulted in loss of CXCR2 mediated chemotaxis. Thus, AP2 binding to both membrane phosphatidylinositol phospholipids and dileucine motifs is crucial for directional migration or chemotaxis. Moreover, AP2‐mediated receptor internalization can be dissociated from AP2‐mediated chemotaxis.   相似文献   

17.
The trafficking of G protein coupled‐receptors (GPCRs) is one of the most exciting areas in cell biology because of recent advances demonstrating that GPCR signaling is spatially encoded. GPCRs, acting in a diverse array of physiological systems, can have differential signaling consequences depending on their subcellular localization. At the plasma membrane, GPCR organization could fine‐tune the initial stages of receptor signaling by determining the magnitude of signaling and the type of effectors to which receptors can couple. This organization is mediated by the lipid composition of the plasma membrane, receptor‐receptor interactions, and receptor interactions with intracellular scaffolding proteins. GPCR organization is subsequently changed by ligand binding and the regulated endocytosis of these receptors. Activated GPCRs can modulate the dynamics of their own endocytosis through changing clathrin‐coated pit dynamics, and through the scaffolding adaptor protein β‐arrestin. This endocytic regulation has signaling consequences, predominantly through modulation of the MAPK cascade. This review explores what is known about receptor sorting at the plasma membrane, protein partners that control receptor endocytosis, and the ways in which receptor sorting at the plasma membrane regulates downstream trafficking and signaling.   相似文献   

18.
Flotillins were proposed to mediate clathrin‐independent endocytosis, and recently, flotillin‐1 was implicated in the protein kinase C (PKC)‐triggered endocytosis of the dopamine transporter (DAT). Since endocytosis of DAT was previously shown to be clathrin‐mediated, we re‐examined the role of clathrin coat proteins and flotillin in DAT endocytosis using DAT tagged with the hemagglutinin epitope (HA) in the extracellular loop and a quantitative HA antibody uptake assay. Depletion of flotillin‐1, flotillin‐2 or both flotillins together by small interfering RNAs (siRNAs) did not inhibit PKC‐dependent internalization and degradation of HA‐DAT. In contrast, siRNAs to clathrin heavy chain and μ2 subunit of clathrin adaptor complex AP‐2 as well as a dynamin inhibitor Dyngo‐4A significantly decreased PKC‐dependent endocytosis of HA‐DAT. Similarly, endocytosis and degradation of DAT that is not epitope‐tagged were highly sensitive to the clathrin siRNAs and dynamin inhibition but were not affected by flotillin knockdown. Very little co‐localization of DAT with flotillins was observed in cells ectopically expressing DAT and in cultured mouse dopaminergic neurons. Depletion of flotillins increased diffusion rates of HA‐DAT in the plasma membrane, suggesting that flotillin‐organized microdomains may regulate the lateral mobility of DAT. We propose that clathrin‐mediated endocytosis is the major pathway of PKC‐dependent internalization of DAT, and that flotillins may modulate functional association of DAT with plasma membrane rafts rather than mediate DAT endocytosis .  相似文献   

19.
Glycosylphosphatidylinositol‐anchored proteins (GPI‐APs) are a class of lipid anchored proteins expressed on the cell surface of eukaryotes. The potential interaction of GPI‐APs with ordered lipid domains enriched in cholesterol and sphingolipids has been proposed to function in the intracellular transport of these lipid anchored proteins. Here, we examined the biological importance of two saturated fatty acids present in the phosphatidylinositol moiety of GPI‐APs. These fatty acids are introduced by the action of lipid remodeling enzymes and required for the GPI‐AP association within ordered lipid domains. We found that the fatty acid remodeling is not required for either efficient Golgi‐to‐plasma membrane transport or selective endocytosis via GPI‐enriched early endosomal compartment (GEEC)/ clathrin‐independent carrier (CLIC) pathway, whereas cholesterol depletion significantly affects both pathways independent of their fatty acid structure. Therefore, the mechanism of cholesterol dependence does not appear to be related to the interaction with ordered lipid domains mediated by two saturated fatty acids. Furthermore, cholesterol extraction drastically releases the unremodeled GPI‐APs carrying an unsaturated fatty acid from the cell surface, but not remodeled GPI‐APs carrying two saturated fatty acids. This underscores the essential role of lipid remodeling to ensure a stable membrane association of GPI‐APs particularly under potential membrane lipid perturbation.   相似文献   

20.
Expression of Eph receptors and their ligands, the ephrins, have important functions in boundary formation and morphogenesis in both adult and embryonic tissue. The EphB receptors and ephrinB ligands are transmembrane proteins that are expressed in different cells and their interaction drives cell repulsion. For cell repulsion to occur, trans‐endocytosis of the inter‐cellular receptor‐ligand EphB‐ephrinB complex is required. The molecular mechanism underlying trans‐endocytosis is poorly defined. Here we show that the process is clathrin‐ and Eps15R‐mediated using Co115 colorectal cell lines stably expressing EphB2 and ephrinB1. Cell repulsion in co‐cultures of EphB2‐ and ephrinB1‐expressing cells is significantly reduced by knockdown of Eps15R but not Eps15. A novel interaction motif in Eps15R, DPFxxLDPF, is shown to bind directly to the clathrin terminal domain in vitro. Moreover, the interaction between Eps15R and clathrin is required for EphB2‐mediated cell repulsion as shown in a rescue experiment in the EphB2 co‐culture assay where wild type Eps15R but not the clathrin‐binding mutant rescues cell repulsion. These results provide the first evidence that Eps15R together with clathrin control EphB/ephrinB trans‐endocytosis and thereby cell repulsion.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号