首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adapted filamentous pathogens such as the oomycetes Hyaloperonospora arabidopsidis (Hpa) and Phytophthora infestans (Pi) project specialized hyphae, the haustoria, inside living host cells for the suppression of host defence and acquisition of nutrients. Accommodation of haustoria requires reorganization of the host cell and the biogenesis of a novel host cell membrane, the extrahaustorial membrane (EHM), which envelops the haustorium separating the host cell from the pathogen. Here, we applied live-cell imaging of fluorescent-tagged proteins labelling a variety of membrane compartments and investigated the subcellular changes associated with accommodating oomycete haustoria in Arabidopsis and N. benthamiana. Plasma membrane-resident proteins differentially localized to the EHM. Likewise, secretory vesicles and endosomal compartments surrounded Hpa and Pi haustoria revealing differences between these two oomycetes, and suggesting a role for vesicle trafficking pathways for the pathogen-controlled biogenesis of the EHM. The latter is supported by enhanced susceptibility of mutants in endosome-mediated trafficking regulators. These observations point at host subcellular defences and specialization of the EHM in a pathogen-specific manner. Defence-associated haustorial encasements, a double-layered membrane that grows around mature haustoria, were frequently observed in Hpa interactions. Intriguingly, all tested plant proteins accumulated at Hpa haustorial encasements suggesting the general recruitment of default vesicle trafficking pathways to defend pathogen access. Altogether, our results show common requirements of subcellular changes associated with oomycete biotrophy, and highlight differences between two oomycete pathogens in reprogramming host cell vesicle trafficking for haustoria accommodation. This provides a framework for further dissection of the pathogen-triggered reprogramming of host subcellular changes.  相似文献   

2.
Plants employ multiple cell‐autonomous defense mechanisms to impede pathogenesis of microbial intruders. Previously we identified an exocytosis defense mechanism in Arabidopsis against pathogenic powdery mildew fungi. This pre‐invasive defense mechanism depends on the formation of ternary protein complexes consisting of the plasma membrane‐localized PEN1 syntaxin, the adaptor protein SNAP33 and closely sequence‐related vesicle‐resident VAMP721 or VAMP722 proteins. The Arabidopsis thaliana resistance to powdery mildew 8.2 protein (RPW8.2) confers disease resistance against powdery mildews upon fungal entry into host cells and is specifically targeted to the extrahaustorial membrane (EHM), which envelops the haustorial complex of the fungus. However, the secretory machinery involved in trafficking RPW8.2 to the EHM is unknown. Here we report that RPW8.2 is transiently located on VAMP721/722 vesicles, and later incorporated into the EHM of mature haustoria. Resistance activity of RPW8.2 against the powdery mildew Golovinomyces orontii is greatly diminished in the absence of VAMP721 but only slightly so in the absence of VAMP722. Consistent with this result, trafficking of RPW8.2 to the EHM is delayed in the absence of VAMP721. These findings implicate VAMP721/722 vesicles as key components of the secretory machinery for carrying RPW8.2 to the plant–fungal interface. Quantitative fluorescence recovery after photobleaching suggests that vesicle‐mediated trafficking of RPW8.2–yellow fluorescent protein (YFP) to the EHM occurs transiently during early haustorial development and that lateral diffusion of RPW8.2–YFP within the EHM exceeds vesicle‐mediated replenishment of RPW8.2–YFP in mature haustoria. Our findings imply the engagement of VAMP721/722 in a bifurcated trafficking pathway for pre‐invasive defense at the cell periphery and post‐invasive defense at the EHM.  相似文献   

3.
The interaction between plants and pathogens represents a dynamic competition between a robust immune system and efficient infectious strategies. Plant innate immunity is composed of complex and highly regulated molecular networks, which can be triggered by the perception of either conserved or race‐specific pathogenic molecular signatures. Small RNAs are emerging as versatile regulators of plant development, growth and response to biotic and abiotic stresses. They act in different tiers of plant immunity, including the pathogen‐associated molecular pattern‐triggered and the effector‐triggered immunity. On the other hand, pathogens have evolved effector molecules to suppress or hijack the host small RNA pathways. This leads to an arms race between plants and pathogens at the level of small RNA‐mediated defense.Here, we review recent advances in small RNA‐mediated defense responses and discuss the challenging questions in this area.  相似文献   

4.
Numerous fungal and oomycete pathogens penetrate the plant cell wall and extract nutrition from the host cells by a feeding structure called the haustorium. We recently revealed that the Arabidopsis resistance protein RPW8.2 is specifically targeted to the extrahaustorial membrane (EHM) for activation of haustorium-targeted resistance to powdery mildew pathogens. Consistent with its EHM-localization, RPW8.2 contains a putative transmembrane (TM) domain at its N-terminus. Here, we show that translational fusion of YFP to the N-terminus of RPW8.2 results in localization of YFP-RPW8.2 to both the plasma membrane and the EHM, and loss of RPW8.2''s defense function. We also show that deletion of the TM domain results in mis-localization of the RPW8.2-YFP fusion protein and extremely low levels of accumulation. These results indicate that an intact N-terminal TM domain is necessary for EHM-specific localization and defense function of RPW8.2. In addition, we show that when expressed from the strong constitutive 35S viral promoter, RPW8.2 accumulates at low levels in the EHM insufficient to activate resistance, highlighting the importance of strong spatiotemporal expression of RPW8.2 from its native promoter. Taken together, our results indicate that accurate and adequate spatiotemporal expression and localization of RPW8.2 is key to activation of resistance at the host-pathogen interface.Key words: Arabidopsis, RPW8.2, resistance, powdery mildew, haustorium, extrahaustorial membrane, host-pathogen interface, protein localizationIn order to establish successful colonization on plant hosts, a haustorium-forming fungus such as powdery mildew must conquer two spatio-temporally interconnected layers of host resistance: pre-invasion (penetration) resistance and post-invasion resistance.1 Pre-invasion resistance protects plants from non-adapted pathogens by blocking their entry into the host cell.24 One common induced cellular defense response at this resistance level is the deposition of defense chemicals, including callose (β-1,3-glucan) at the site of penetration, resulting in cell wall apposition, a subcellular structure also known as a papilla.57 It has been reported that a syntaxin encoded by PENETRATION 1 (PEN1) is required for the timely assembly of the papilla,8 which is consistent with PEN1''s role in pre-invasion resistance.2 Once the fungus penetrates the plant cell wall, it will have to overcome the second layer of resistance, i.e., post-invasion resistance, to develop a functional haustorium in close contact with the host cell cytoplasm for successful colonization. Hypersensitive response (HR) manifested as rapid collapse of the invaded cell is often associated with post-invasion resistance.911 Another cellular defense response to haustorial invasion is the formation of an encasement of the haustorial complex (EHC).1216 Like the papilla, the EHC is also enriched for callose and thought to be formed via extension from the papilla by rim-growth.17We have recently reported that RPW8.2-mediated broad-spectrum powdery mildew resistance is associated with both HR and an enhancement of EHC formation.18 Most strikingly, we found that the RPW8.2-YFP fusion protein expressed from its native promoter (NP) is specifically targeted to the extrahaustorial membrane (EHM), suggesting that RPW8.2 functions at the host-pathogen interface to activate post-invasion resistance. How RPW8.2 is targeted to the EHM and directs host defense to the host-pathogen interface remains to be an open question.  相似文献   

5.
The cell membrane regulates many physiological processes including cellular communication,homing and metabolism. It is therefore not surprising that the composition of the host cell membrane is manipulated by intracellular pathogens. Among these, the human oncogenic herpesviruses Epstein–Barr virus(EBV) and Kaposi's sarcoma-associated herpesvirus(KSHV)exploit the host cell membrane to avoid immune surveillance and promote viral replication.Accumulating evidence has shown that both EBV and KSHV directly encode several similar membrane-associated proteins, including receptors and receptor-specific ligands(cytokines and chemokines), to increase virus fitness in spite of host antiviral immune responses. These proteins are expressed individually at different phases of the EBV/KSHV life cycle and employ various mechanisms to manipulate the host cell membrane. In recent decades, much effort has been made to address how these membrane-based signals contribute to viral tumorigenesis. In this review, we summarize and highlight the recent understanding of how EBV and KSHV similarly manipulate host cell membrane signals, particularly how remodeling of the cell membrane allows EBV and KSHV to avoid host antiviral immune responses and favors their latent and lytic infection.  相似文献   

6.
Malaria parasites go through an obligatory liver stage before they infect erythrocytes and cause disease symptoms. In the host hepatocytes, the parasite is enclosed by a parasitophorous vacuole membrane (PVM). Here, we dissected the interaction between the Plasmodium parasite and the host cell late endocytic pathway and show that parasite growth is dependent on the phosphoinositide 5‐kinase (PIKfyve) that converts phosphatidylinositol 3‐phosphate [PI(3)P] into phosphatidylinositol 3,5‐bisphosphate [PI(3,5)P2] in the endosomal system. We found that inhibition of PIKfyve by either pharmacological or non‐pharmacological means causes a delay in parasite growth. Moreover, we show that the PI(3,5)P2 effector protein TRPML1 that is involved in late endocytic membrane fusion, is present in vesicles closely contacting the PVM and is necessary for parasite growth. Thus, our studies suggest that the parasite PVM is able to fuse with host late endocytic vesicles in a PI(3,5)P2‐dependent manner, allowing the exchange of material between the host and the parasite, which is essential for successful infection.   相似文献   

7.
Highly purified tonoplast and plasmamembrane vesicles were isolated from microsomes of Catharanthus roseus (L.) G. Don. by preparative free-flow electrophoresis. The relative amounts of tonoplast and plasma-membrane vesicles in the total microsomes varied with the pH of the grinding medium. The most electronegative fractions were identified as tonoplast using nitrate-inhibited, azide-resistant Mg2+-ATPase and pyrophosphatase activities as enzyme markers. The least electronegative fractions were identified as plasma membrane using glucan-synthase-II and UDPG:sterolglucosyl-transferase activities as enzyme markers. Other membrane markers, latent inosine-5-diphosphatase (Golgi), NADPH-cytochrome-c reductase (ER) and cytochrome-c oxidase (mitochondria) were recovered in the fractions intermediate between tonoplast and plasma membrane and did not contaminate either the tonoplast or the plasma-membrane fractions. In the course of searching for a reliable marker for tonoplast, the pyrophosphatase activity was found to be essentially associated with the tonoplast fractions purified by free-flow electrophoresis from C. roseus and other plant materials. The degree of sealing of the tonoplast and plasmamembrane vesicles was probed by their ability to pump protons (measurements of quinacrine quenching) and to generate a membrane potential (absorption spectroscopy of Oxonol VI). A critical evaluation of vesicles sidedness is presented.Abbreviations CCCP carbonyl cyanide m-chlorophenylhydrazone - Con A concanavalin A - Cyt cytochrome - LysoPC lysophosphatidylcholine - Pi orthophoshate - PPiase pyrophosphatase - IDPase inosine-5-diphosphatase We thank Pr. Robert Dargent and André Moisan (Laboratoire de Cryptogamie, Toulouse, France) for use of their electron-microscope facilities. This work was supported by the Centre National de la Recherche Scientifique and by a grant Dynamique du fonctionnement de la vacuole from the Ministère de la Recherche et de la Technologie.  相似文献   

8.
For membrane‐bound intracellular pathogens, the surrounding vacuole is the portal of communication with the host cell. The parasitophorous vacuole (PV) harboring intrahepatocytic Plasmodium parasites satisfies the parasites' needs of nutrition and protection from host defenses to allow the rapid parasite growth that occurs during the liver stage of infection. In this study, we visualized the PV membrane (PVM) and the associated tubovesicular network (TVN) through fluorescent tagging of two PVM‐resident Plasmodium berghei proteins, UIS4 and IBIS1. This strategy revealed previously unrecognized dynamics with which these membranes extend throughout the host cell. We observed dynamic vesicles, elongated clusters of membranes and long tubules that rapidly extend and contract from the PVM in a microtubule‐dependent manner. Live microscopy, correlative light‐electron microscopy and fluorescent recovery after photobleaching enabled a detailed characterization of these membranous features, including velocities, the distribution of UIS4 and IBIS1, and the connectivity of PVM and TVN. Labeling of host cell compartments revealed association of late endosomes and lysosomes with the elongated membrane clusters. Moreover, the signature host autophagosome protein LC3 was recruited to the PVM and TVN and colocalized with UIS4. Together, our data demonstrate that the membranes surrounding intrahepatic Plasmodium are involved in active remodeling of host cells.   相似文献   

9.
10.
Presently, there are few estimates of the number of molecules occupying membrane domains. Using a total internal reflection fluorescence microscopy (TIRFM) imaging approach, based on comparing the intensities of fluorescently labeled microdomains with those of single fluorophores, we measured the occupancy of DC‐SIGN, a C‐type lectin, in membrane microdomains. DC‐SIGN or its mutants were labeled with primary monoclonal antibodies (mAbs) in either dendritic cells (DCs) or NIH3T3 cells, or expressed as GFP fusions in NIH3T3 cells. The number of DC‐SIGN molecules per microdomain ranges from only a few to over 20, while microdomain dimensions range from the diffraction limit to > 1 µm. The largest fraction of microdomains, appearing at the diffraction limit, in either immature DCs or 3 T3 cells contains only 4–8 molecules of DC‐SIGN, consistent with our preliminary super‐resolution Blink microscopy estimates. We further show that these small assemblies are sufficient to bind and efficiently internalize a small (~50 nm) pathogen, dengue virus, leading to infection of host cells.   相似文献   

11.
In eukaryotes, homotypic fusion and vacuolar protein sorting (HOPS) as well as class C core vacuole/endosome tethering (CORVET) are evolutionarily conserved membrane tethering complexes that play important roles in lysosomal/vacuolar trafficking. Whether HOPS and CORVET control endomembrane trafficking in pollen tubes, the fastest growing plant cells, remains largely elusive. In this study, we demonstrate that the four core components shared by the two complexes, Vacuole protein sorting 11 (VPS11), VPS16, VPS33, and VPS18, are all essential for pollen tube growth in Arabidopsis thaliana and thus for plant reproduction success. We used VPS18 as a representative core component of the complexes to show that the protein is localized to both multivesicular bodies (MVBs) and the tonoplast in a growing pollen tube. Mutant vps18 pollen tubes grew more slowly in vivo, resulting in a significant reduction in male transmission efficiency. Additional studies revealed that membrane fusion from MVBs to vacuoles is severely compromised in vps18 pollen tubes, corroborating the function of VPS18 in late endocytic trafficking. Furthermore, vps18 pollen tubes produce excessive exocytic vesicles at the apical zone and excessive amounts of pectin and pectin methylesterases in the cell wall. In conclusion, this study establishes an additional conserved role of HOPS/CORVET in homotypic membrane fusion during vacuole biogenesis in pollen tubes and reveals a feedback regulation of HOPS/CORVET in the secretion of cell wall modification enzymes of rapidly growing plant cells.

Arabidopsis VPS18 plays an important role in regulating pollen tube growth through mediating the late endocytic trafficking and secretion of pectin and associated enzymes to the cell wall.  相似文献   

12.
Powdery mildew fungi are biotrophic pathogens that require living plant cells for their growth and reproduction. Elaboration of a specialized cell called a haustorium is essential for their pathogenesis, providing a portal into host cells for nutrient uptake and delivery of virulence effectors. Haustoria are enveloped by a modified plant plasma membrane, the extrahaustorial membrane (EHM), and an extrahaustorial matrix (EHMx), across which molecular exchange must occur, but the origin and composition of this interfacial zone remains obscure. Here we present a method for isolating Golovinomyces orontii haustoria from Arabidopsis leaves and an ultrastructural characterization of the haustorial interface. Haustoria were progressively encased by deposits of plant cell wall polymers, delivered by secretory vesicles and multivesicular bodies (MVBs) that ultimately become entrapped within the encasement. The EHM and EHMx were not labelled by antibodies recognizing eight plant cell wall and plasma membrane antigens. However, plant resistance protein RPW8.2 was specifically recruited to the EHMs of mature haustoria. Fungal cell wall-associated molecular patterns such as chitin and β-1,3-glucans were exposed at the surface of haustoria. Fungal MVBs were abundant in haustoria and putative exosome vesicles were detected in the paramural space and EHMx, suggesting the existence of an exosome-mediated secretion pathway.  相似文献   

13.
Host plant chemical composition critically shapes the performance of insect herbivores feeding on them. Some insects have become specialized on plant secondary metabolites, and even use them to their own advantage such as defense against predators. However, infection by plant pathogens can seriously alter the interaction between herbivores and their host plants. We tested whether the effects of the plant secondary metabolites, iridoid glycosides (IGs), on the performance and immune response of an insect herbivore are modulated by a plant pathogen. We used the IG‐specialized Glanville fritillary butterfly Melitaea cinxia, its host plant Plantago lanceolata, and the naturally occurring plant pathogen, powdery mildew Podosphaera plantaginis, as model system. Pre‐diapause larvae were fed on P. lanceolata host plants selected to contain either high or low IGs, in the presence or absence of powdery mildew. Larval performance was measured by growth rate, survival until diapause, and by investment in immunity. We assessed immunity after a bacterial challenge in terms of phenoloxidase (PO) activity and the expression of seven pre‐selected insect immune genes (qPCR). We found that the beneficial effects of constitutive leaf IGs, that improved larval growth, were significantly reduced by mildew infection. Moreover, mildew presence downregulated one component of larval immune response (PO activity), suggesting a physiological cost of investment in immunity under suboptimal conditions. Yet, feeding on mildew‐infected leaves caused an upregulation of two immune genes, lysozyme and prophenoloxidase. Our findings indicate that a plant pathogen can significantly modulate the effects of secondary metabolites on the growth of an insect herbivore. Furthermore, we show that a plant pathogen can induce contrasting effects on insect immune function. We suspect that the activation of the immune system toward a plant pathogen infection may be maladaptive, but the actual infectivity on the larvae should be tested.  相似文献   

14.
During an immune response, T cells survey antigen presenting cells for antigenic peptides via the formation of an interface known as an immunological synapse. Among the complex and dynamic biophysical phenomena occurring at this interface is the trafficking of sub‐synaptic vesicles carrying a variety of proximal signalling molecules. Here, we show that rather than being a homogeneous population, these vesicles display a diversity of membrane lipid order profiles, as measured using the environmentally sensitive dye di‐4‐ANEPPDHQ and multi‐spectral TIRF microscopy. Using live‐cell imaging, vesicle tracking and a variety of small molecule drugs to manipulate components of the actin and tubulin cytoskeleton, we show that the membrane lipid order of these vesicles correlate with their dynamics. Furthermore, we show that the key proximal signalling molecule Linker for Activation of T cells (LAT) is enriched in specific vesicle populations as defined by their higher membrane order. These results imply that vesicle lipid order may represent a novel regulatory mechanism for the sorting and trafficking of signalling molecules at the immunological synapse, and, potentially, other cellular structures.   相似文献   

15.
Pathogen recognition by the plant innate immune system invokes a sophisticated signal transduction network that culminates in disease resistance. The Arabidopsis protein RIN4 is a well-known regulator of plant immunity. However, the molecular mechanisms by which RIN4 controls multiple immune responses have remained elusive. in our recently published study, we purified components of the RIN4 protein complex from A. thaliana and identified several novel RIN4-associated proteins.1 we found that one class of RIN4-associated proteins, the plasma membrane H+-ATPases AHA1 and AHA2, play a crucial role in resisting pathogen invasion. Plants use RIN4 to regulate H+-ATPase activity during immune responses, thereby controlling stomatal apertures during pathogen attack. Stomata were previously identified as active regulators of plant immune responses during pathogen invasion, but how the plant innate immune system coordinates this response was unknown.2,3 Our investigations have revealed a novel function of rin4 during pathogenesis. Here, we discuss the rin4-AHA1/2 interaction and highlight additional RIN4-associated proteins (RAPs) as well as speculate on their potential roles in plant innate immunity.Key words: RIN4, PAMP-triggered immunity, effector-triggered immunity, protein complex, innate immunity  相似文献   

16.
17.
We develop a model for speciation due to postzygotic incompatibility generated by autoimmune reactions. The model is based on frequency‐dependent interactions between host plants and their pathogens, which can generate disruptive selection and give rise to speciation if distant phenotypes become reproductively isolated. Based on recent experimental evidence from Arabidopsis, we assume that at the molecular level, incompatibility between host strains is caused by epistatic interactions between two proteins in the plant immune system—the guard and the guardee. Within each plant strain, immune reactions occur when the guardee protein is modified by a pathogen effector, and the guard subsequently binds to the guardee, thus precipitating an immune response. When guard and guardee proteins come from phenotypically distant parents, a hybrid's immune system can be triggered by erroneous interactions between these proteins even in the absence of pathogen attack, leading to severe autoimmune reactions in hybrids. This generates a Dobzhnasky–Muller incompatibility due to immune reactions. Our model shows how phenotypic variation generated by frequency‐dependent host–pathogen interactions can lead to such postzygotic incompatibilities between extremal types, and hence to speciation.  相似文献   

18.
19.
There is a fundamental gap in our understanding of how a eukaryotic cell apportions the limited space within its cell membrane. Upon infection, a cell competes with intracellular pathogens for control of this same precious resource. The struggle between pathogen and host provides us with an opportunity to uncover the mechanisms regulating subcellular space by understanding how pathogens modulate vesicular traffic and membrane fusion events to create a specialized compartment for replication. By comparing several important intracellular pathogens, we review the molecular mechanisms and trafficking pathways that drive two space allocation strategies, the formation of tight and spacious pathogen‐containing vacuoles. Additionally, we discuss the potential advantages of each pathogenic lifestyle, the broader implications these lifestyles might have for cellular biology and outline exciting opportunities for future investigation.   相似文献   

20.
Intracellular pathogens need to establish a growth-stimulating host niche for survival and replication. A unique feature of the gastrointestinal pathogen Salmonella enterica serovar Typhimurium is the creation of extensive membrane networks within its host. An understanding of the origin and function of these membranes is crucial for the development of new treatment strategies. However, the characterization of this compartment is very challenging, and only fragmentary knowledge of its composition and biogenesis exists. Here, we describe a new proteome-based approach to enrich and characterize Salmonella-modified membranes. Using a Salmonella mutant strain that does not form this unique membrane network as a reference, we identified a high-confidence set of host proteins associated with Salmonella-modified membranes. This comprehensive analysis allowed us to reconstruct the interactions of Salmonella with host membranes. For example, we noted that Salmonella redirects endoplasmic reticulum (ER) membrane trafficking to its intracellular niche, a finding that has not been described for Salmonella previously. Our system-wide approach therefore has the potential to rapidly close gaps in our knowledge of the infection process of intracellular pathogens and demonstrates a hitherto unrecognized complexity in the formation of Salmonella host niches.Bacterial pathogens have evolved sophisticated mechanisms enabling them to invade, reside in, and proliferate in a large range of eukaryotic hosts. This often involves hijacking the host phagosomal system, interfering with the host cell signaling and trafficking machinery, and establishing a replication niche to avoid clearance (1). Whereas some pathogens escape phagosomes and replicate in the host cytoplasm, most of the described pathogens replicate in membrane-bound, vacuole-like compartments (2). Such intracellular niches of various pathogens are diverse, and biogenesis often depends on the delivery of bacterial effector proteins into the host cell cytoplasm.Salmonella enterica, the causative agent of localized gastroenteritis and the life-threatening systemic infection known as typhoid fever, forms so-called Salmonella-containing vacuoles (SCVs)1 inside host cells (3). SCVs mature through continuous interactions with endocytic and recycling pathways, accompanied by a spatial shift from the side of internalization to the juxtanuclear position close to the microtubule-organizing center (4, 5). Whereas the initial maturation steps are similar to the canonical phagosome biogenesis, the formation of an extensive tubular membrane network extending from the mature SCV is unique to Salmonella-infected host cells. This network contains various tubular structures such as Salmonella-induced filaments (SIFs), sorting nexin tubules, Salmonella-induced secretory carrier membrane protein 3 tubules, and lysosome-associated membrane protein 1-negative tubules (57), distinguishable by individual organelle marker proteins. For instance, tubules decorated with lysosome-associated membrane protein 1 (LAMP1) are known as SIFs (8, 9). In this paper we refer to all host membranes modified by intracellular Salmonella as Salmonella-modified membranes (SMMs).In general, the appearance of SMMs coincides with the onset of bacterial replication, and both phenomena are dependent on the translocation of effector proteins of the Salmonella Pathogenicity Island 2 (SPI2)-encoded type III secretion system (T3SS) (10, 11). These effector proteins manipulate a large number of host cell processes and force the host cell to create a suitable microenvironment for Salmonella (7, 12, 13). Although many Salmonella effector proteins have been described (14), much less is known about the host proteins that are manipulated to foster bacterial growth.A systematic proteome-wide analysis would be an important step toward understanding the mechanisms used by Salmonella to reorganize the host cell endosomal system during intracellular proliferation. However, one major challenge is the need to distinguish host proteins directed toward the Salmonella-induced compartments from those that are present independent of an infection.In this report we describe a novel method for the enrichment of SMMs and utilize a comparative strategy to identify proliferation-relevant host proteins. This systematic characterization of the SMM proteome provides new insights into the cellular origin and biogenesis of SMMs and identifies host cell proteins modified by the activity of intracellular Salmonella.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号