首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arroyo  M.T.K.  Cavieres  L.A.  Peñaloza  A.  Arroyo-Kalin  M.A. 《Plant Ecology》2003,169(1):121-129
Low growing, compact cushion plants are a common and often dominant life form in temperate and subpolar alpine habitats. The cushion life-form can modify wind patterns, temperature and water availability and thus cushion species could be expected to act as nurse-plants facilitating the establishment of other alpine plant species on their surfaces. It has been suggested that the nurse effect should be most pronounced under more stressful environmental conditions, as found with increasing elevation in the alpine. One of the approaches used to detect the nurses has been the study of spatial associations among species, in which extreme clumping within or beneath one species has been interpreted as evidence of nursing. We characterized microclimatic conditions (soil and air temperature) within and outside cushions of Azorella monantha at two elevations (700 m a.s.l., corresponding to an elevation just above treeline, and 900 m a.s.l., corresponding to the upper limit of the cushion belt zone) on Cerro Diente in the Patagonian alpine of southern South America (50° S) and recorded all plant species growing upon cushions of various sizes and for paired sampling areas of equivalent sizes outside cushions. At 5 cm depth, soil temperature was slightly higher under cushions than under bare ground, but only significantly so at 900 m. Air temperature at ground level was significantly higher in the cushion microhabitat at both 700 m and 900 m, with the difference being more exaggerated at the highest elevation. At 700 m, a total of 27 species were recorded growing within cushions as compared to 29 outside cushions. At 900 m the corresponding numbers were 34 and 18. At the highest elevation, significantly more species grow within cushions than for equal areas outside cushions. Here moreover, 17 (48.6%) species grew preferentially within cushions, with eight of the latter being limited to the cushion microhabitat at this elevation. However, at 700 m there was no significant difference in species richness in the two microhabitats, and only one species (3.1%) grew preferentially on cushions. Considering individual species, nine occurring at both elevations showed non-preferential recruitment on cushions at 700 m, but significantly higher frequencies on cushions at 900 m. Results suggest striking altitudinal variation in the association with Azorella monantha on Cerro Diente, ranging from a very strong at 900 m to near absence at 700 m. Milder air and soil temperatures, shelter from wind, and greater water availability within cushions as opposed to outside cushions are discussed as possible factors favoring strong plant recruitment on cushions at higher elevations in the harsh Patagonian alpine environment. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
In alpine habitats, positive interactions among plants tend to increase with elevation as a result of altitudinal increase in environmental harshness. However, in mountains located in arid zones, lower elevations are also stressful because of scarce availability of water, suggesting that positive interactions may not necessarily increase with elevation. Here we analysed the spatial association of plant species with the nurse cushion plant Laretia acaulis at two contrasting elevations, and monitored the survival of seedlings of two species experimentally planted within and outside cushions in the semiarid Andes of central Chile. Positive spatial associations with cushions were more frequent at lower elevations. Species growing at the two elevations changed the nature of their association with cushions from neutral or negative at higher elevations to positive at lower elevations. Survival of seedlings was higher within cushions, particularly at lower elevations. The increased facilitation by cushions at lower elevations seems to be related to provision of moisture. This result suggests that cushion plants play a critical role in structuring alpine plant communities at lower elevations, and that climatic changes in rainfall could be very relevant for persistence of plant communities.  相似文献   

3.
Positive interactions between cushion plant and associated plants species in the high Andes of central Chile should also include the effects of fungal root symbionts. We hypothesized that higher colonization by arbuscular mycorrhizal (AM) fungi exists in cushion-associated (nursling) plants compared with conspecific individuals growing on bare ground. We assessed the AM status of Andean plants at two sites at different altitudes (3,200 and 3,600 m a.s.l.) in 23 species, particularly in cushions of Azorella madreporica and five associated plants; additionally, AM fungal spores were retrieved from soil outside and beneath cushions. 18 of the 23 examined plant species presented diagnostic structures of arbuscular mycorrhiza; most of them were also colonized by dark-septate endophytes. Mycorrhization of A. madreporica cushions showed differences between both sites (68% and 32%, respectively). In the native species Hordeum comosum, Nastanthus agglomeratus, and Phacelia secunda associated to A. madreporica, mycorrhization was six times higher than in the same species growing dispersed on bare ground at 3,600 m a.s.l., but mycorrhiza development was less cushion dependent in the alien plants Cerastium arvense and Taraxacum officinale at both sites. The ratio of AM fungal spores beneath versus outside cushions was also 6:1. The common and abundant presence of AM in cushion communities at high altitudes emphasizes the importance of the fungal root symbionts in such situations where plant species benefit from the microclimatic conditions generated by the cushion and also from well-developed mycorrhizal networks.  相似文献   

4.
5.
Abstract. It has been proposed that in the harsh arctic and alpine climate zones, small microtopographic variations that can generate more benign conditions than in the surrounding environment could be perceived as safe sites for seedling recruitment. Cushion plants can modify wind pattern, temperature and water availability. Such modifications imply that cushion plants could act as ‘nurse plants’ facilitating the recruitment of other species in the community. This effect should be more evident under stressful conditions. We tested these hypotheses comparing the number of species that grow inside and outside Bolax gummifera cushions at two elevations (700 and 900 m a.s.l.) in the Patagonian Andes of Chile (50°S). At both elevations, and in equivalent areas, the number of species was registered within and outside cushions. A total of 36 and 27 plant species were recorded either within or outside B. gummifera cushions at 700 and 900 m a.s.l., respectively. At 700 m a.s.l., 33 species were recorded growing within cushions and 29 outside them, while at 900 m a.s.l. these numbers were 24 and 13 respectively. At both elevations there were significantly more species growing within than outside cushions, and the proportion of species growing within cushions increased with elevation. Thus there is a nurse effect of cushion plants and it is more evident at higher elevations. Shelter from wind and increased soil water availability seem to be the factors that increase plant recruitment within cushions.  相似文献   

6.
Alpine ecosystems are among those biomes that are most vulnerable to climate change. Cushion plants are an important life form of alpine ecosystems and will likely play a critical role for the resilience of these habitats to climate change. We studied cushion size distribution and different measures of the compactness of cushions (biomass and rosette density, leaf area index) of the cushion plant, Androsace tapete along an elevational gradient from 4500 to 5200 m a.s.l. in the Nyainqentanglha Mountains of the central Tibetan Plateau. Cushion size distribution, total cover, and compactness of cushions varied substantially along the elevational gradient. At the driest site at low elevation we found the lowest total cushion cover, a particularly high proportion of very small cushions, and the most compact cushions (highest rosette and biomass densities, and leaf area index (LAI) per cushion). Our results indicate that in the semi‐arid Tibetan Plateau water availability is the more important climate factor than temperature affecting cushion plant traits and morphology.  相似文献   

7.
刘晓娟  孙学刚  田青 《生态学报》2016,36(10):2905-2913
在甘肃盐池湾国家级自然保护区内海拔4137 m处,选择典型的囊种草垫状植被设置研究样地,研究了垫状植物囊种草对群落物种组成和群落物种多样性的影响,并且定量的研究了囊种草对群落物种丰富度的影响能力和维持潜力。研究结果表明:囊种草为群落中增加了新的植物种类,并且提高了部分生境一般种的多度;囊种草的出现提高了群落物种密度和物种丰富度,进而提高了群落物种多样性;囊种草斑块的增加将会引起景观水平物种丰富度的增加,表明囊种草具有为群落中引入新的植物种类进而提高群落物种丰富度的能力;在景观水平,囊种草所创造的生境多样性则成为一种保障,可以维持景观中物种丰富度从而降低物种损失的风险,表明囊种草具有较高的群落物种丰富度维持潜力。  相似文献   

8.
Cold adapted plants, such as cushion plants, may be particularly sensitive to climate warming because of their compact growth form and high branch density. In the oceanic southern hemisphere, cushion communities tend to have large range distributions at low latitudes (sea level to low alpine), thus providing an opportunity to test the effects of temperature on plant morphology and reproduction across gradients. Using Donatia novae‐zelandiae as a model species, we compared the leaf morphology, reproduction and responses to warming. Two low‐alpine sites (Maungatua (880 m a.s.l.), Blue Mountains (1000 m a.s.l.)) and two sea‐level sites (Waituna 1 (0 m a.s.l.), Waituna 2 (0 m a.s.l.)) in South Island, New Zealand were used. Donatia novae‐zelandiae cushions differed significantly between the high‐elevation and sea‐level sites both morphologically and in terms of reproduction. High‐elevation cushions produced more flowers (threefold more flowers per plant) and seeds (sevenfold more seeds per capsule) than at sea level, but leaves were larger at sea level (in length and specific leaf area). The cushions were also twice as compact at the high‐elevation sites. After two growing seasons of artificial warming, seed production (35%), leaf length (7%) and width (13%), and specific leaf area (63%) significantly decreased in D. novae‐zelandiae plants; flower production was not significantly affected. Cushion plant morphology and reproduction were significantly affected by environmental drivers at their establishment sites, but all populations responded negatively to artificial warming of 1–3°C. Many cushion plants are considered keystone species because of their propensity to facilitate the growth and establishment of other plant species, the inferred negative effects of global warming on cushion plant species may have a cascading effect on other alpine plant groups.  相似文献   

9.
Positive interactions among native plant species are common in alpine habitats, particularly those where one species (nurse plant) generates microclimatic conditions that are more benign than the surrounding environment, facilitating the establishment of other species. Nonetheless, these microclimatic conditions could facilitate the establishment of non-native species as well. A conspicuous component of the alien alpine flora of the central Chilean Andes is the perennial herb Taraxacum officinale agg. (dandelion). In contrast to other alien species that are restricted to human-disturbed sites, T. officinale is frequently observed growing within native plant communities dominated by cushion plants. In this study we evaluated if T. officinale is positively associated with the cushion plant Azorella monantha. Via seedling survival experiments and gas-exchange measurements we also assessed the patterns of facilitation between cushions and dandelions, and explore the potential mechanisms of invasion by dandelions. T. officinale grows spatially positively associated with cushions of A. monantha. Survival of seedlings, as well as their net-photosynthetic rates and stomatal conductance, were higher within cushions than in open areas away from them, suggesting that the microclimatic modifications generated by this native cushion facilitates the establishment and performance of a non-native invasive species. Our results, as well as other recent studies, highlight the role of native communities in facilitating rather than constraining non-native plant invasions, particularly in stressful habitats such as alpine environments.  相似文献   

10.

Background

The stress‐gradient hypothesis predicts a shift from facilitative to competitive plant interactions with decreasing abiotic stress. This has been supported by studies along elevation and temperature gradients, but also challenged by the hypothesis of a facilitation collapse at extremely harsh sites. Although facilitation is known to be important in primary succession, few studies have examined these hypotheses along primary succession gradients.

Aim

To examine whether there is a relationship between the presence of the circumpolar cushion plant Silene acaulis and other species, and if so, whether there is a shift between positive and negative interactions along a primary succession gradient in a glacier foreland.

Location

Finse, southern Norway.

Methods

We examined the performance of the common alpine forb Bistorta vivipara, species richness of vascular plants, bryophytes and lichens, and the number of seedlings and fertile vascular plants in S. acaulis cushions, and control plots without S. acaulis, along a succession gradient with increasing distance from a glacier front, and thus decreasing abiotic stress. To examine if S. acaulis cushions modify the abiotic environment, we recorded soil temperature, moisture, organic content and pH in cushions and control plots.

Results

Bistorta vivipara performed better, as shown by bigger leaves in S. acaulis cushions compared to control plots in the harshest part of the gradient close to the glacier. There were few differences in B. vivipara performance between cushion and control plots in the more benign environment further away from the glacier. This suggests a shift from facilitative to mainly neutral interactions by S. acaulis on the performance of B. vivipara with decreasing abiotic stress. A trend, although not significant, of higher vascular species richness and fertility inside S. acaulis cushions along the whole gradient, suggests that S. acaulis also facilitates community‐level species richness. The causal mechanism of this facilitation is likely that the cushions buffer extreme temperatures.

Conclusions

Our results support the stress‐gradient hypothesis for the relationship between the cushion plant S. acaulis and the performance of a single species along a primary succession gradient in a glacier foreland. S. acaulis also tended to increase vascular plant species richness and fertility regardless of stress level along the gradient, suggesting facilitation at the community level. We found no collapse of facilitation at the most stressful end of the gradient in this alpine glacier foreland.  相似文献   

11.
The elevational range of the alpine cushion plant Laretia acaulis (Apiaceae) comprises a cold upper extreme and a dry lower extreme. For this species, we predict reduced growth and increased non-structural carbohydrate (NSC) concentrations (i.e. carbon sink limitation) at both elevational extremes. In a facilitative interaction, these cushions harbor other plant species (beneficiaries). Such interactions appear to reduce reproduction in other cushion species, but not in L. acaulis. However, vegetative effects may be more important in this long-lived species and may be stronger under marginal conditions. We studied growth and NSC concentrations in leaves and stems of L. acaulis collected from cushions along its full elevational range in the Andes of Central Chile. NSC concentrations were lowest and cushions were smaller and much less abundant at the highest elevation. At the lowest elevation, NSC concentrations and cushion sizes were similar to those of intermediate elevations but cushions were somewhat less abundant. NSC concentrations and growth did not change with beneficiary cover at any elevation. Lower NSC concentrations at the upper extreme contradict the sink-limitation hypothesis and may indicate that a lack of warmth is not limiting growth at high-elevation. At the lower extreme, carbon gain and growth do not appear more limiting than at intermediate elevations. The lower population density at both extremes suggests that the regeneration niche exerts important limitations to this species’ distribution. The lack of an effect of beneficiaries on reproduction and vegetative performance suggests that the interaction between L. acaulis and its beneficiaries is probably commensalistic.  相似文献   

12.
Despite a large consensus on increasing facilitation among plants with increasing stress in alpine regions, a number of different outcomes of interaction have been observed, which impedes the generalisation of the ‘stress‐gradient hypothesis’ (SGH). With the aim to reconcile the different viewpoints on the stress‐interaction relationship in alpine environments we hypothesized that fine nurse variations within a single life form (cushion) may explain this pattern variability. To test this hypothesis, we compared the magnitude of the stress‐interaction relationship in a single study area with that observed in existing studies involving cushions, worldwide. We characterized the nurse effects of cushions on the whole plant community at inter‐specific, intra‐specific and intra‐individual levels along a stress gradient in the dry, alpine tropics of Bolivia (4400 m, 4700 m and 4900 m a.s.l). Using a relative index of interaction (RII) we included our data in a meta‐analysis on the nurse effects of cushions along alpine gradients, worldwide. At inter‐specific level, the loose cushion Pycnophyllum was a better nurse than the compact Azorella compacta. However, at intra‐individual level facilitation was higher at the periphery than at the centre of cushions, exceeding in magnitude the variation observed at inter‐specific level. This pattern was associated with higher minimum temperature and lower mortality at the periphery of cushions. The net effects of cushions on plant communities became more positive at higher elevation, corroborating the SGH. Within our single site in Bolivia, fine morphological nurse variations captured a similar variability in the stress‐interaction relationship as that observed in a subset of studies on cushions on a worldwide scale. This suggests that fine variations in nurse traits, in general those not considered in protocols dealing with facilitation or in restoration/conservation management plans, explain in part the current discrepancies among SGH studies in alpine regions.  相似文献   

13.
Many cushion plants ameliorate the harsh environment they inhabit in alpine ecosystems and act as nurse plants, with significantly more species growing within their canopy than outside. These facilitative interactions seem to increase with the abiotic stress, thus supporting the stress-gradient hypothesis. We tested this prediction by exploring the association pattern of vascular plants with the dominant cushion plant Thylacospermum caespitosum (Caryophyllaceae) in the arid Trans-Himalaya, where vascular plants occur at one of the highest worldwide elevational limits. We compared plant composition between 1112 pair-plots placed both inside cushions and in surrounding open areas, in communities from cold steppes to subnival zones along two elevational gradients (East Karakoram: 4850–5250 m and Little Tibet: 5350–5850 m). We used PERMANOVA to assess differences in species composition, Friedman-based permutation tests to determine individual species habitat preferences, species-area curves to assess whether interactions are size-dependent and competitive intensity and importance indices to evaluate plant-plant interactions. No indications for net facilitation were found along the elevation gradients. The open areas were not only richer in species, but not a single species preferred to grow exclusively inside cushions, while 39–60% of 56 species detected had a significant preference for the habitat outside cushions. Across the entire elevation range of T. caespitosum, the number and abundance of species were greater outside cushions, suggesting that competitive rather than facilitative interactions prevail. This was supported by lower soil nutrient contents inside cushions, indicating a resource preemption, and little thermal amelioration at the extreme end of the elevational gradient. We attribute the negative associations to competition for limited resources, a strong environmental filter in arid high-mountain environment selecting the stress-tolerant species that do not rely on help from other plants during their life cycle and to the fact the cushions do not provide a better microhabitat to grow in.  相似文献   

14.
Background and AimsPlants in dry Mediterranean mountains experience a double climatic stress: at low elevations, high temperatures coincide with water shortage during summer, while at high elevations temperature decreases and water availability increases. Cushion plants often act as nurses by improving the microclimate underneath their canopies, hosting beneficiary species that may reciprocally modify their benefactors’ microenvironment. We assess how the nurse cushion plant Arenaria tetraquetra subsp. amabilis adjusts its hydraulic system to face these complex abiotic and biotic constraints.MethodsWe evaluated intra-specific variation and co-ordination of stem xylem anatomy, leaf functional traits and plant architecture in response to elevation, aspect and the presence of beneficiary species in four A. tetraquetra subsp. amabilis populations in the Sierra Nevada mountains, southern Spain.Key ResultsXylem anatomical and plant architectural traits were the most responsive to environmental conditions, showing the highest mutual co-ordination. Cushions were more compact and had smaller, more isolated conductive vessels in the southern than in the northern aspect, which allow minimization of the negative impacts of more intense drought. Only vessel size, leaf mass per area and terminal branch length varied with elevation. Nurse cushions co-ordinated plant architecture and xylem traits, having higher canopy compactness, fewer leaves per branch and fewer, more isolated vessels than non-nurse cushions, which reflects the negative effects of beneficiary plants on nurse water status. In non-nurse cushions, plant architecture co-ordinated with leaf traits instead. The interacting effects of aspect and elevation on xylem traits showed that stress due to frost at high elevation constrained xylem anatomy in the north, whereas stress due to drought had a parallel effect in the south.ConclusionsTrait co-ordination was weaker under more demanding environmental conditions, which agrees with the hypothesis that trait independence allows plants to better optimize different functions, probably entailing higher adjustment potential against future environmental changes.  相似文献   

15.
Global change is modifying species communities from local to landscape scales, with alterations in the abiotic and biotic determinants of geographic range limits causing species range shifts along both latitudinal and elevational gradients. An important but often overlooked component of global change is the effect of anthropogenic disturbance, and how it interacts with the effects of climate to affect both species and communities, as well as interspecies interactions, such as facilitation and competition. We examined the effects of frequent human trampling disturbances on alpine plant communities in Switzerland, focusing on the elevational range of the widely distributed cushion plant Silene acaulis and the interactions of this facilitator species with other plants. Examining size distributions and densities, we found that disturbance appears to favor individual Silene growth at middle elevations. However, it has negative effects at the population level, as evidenced by a reduction in population density and reproductive indices. Disturbance synergistically interacts with the effects of elevation to reduce species richness at low and high elevations, an effect not mitigated by Silene. In fact, we find predominantly competitive interactions, both by Silene on its hosted and neighboring species and by neighboring (but not hosted) species on Silene. Our results indicate that disturbance can be beneficial for Silene individual performance, potentially through changes in its neighboring species community. However, possible reduced recruitment in disturbed areas could eventually lead to population declines. While other studies have shown that light to moderate disturbances can maintain high species diversity, our results emphasize that heavier disturbance reduces species richness, diversity, as well as percent cover, and adversely affects cushion plants and that these effects are not substantially reduced by plant–plant interactions. Heavily disturbed alpine systems could therefore be at greater risk for upward encroachment of lower elevation species in a warming world.  相似文献   

16.
Environmental stress may favour facilitative interactions among plants but whether these interactions are positive for the benefactor and how this depends on stress factors, remains to be determined. We studied the effect of beneficiary cover and biomass on reproduction of the benefactor cushion plant Laretia acaulis (Apiaceae) in the central Chilean Andes during three years. Study sites were situated along an elevational gradient at 2600, 2800, 3000 and 3150 m a.s.l. This range comprises a cold‐ and a drought‐stress gradient, with moisture increasing and temperature decreasing with elevation. We studied the effect of natural gradients in beneficiary cover and of experimental cover removal on cushion flower and fruit production. Beneficiary cover had a negative effect on flower production but not on infructescence and fruit densities or fruit weights. A positive effect of beneficiaries on the fraction of flowers converted into fruits was detected for hermaphrodite cushions. The effect of beneficiary cover on flowering was independent of elevation or cushion gender, although these latter factors explained most of the variation. Removing the aboveground parts of the beneficiaries positively affected flowering at 2800 m a.s.l. but not at the other elevations. Our results suggest negative effects of facilitation on L. acaulis flowering, but these are neutralized in fruit production. Surprisingly, this conclusion holds along the entire elevational or stress gradient. This suggests that this system of facilitation is evolutionarily stable and not very sensitive to environmental change. It remains to be tested, however, whether facilitation affects fitness via growth and long‐term survival in these slow‐growing alpine cushions.  相似文献   

17.
Biogenic habitat creation refers to the ability of some organisms to create, maintain or destroy habitats. These habitat changes affect species diversity of natural communities, but it remains to be elucidated if this process also affects the link between ecosystem functions and species diversity. Based on the widely accepted positive relationships between ecosystem functions and species diversity, we hypothesize that these relationships should be different in biogenically created habitat patches as compared to unmodified habitat patches. We tested this hypothesis by assessing the effects of a high-Andean cushion plant, Azorella madreporica, which creates habitat patches with different environmental conditions than in the surrounding open areas with reduced vegetation cover. We used observational and experimental approaches to compare the plant biomass–species richness relationships between habitat patches created by A. madreporica cushions and the surrounding habitat without cushion plants. The observational assessment of these relationships was conducted by counting and collecting plant species within and outside cushion patches. In the experiment, species richness was manipulated within and outside cushion patches. The cushion plant itself was not included in these approaches because we were interested in measuring its effects. Results of both approaches indicated that, for a given level of species richness, plant biomass within cushions was higher than in the surrounding open areas. Furthermore, both approaches indicated that the shape of plant biomass–species richness curves differed between these habitat types. These findings suggest that habitat modifications performed by A. madreporica cushions would be positively affecting the relationships between ecosystem functions and species diversity.  相似文献   

18.
Ecosystem engineers are organisms able to modulate environmental forces and, hence, may change the habitat conditions for other species. In so doing, ecosystem engineers may affect both species richness and evenness of communities and, in consequence, change species diversity. If these changes in community attributes are related to the magnitude of the habitat changes induced by the engineers, it seems likely that engineer species will have greater effects on diversity in sites where they cause larger habitat changes. We addressed this issue by evaluating the effects of three alpine cushion plants on species richness, evenness, and diversity of high-Andean plant communities. Given that the difference in microclimatic conditions between cushions and the external environment increases with elevation, we proposed that these organisms should have greater effects on community attributes at higher than at lower elevation sites. Results showed that the three cushion species had positive effects on species richness, diversity, and evenness of plant communities. It was also observed that the magnitude of these effects changed with elevation: positive effects on species richness and diversity increased towards upper sites for the three cushions species, whereas positive effects on evenness increased with elevation for one cushion species but decreased with elevation for other two cushion species. These results suggest that the presence of cushions is important to maintain plant diversity in high-Andean communities, but this positive effect on diversity seems to increase as the difference in environmental conditions between cushions and the external environment increases with elevation.  相似文献   

19.
Question: In stressful abiotic environments positive plant interaction is expected to be a frequent and an important process driving community composition and structure. In the high Andes in central Chile, the cushion plant Azorella madreporica dominates plant communities and appears to benefit the assemblage of species that grows within it. However, there are also many other species that grow outside this nurse cushion plant, which may or may not interact with this species. What is the prevailing type of spatial associations among the plant species that are not growing inside the nurse plant? What is the type of interactions between cushion plants and those species growing outside them? Location: Molina River basin (33°20'S, 70°16’ W, 3600 m a.s.l.), in the Andes of central Chile, ca. 50 km east of Santiago. Methods: Two accurate mapping plots of individual plants of different species were located at two summits (Franciscano and Tres Puntas sites). The spatial distributions and associations between species growing outside cushions and within cushions at each site were estimated by point‐pattern analyses using the univariate and bivariate transformations of Ripley's K‐functions. Results: We found both positive and, especially, negative spatial associations (8 out of 12 species in Franciscano site) between A. madreporica cushions and plants growing outside them. However, most of the species showed positive spatial associations among them. The variation in spatial association was site‐specific and also depended on the type of plants involved. Adesmia spp., the second most abundant non‐cushion species, displayed negative associations with cushions and positive associations with other species growing outside cushions. Conclusions: Our study suggests very complex interactions among species, which ranged from positive to negative, and are also affected by abiotic environmental conditions.  相似文献   

20.
Sand-Jensen K  Hammer KJ 《Oecologia》2012,170(2):305-312
Dense moss cushions of different size are distributed across the bare limestone pavements on ?land, SE Sweden. Increasing cushion size is predicted to physically protect and improve performance and colonization by vascular plants. Therefore, we tested water balance, phosphorus supply, and species richness, and evaluated duration of plant activity during desiccation as a function of ground area, for a large collection of moss cushions. We found that lower evaporation and higher water storage contributed equally to extending the desiccation period with increasing cushion size. Evaporation rates declined by the -0.36 power of cushion diameter, and were not significantly different from -0.50 for the square root function previously predicted for the increasing thickness of the boundary layer, with greater linear dimensions for smooth flat objects at low wind velocities. Size dependence vanished under stagnant conditions. One moss species was added to the species pool for every nine-fold increase in cushion area. Vascular plants were absent from the smallest cushions, whereas one or two species, on average, appeared in 375- and 8,500-cm(2) cushions with water available for 6 and 10?days during desiccation. Phosphorus concentrations increased stepwise and four-fold from detritus to surface mosses and to vascular plants, and all three pools increased with cushion size. We conclude that cushion mosses and cushion size play a critical role in this resource-limited limestone environment by offering an oasis of improved water and nutrient supply to colonization and growth of plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号