首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Two 8‐µs all‐atom molecular dynamics simulations have been performed on the two highly homologous G protein‐coupled receptor (GPCR) subtypes, β1‐ and β2‐adrenergic receptors, which were embedded in a lipid bilayer with randomly dispersed cholesterol molecules. During the simulations, cholesterol molecules accumulate to different surface regions of the two receptors, suggesting the subtype specificity of cholesterol–β‐adrenergic receptor interaction and providing some clues to the physiological difference of the two subtypes. Meanwhile, comparison between the two receptors in interacting with cholesterols shed some new light on general determinants of cholesterol binding to GPCRs. Our results indicate that although the concave surface, charged residues and aromatic residues are important, neither of these stabilizing factors is indispensable for a cholesterol interaction site. Different combinations of these factors lead to the diversified binding modes of cholesterol binding to the receptors. Our long‐time simulations, for the first time, revealed the pathway of a cholesterol molecule entering the consensus cholesterol motif (CCM) site, and the binding process of cholesterol to CCM is accompanied by a side chain flipping of the conserved Trp4.50. Moreover, the simulation results suggest that the I‐/V‐/L‐rich region on the extracellular parts of helix 6 might be an alternatively conserved cholesterol‐binding site for the class‐A GPCRs. Proteins 2014; 82:760–770. © 2013 Wiley Periodicals, Inc.  相似文献   

2.
Glycosphingolipids are essential components of eukaryotic cell membranes and are involved in the regulation of cell growth, differentiation, and neoplastic transformation. In this work, we have modulated glycosphingolipid levels in CHO cells stably expressing the human serotonin1A receptor by inhibiting the activity of glucosylceramide synthase using (±)‐threo‐1‐phenyl‐2‐decanoylamino‐3‐morpholino‐1‐propanol (PDMP), a commonly used inhibitor of the enzyme. Serotonin1A receptors belong to the family of G‐protein‐coupled receptors and are implicated in the generation and modulation of various cognitive, behavioral, and developmental functions. We explored the function of the serotonin1A receptor under glycosphingolipid‐depleted condition by monitoring ligand‐binding activity and G‐protein coupling of the receptor. Our results show that ligand binding of the receptor is impaired under these conditions although the efficiency of G‐protein coupling remains unaltered. The expression of the receptor at the cell membrane appears to be reduced. Interestingly, our results show that the effect of glycosphingolipids on ligand binding caused by metabolic depletion of these lipids is reversible. These novel results demonstrate that glycosphingolipids are necessary for the function of the serotonin1A receptor. We discuss possible mechanisms of specific interaction of glycosphingolipids with the serotonin1A receptor that could involve the proposed ‘sphingolipid‐binding domain’.  相似文献   

3.
《Biophysical journal》2020,118(4):944-956
G protein-coupled receptors (GPCRs) are important membrane proteins in higher eukaryotes that carry out a vast array of cellular signaling and act as major drug targets. The serotonin1A receptor is a prototypical member of the GPCR family and is implicated in neuropsychiatric disorders such as anxiety and depression, besides serving as an important drug target. With an overall goal of exploring the functional consequence of altered receptor dynamics, in this work, we probed the role of the actin cytoskeleton in the dynamics, ligand binding, and signaling of the serotonin1A receptor. We monitored receptor dynamics utilizing single particle tracking, which provides information on relative distribution of receptors in various diffusion modes in addition to diffusion coefficient. We show here that the short-term diffusion coefficient of the receptor increases upon actin destabilization by cytochalasin D. In addition, analysis of individual trajectories shows that there are changes in relative populations of receptors undergoing various types of diffusion upon actin destabilization. The release of dynamic constraint was evident by an increase in the radius of confinement of the receptor upon actin destabilization. The functional implication of such actin destabilization was manifested as an increase in specific agonist binding and downstream signaling, monitored by measuring reduction in cellular cAMP levels. These results bring out the interdependence of GPCR dynamics with cellular signaling.  相似文献   

4.
The serotonin receptors, also known as 5-hydroxytryptamine (5-HT) receptors, are a group of G protein-coupled receptors (GPCRs) and ligand-gated ion channels found in the central and peripheral nervous systems. GPCRs have a characteristic feature of activating different signalling pathways upon ligand binding and these ligands display several efficacy levels to differentially activate the receptor. GPCRs are primary drug targets due to their central role in several signal transduction pathways. Drug design for GPCRs is also most challenging due to their inherent promiscuity in ligand recognition, which gives rise to several side effects of existing drugs. Here, we have performed the ligand interaction study using the two prominent states of GPCR, namely the active and inactive state of the 5-HT2A receptor. Active state of 5-HT2A receptor model enhances the understanding of conformational difference which influences the ligand-binding site. A 5-HT2A receptor active state model was constructed by homology modelling using active state β2-adrenergic receptor (β2-AR). In addition, virtual screening and docking studies with both active and inactive state models reveal potential small molecule hits which could be considered as agonist-like and antagonist-like molecules. The results from the all-atom molecular dynamics simulations further confirmed that agonists and antagonists interact in different modes with the receptor.  相似文献   

5.
G protein-coupled receptors (GPCRs) are a major drug target and can be activated by a range of stimuli, from photons to proteins. Despite the progress made in the last decade in molecular and structural biology, their exact activation mechanism is still unknown. Here we describe new insights in specific regions essential in adenosine A2B receptor activation (A2BR), a typical class A GPCR. We applied unbiased random mutagenesis on the middle part of the human adenosine A2BR, consisting of transmembrane domains 4 and 5 (TM4 and TM5) linked by extracellular loop 2 (EL2), and subsequently screened in a medium-throughput manner for gain-of-function and constitutively active mutants. For that purpose, we used a genetically engineered yeast strain (Saccharomyces cerevisiae MMY24) with growth as a read-out parameter. From the random mutagenesis screen, 12 different mutant receptors were identified that form three distinct clusters; at the top of TM4, in a cysteine-rich region in EL2, and at the intracellular side of TM5. All mutant receptors show a vast increase in agonist potency and most also displayed a significant increase in constitutive activity. None of these residues are supposedly involved in ligand binding directly. As a consequence, it appears that disrupting the relatively “silent” configuration of the wild-type receptor in each of the three clusters readily causes spontaneous receptor activity.  相似文献   

6.
The first crystal structure of a G protein‐coupled receptor (GPCR) was that of the bovine rhodopsin, solved in 2000, and is a light receptor within retina rode cells that enables vision by transducing a conformational signal from the light‐induced isomerization of retinal covalently bound to the receptor. More than 7 years after this initial discovery and following more than 20 years of technological developments in GPCR expression, stabilization, and crystallography, the high‐resolution structure of the adrenaline binding β2‐adrenergic receptor, a ligand diffusible receptor, was discovered. Since then, high‐resolution structures of more than 53 unique GPCRs have been determined leading to a significant improvement in our understanding of the basic mechanisms of ligand‐binding and ligand‐mediated receptor activation that revolutionized the field of structural molecular pharmacology of GPCRs. Recently, several structures of eight unique lipid‐binding receptors, one of the most difficult GPCR families to study, have been reported. This review presents the outstanding structural and pharmacological features that have emerged from these new lipid receptor structures. The impact of these findings goes beyond mechanistic insights, providing evidence of the fundamental role of GPCRs in the physiological integration of the lipid signaling system, and highlighting the importance of sustained research into the structural biology of GPCRs for the development of new therapeutics targeting lipid receptors.  相似文献   

7.
Transmembranal G Protein-Coupled Receptors (GPCRs) transduce extracellular chemical signals to the cell, via conformational change from a resting (inactive) to an active (canonically bound to a G-protein) conformation. Receptor activation is normally modulated by extracellular ligand binding, but mutations in the receptor can also shift this equilibrium by stabilizing different conformational states. In this work, we built structure-energetic relationships of receptor activation based on original thermodynamic cycles that represent the conformational equilibrium of the prototypical A2A adenosine receptor (AR). These cycles were solved with efficient free energy perturbation (FEP) protocols, allowing to distinguish the pharmacological profile of different series of A2AAR agonists with different efficacies. The modulatory effects of point mutations on the basal activity of the receptor or on ligand efficacies could also be detected. This methodology can guide GPCR ligand design with tailored pharmacological properties, or allow the identification of mutations that modulate receptor activation with potential clinical implications.  相似文献   

8.
Daga PR  Zaveri NT 《Proteins》2012,80(8):1948-1961
The opioid receptor-like receptor, also known as the nociceptin receptor (NOP), is a class A G protein-coupled receptor (GPCR) in the opioid receptor family. Although NOP shares a significant homology with the other opioid receptors, it does not bind known opioid ligands and has been shown to have a distinct mechanism of activation compared to the closely related opioid receptors mu, delta, and kappa. Previously reported homology models of the NOP receptor, based on the inactive-state GPCR crystal structures, give limited information on the activation and selectivity features of this fourth member of the opioid receptor family. We report here the first active-state homology model of the NOP receptor based on the opsin GPCR crystal structure. An inactive-state homology model of NOP was also built using a multiple template approach. Molecular dynamics simulation of the active-state NOP model and comparison to the inactive-state model suggest that NOP activation involves movements of transmembrane (TM)3 and TM6 and several activation microswitches, consistent with GPCR activation. Docking of the selective nonpeptidic NOP agonist ligand Ro 64-6198 into the active-state model reveals active-site residues in NOP that play a role in the high selectivity of this ligand for NOP over the other opioid receptors. Docking the shortest active fragment of endogenous agonist nociceptin/orphaninFQ (residues 1-13) shows that the NOP extracellular loop 2 (EL2) loop interacts with the positively charged residues (8-13) of N/OFQ. Both agonists show extensive polar interactions with residues at the extracellular end of the TM domain and EL2 loop, suggesting agonist-induced reorganization of polar networks, during receptor activation.  相似文献   

9.
In addition to ligand‐induced activation of receptors at the cell surface, certain internalized receptor–ligand complexes are activated in endosomes which are, now recognized as important intracellular platforms of signal transduction. The major receptor families that signal from endosomes and illustrate the diversity and complexity of endosomal signaling include receptor tyrosine kinases (RTKs), G‐protein‐coupled receptors (GPCRs) and toll‐like receptors (TLRs). Natural killer (NK) cells, an important component of the innate immune system, not only provide a rapid defense against foreign invaders, such as bacteria and viruses, but also positively shape local responses by cytokine and chemokine secretion. The NK cell receptor KIR2DL4 (CD158d) utilizes a new mode of endosomal signaling after binding its ligand, soluble HLA‐G, in the extracellular milieu. Internalization of the receptor and its ligand into endosomes and initiation of signaling at this site result in a proinflammatory and proangiogenic response with important functions at sites of ligand expression, such as at the maternal–fetal interface during early pregnancy. After a brief overview of the modes of endosomal signaling and its value in generating distinct physiological responses, this review will highlight the mechanism and physiological significance of a novel intracellular signaling pathway used by the endosome‐resident immune receptor KIR2DL4.  相似文献   

10.
11.
Despite the broad biological importance of G protein-coupled receptors (GPCRs), ligand recognition by GPCRs remains poorly understood. To explore the roles of GPCR extracellular elements in ligand binding and to provide a tractable system for structural analyses of GPCR/ligand interactions, we have developed a soluble protein that mimics ligand recognition by a GPCR. This receptor analog, dubbed CROSS5, consists of the N-terminal and third extracellular loop regions of CC chemokine receptor 3 (CCR3) displayed on the surface of a small soluble protein, the B1 domain of Streptococcal protein G. CROSS5 binds to the CCR3 ligand eotaxin with a dissociation equilibrium constant of 2.9 +/- 0.8 microM and competes with CCR3 for eotaxin binding. Control proteins indicate that juxtaposition of both CCR3 elements is required for optimal binding to eotaxin. Moreover, the affinities of CROSS5 for a series of eotaxin mutants are highly correlated with the apparent affinities of CCR3 for the same mutants, demonstrating that CROSS5 uses many of the same interactions as does the native receptor. The strategy used to develop CROSS5 could be applied to many other GPCRs, with a variety of potential applications.  相似文献   

12.
Clathrin-dependent mechanisms of G protein-coupled receptor endocytosis   总被引:3,自引:1,他引:2  
The heptahelical G protein-coupled receptor (GPCR) family includes approximately 900 members and is the largest family of signaling receptors encoded in the mammalian genome. G protein-coupled receptors elicit cellular responses to diverse extracellular stimuli at the plasma membrane and some internalized receptors continue to signal from intracellular compartments. In addition to rapid desensitization, receptor trafficking is critical for regulation of the temporal and spatial aspects of GPCR signaling. Indeed, GPCR internalization functions to control signal termination and propagation as well as receptor resensitization. Our knowledge of the mechanisms that regulate mammalian GPCR endocytosis is based predominantly on arrestin regulation of receptors through a clathrin- and dynamin-dependent pathway. However, multiple clathrin adaptors, which recognize distinct endocytic signals, are now known to function in clathrin-mediated endocytosis of diverse cargo. Given the vast number and diversity of GPCRs, the complexity of clathrin-mediated endocytosis and the discovery of multiple clathrin adaptors, a single universal mechanism controlling endocytosis of all mammalian GPCRs is unlikely. Indeed, several recent studies now suggest that endocytosis of different GPCRs is regulated by distinct mechanisms and clathrin adaptors. In this review, we discuss the diverse mechanisms that regulate clathrin-dependent GPCR endocytosis.  相似文献   

13.
Serotonin and glutamate G protein-coupled receptor (GPCR) neurotransmission affects cognition and perception in humans and rodents. GPCRs are capable of forming heteromeric complexes that differentially alter cell signaling, but the role of this structural arrangement in modulating behavior remains unknown. Here, we identified three residues located at the intracellular end of transmembrane domain four that are necessary for the metabotropic glutamate 2 (mGlu2) receptor to be assembled as a GPCR heteromer with the serotonin 5-hydroxytryptamine 2A (5-HT2A) receptor in the mouse frontal cortex. Substitution of these residues (Ala-6774.40, Ala-6814.44, and Ala-6854.48) leads to absence of 5-HT2A·mGlu2 receptor complex formation, an effect that is associated with a decrease in their heteromeric ligand binding interaction. Disruption of heteromeric expression with mGlu2 attenuates the psychosis-like effects induced in mice by hallucinogenic 5-HT2A agonists. Furthermore, the ligand binding interaction between the components of the 5-HT2A·mGlu2 receptor heterocomplex is up-regulated in the frontal cortex of schizophrenic subjects as compared with controls. Together, these findings provide structural evidence for the unique behavioral function of a GPCR heteromer.  相似文献   

14.
The G protein-coupled receptor (GPCR) family represents the largest and most versatile group of cell surface receptors. Classical GPCR signaling constitutes ligand binding to a seven-transmembrane domain receptor, receptor interaction with a heterotrimeric G protein, and the subsequent activation or inhibition of downstream intracellular effectors to mediate a cellular response. However, recent reports on direct, receptor-independent G protein activation, G protein-independent signaling by GPCRs, and signaling of nonheptahelical receptors via trimeric G proteins have highlighted the intrinsic complexities of G protein signaling mechanisms. The insulin-like growth factor-II/mannose-6 phosphate (IGF-II/M6P) receptor is a single-transmembrane glycoprotein whose principal function is the intracellular transport of lysosomal enzymes. In addition, the receptor also mediates some biological effects in response to IGF-II binding in both neuronal and nonneuronal systems. Multidisciplinary efforts to elucidate the intracellular signaling pathways that underlie these effects have generated data to suggest that the IGF-II/M6P receptor might mediate transmembrane signaling via a G protein-coupled mechanism. The purpose of this review is to outline the characteristics of traditional and nontraditional GPCRs, to relate the IGF-II/M6P receptor’s structure with its role in G protein-coupled signaling and to summarize evidence gathered over the years regarding the putative signaling of the IGF-II/M6P receptor mediated by a G protein.  相似文献   

15.
In the CNS, an antagonistic interaction has been shown between adenosine A2A and dopamine D2 receptors (A2ARs and D2Rs) that may be relevant both in normal and pathological conditions (i.e., Parkinson's disease). Thus, the molecular determinants mediating this receptor–receptor interaction have recently been explored, as the fine tuning of this target (namely the A2AR/D2R oligomer) could possibly improve the treatment of certain CNS diseases. Here, we used a fluorescence resonance energy transfer‐based approach to examine the allosteric modulation of the D2R within the A2AR/D2R oligomer and the dependence of this receptor–receptor interaction on two regions rich in positive charges on intracellular loop 3 of the D2R. Interestingly, we observed a negative allosteric effect of the D2R agonist quinpirole on A2AR ligand binding and activation. However, these allosteric effects were abolished upon mutation of specific arginine residues (217–222 and 267–269) on intracellular loop 3 of the D2R, thus demonstrating a major role of these positively charged residues in mediating the observed receptor–receptor interaction. Overall, these results provide structural insights to better understand the functioning of the A2AR/D2R oligomer in living cells.  相似文献   

16.
Pituitary adenylate cyclase activating polypeptide (PACAP) is a member of the PACAP/glucagon family of peptide hormones, which controls many physiological functions in the immune, nervous, endocrine, and muscular systems. It activates adenylate cyclase by binding to its receptor, PAC1R, a member of class B G-protein coupled receptors (GPCR). Crystal structures of a number of Class B GPCR extracellular domains (ECD) bound to their respective peptide hormones have revealed a consensus mechanism of hormone binding. However, the mechanism of how PACAP binds to its receptor remains controversial as an NMR structure of the PAC1R ECD/PACAP complex reveals a different topology of the ECD and a distinct mode of ligand recognition. Here we report a 1.9 Å crystal structure of the PAC1R ECD, which adopts the same fold as commonly observed for other members of Class B GPCR. Binding studies and cell-based assays with alanine-scanned peptides and mutated receptor support a model that PAC1R uses the same conserved fold of Class B GPCR ECD for PACAP binding, thus unifying the consensus mechanism of hormone binding for this family of receptors.  相似文献   

17.
Biochemical studies suggest that G‐protein‐coupled receptors (GPCRs) achieve exquisite signalling specificity by forming selective complexes, termed signalosomes. Here, using cAMP biosensors in single cells, we uncover a pre‐assembled, constitutively active GPCR signalosome, that couples the relaxin receptor, relaxin family peptide receptor 1 (RXFP1), to cAMP following receptor stimulation with sub‐picomolar concentrations of peptide. The physiological effects of relaxin, a pleiotropic hormone with therapeutic potential in cancer metastasis and heart failure, are generally attributed to local production of the peptide, that occur in response to sub‐micromolar concentrations. The highly sensitive signalosome identified here provides a regulatory mechanism for the extremely low levels of relaxin that circulate. The signalosome includes requisite Gαs, Gβγ and adenylyl cyclase 2 (AC2); AC2 is functionally coupled to RXFP1 through AKAP79 binding to helix 8 of the receptor; activation of AC2 is tonically opposed by protein kinase A (PKA)‐activated PDE4D3, scaffolded through a β‐arrestin 2 interaction with Ser704 of the receptor C‐terminus. This elaborate, pre‐assembled, ligand‐independent GPCR signalosome represents a new paradigm in GPCR signalling and provides a mechanism for the distal actions of low circulating levels of relaxin.  相似文献   

18.
The trafficking of G protein coupled‐receptors (GPCRs) is one of the most exciting areas in cell biology because of recent advances demonstrating that GPCR signaling is spatially encoded. GPCRs, acting in a diverse array of physiological systems, can have differential signaling consequences depending on their subcellular localization. At the plasma membrane, GPCR organization could fine‐tune the initial stages of receptor signaling by determining the magnitude of signaling and the type of effectors to which receptors can couple. This organization is mediated by the lipid composition of the plasma membrane, receptor‐receptor interactions, and receptor interactions with intracellular scaffolding proteins. GPCR organization is subsequently changed by ligand binding and the regulated endocytosis of these receptors. Activated GPCRs can modulate the dynamics of their own endocytosis through changing clathrin‐coated pit dynamics, and through the scaffolding adaptor protein β‐arrestin. This endocytic regulation has signaling consequences, predominantly through modulation of the MAPK cascade. This review explores what is known about receptor sorting at the plasma membrane, protein partners that control receptor endocytosis, and the ways in which receptor sorting at the plasma membrane regulates downstream trafficking and signaling.   相似文献   

19.
G protein-coupled receptor (GPCR) heteromers are macromolecular complexes with unique functional properties different from those of its individual protomers. Little is known about what determines the quaternary structure of GPCR heteromers resulting in their unique functional properties. In this study, using resonance energy transfer techniques in experiments with mutated receptors, we provide for the first time clear evidence for a key role of intracellular domains in the determination of the quaternary structure of GPCR heteromers between adenosine A2A, cannabinoid CB1, and dopamine D2 receptors. In these interactions, arginine-rich epitopes form salt bridges with phosphorylated serine or threonine residues from CK1/2 consensus sites. Each receptor (A2A, CB1, and D2) was found to include two evolutionarily conserved intracellular domains to establish selective electrostatic interactions with intracellular domains of the other two receptors, indicating that these particular electrostatic interactions constitute a general mechanism for receptor heteromerization. Mutation experiments indicated that the interactions of the intracellular domains of the CB1 receptor with A2A and D2 receptors are fundamental for the correct formation of the quaternary structure needed for the function (MAPK signaling) of the A2A-CB1-D2 receptor heteromers. Analysis of MAPK signaling in striatal slices of CB1 receptor KO mice and wild-type littermates supported the existence of A1-CB1-D2 receptor heteromer in the brain. These findings allowed us to propose the first molecular model of the quaternary structure of a receptor heteromultimer.  相似文献   

20.
G protein‐coupled receptors (GPCR) exhibit the ability to form receptor complexes that include molecularly different GPCR (ie, GPCR heteromers), which endow them with singular functional and pharmacological characteristics. The relative expression of GPCR heteromers remains a matter of intense debate. Recent studies support that adenosine A2A receptors (A2AR) and dopamine D2 receptors (D2R) predominantly form A2AR‐D2R heteromers in the striatum. The aim of the present study was evaluating the behavioral effects of pharmacological manipulation and genetic blockade of A2AR and D2R within the frame of such a predominant striatal heteromeric population. First, in order to avoid possible strain‐related differences, a new D2R‐deficient mouse with the same genetic background (CD‐1) than the A2AR knock‐out mouse was generated. Locomotor activity, pre‐pulse inhibition (PPI) and drug‐induced catalepsy were then evaluated in wild‐type, A2AR and D2R knock‐out mice, with and without the concomitant administration of either the D2R agonist sumanirole or the A2AR antagonist SCH442416. SCH442416‐mediated locomotor effects were demonstrated to be dependent on D2R signaling. Similarly, a significant dependence on A2AR signaling was observed for PPI and for haloperidol‐induced catalepsy. The results could be explained by the existence of one main population of striatal postsynaptic A2AR‐D2R heteromers, which may constitute a relevant target for the treatment of Parkinson's disease and other neuropsychiatric disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号