首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 638 毫秒
1.
Salmonella enterica subsp. enterica poses a threat to both human and animal health, with more than 2500 serovars having been reported to date. Salmonella serovars are identified by slide and tube agglutination tests using O and H antigen-specific anti-sera, although this procedure is both labor intensive and time consuming. Establishment of a method for rapid screening of the major Salmonella serovars is therefore required. We have established multiplex polymerase chain reaction (m-PCR) assays for identification of seven serovars of Salmonella, i.e., Typhimurium, Choleraesuis, Infantis, Hadar, Enteritidis, Dublin and Gallinarum. Three serovar-specific genomic regions (SSGRs) of each serovar were selected using an approach in comparative genomics. The Salmonella-specific invA gene was used to confirm the genetic background of the organisms. The isolates tested were identified as a target serovar when the three selected SSGRs and invA were all positive for amplification. The specificity of each m-PCR assay was investigated using 118 serovars of Salmonella and 12 species of non-Salmonella strains. Although a small number of false-positive results were observed in the m-PCR assays used to identify Typhimurium, Choleraesuis, Enteritidis and Dublin for closely related serovars, false-negative results were not observed in any assays. These assays had sufficient specificity to identify the seven Salmonella serovars, and therefore, have the potential for use as rapid screening methods.  相似文献   

2.
Riemerella anatipestifer is one of the most important bacterial pathogen of ducks and causes a contagious septicemia. R. anatipestifer infection causes serositis syndromes similar to other bacterial infections in ducks, including infection by Escherichia coli, Salmonella enterica and Pasteurella multocida. Clinically differentiating R. anatipestifer infections from other bacterial pathogen infections is usually difficult. In this study, MAb 1G2F10, a monoclonal antibody against R. anatipestifer GroEL, was used to develop a colloidal gold immunochromatographic strip. Colloidal gold particles were prepared by chemical synthesis to an average diameter of 20±5.26 nm by transmission electron microscope imaging. MAb 1G2F10 was conjugated to colloidal gold particles and the formation of antibody-colloidal gold conjugates was monitored by UV/Vis spectroscopy. Immunochromatographic strips were assembled in regular sequence through different accessories sticked on PVC plate. Strips specifically detected R. anatipestifer within 10 min, but did not detect E. coli, S. enterica and P. multocida. The detection limit for R. anatipestifer was 1×106 colony forming units, which was 500 times higher than a conventional agglutination test. Accuracy was 100% match to multiplex PCR. Assay stability and reproducibility were excellent after storage at 4°C for 6 months. The immunochromatographic strips prepared in this study offer a specific, sensitive, and rapid detection method for R. anatipestifer, which is of great importance for the prevention and control of R. anatipestifer infections.  相似文献   

3.
The following structure of the O-polysaccharide (O-antigen) of Salmonella enterica O13 was established by chemical analyses along with 2D 1H and 13C NMR spectroscopy:→2)-α-l-Fucp-(1→2)-β-d-Galp-(1→3)-α-d-GalpNAc-(1→3)-α-d-GlcpNAc-(1→The O-antigen of S. enterica O13 was found to be closely related to that of Escherichia coli O127, which differs only in the presence of a GalNAc residue in place of the GlcNAc residue and O-acetylation. The location of the O-acetyl groups in the E. coli O127 polysaccharide was determined. The structures of the O-polysaccharides studied are in agreement with the DNA sequence of the O-antigen gene clusters of S. enterica O13 and E. coli O127 reported earlier.  相似文献   

4.
An assay to identify the common food-borne pathogens Salmonella, Escherichia coli, Shigella, and Listeria monocytogenes was developed in collaboration with Ibis Biosciences (a division of Abbott Molecular) for the Plex-ID biosensor system, a platform that uses electrospray ionization mass spectroscopy (ESI-MS) to detect the base composition of short PCR amplicons. The new food-borne pathogen (FBP) plate has been experimentally designed using four gene segments for a total of eight amplicon targets. Initial work built a DNA base count database that contains more than 140 Salmonella enterica, 139 E. coli, 11 Shigella, and 36 Listeria patterns and 18 other Enterobacteriaceae organisms. This assay was tested to determine the scope of the assay''s ability to detect and differentiate the enteric pathogens and to improve the reference database associated with the assay. More than 800 bacterial isolates of S. enterica, E. coli, and Shigella species were analyzed. Overall, 100% of S. enterica, 99% of E. coli, and 73% of Shigella spp. were detected using this assay. The assay was also able to identify 30% of the S. enterica serovars to the serovar level. To further characterize the assay, spiked food matrices and food samples collected during regulatory field work were also studied. While analysis of preenrichment media was inconsistent, identification of S. enterica from selective enrichment media resulted in serovar-level identifications for 8 of 10 regulatory samples. The results of this study suggest that this high-throughput method may be useful in clinical and regulatory laboratories testing for these pathogens.  相似文献   

5.

Background

Riemerella anatipestifer is one of the most important pathogens of ducks. However, the molecular mechanisms of R. anatipestifer infection are poorly understood. In particular, the lack of genomic information from a variety of R. anatipestifer strains has proved severely limiting.

Results

In this study, we present the complete genomes of two R. anatipestifer strains, RA-CH-1 (2,309,519 bp, Genbank accession CP003787) and RA-CH-2 (2,166,321 bp, Genbank accession CP004020). Both strains are from isolates taken from two different sick ducks in the SiChuang province of China. A comparative genomics approach was used to identify similarities and key differences between RA-CH-1 and RA-CH-2 and the previously sequenced strain RA-GD, a clinical isolate from GuangDong, China, and ATCC11845.

Conclusion

The genomes of RA-CH-2 and RA-GD were extremely similar, while RA-CH-1 was significantly different than ATCC11845. RA-CH-1 is 140,000 bp larger than the three other strains and has 16 unique gene families. Evolutionary analysis shows that RA-CH-1 and RA-CH-2 are closed and in a branch with ATCC11845, while RA-GD is located in another branch. Additionally, the detection of several iron/heme-transport related proteins and motility mechanisms will be useful in elucidating factors important in pathogenicity. This information will allow a better understanding of the phenotype of different R. anatipestifer strains and molecular mechanisms of infection.  相似文献   

6.
An efficient and user-friendly bacterial transformation method by simple spreading cells with aminoclays was demonstrated. Compared to the reported transformation approaches using DNA adsorption or wrapping onto (in)organic fibers, the spontaneously generated clay-coated DNA suprastructures by mixing DNA with aminoclay resulted in transformants in both Gram-negative (Escherichia coli) and Gram-positive cells (Streptococcus mutans). Notably, the wild type S. mutans showed comparable transformation efficiency to that of the E. coli host for recombinant DNA cloning. This is a potentially promising result because other trials such as heat-shock, electroporation, and treatment with sepiolite for introducing DNA into the wild type S. mutans failed. Under defined conditions, the transformation efficiency of E. coli XL1-Blue and S. mutans exhibited ~ 2 × 105 and ~ 6 × 103 CFU/μg of plasmid DNA using magnesium-aminoclay. In contrast, transformation efficiency was higher in S. mutans than that in E. coli XL1-Blue for calcium-aminoclay. It was also confirmed that each plasmid transformed into E. coli and S. mutans was stably maintained and that they expressed the inserted gene encoding the green fluorescent protein during prolonged growth of up to 80 generations.  相似文献   

7.
Many insects have associations with bacteria, although it is often difficult to determine the intricacies of the relationships. In one such case, facultative bacteria have been discovered in a major crop pest and virus vector, the Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). Several bacterial isolates have been studied in Netherlands greenhouse thrips populations, with molecular data indicating that these bacteria were similar to Escherichia coli, although biochemical properties suggested these microbes might actually be most similar to plant pathogenic bacteria in the genus Erwinia. We focused on the bacterial flora of the Hawaiian Islands thrips population where these gut bacteria were first reported in 1989. We also analyzed a German population and a 1965 California population preserved in ethanol. Culture and culture-independent techniques revealed a consistent microflora that was similar to the Netherlands isolates studied. The similarity among thrips microbes from multiple populations and environments suggested these bacteria and their hosts share a widespread association. Molecular phylogeny based on the 16S rRNA gene and biochemical analysis of thrips bacteria suggested two distinctive groups of microbes are present in thrips. Phylogenetic analysis also revealed support for one thrips bacterial group having a shared ancestry with Erwinia, whereas the second group of thrips bacteria fell out with E. coli, but without support. Although species-specific relationships were indeterminable due to the conservative nature of 16S, there is strong indication that thrips symbionts belong to two different genera and originated from environmental microbes.  相似文献   

8.
The reversible redox chemistry of coenzyme Q serves a crucial function in respiratory electron transport. Biosynthesis of Q in Escherichia coli depends on the ubi genes. However, very little is known about UbiX, an enzyme thought to be involved in the decarboxylation step in Q biosynthesis in E. coli and Salmonella enterica. Here we characterize an E. coli ubiX gene deletion strain, LL1, to further elucidate E. coli ubiX function in Q biosynthesis. LLI produces very low levels of Q, grows slowly on succinate as the sole carbon source, accumulates 4-hydroxy-3-octaprenyl-benzoate, and has reduced UbiG O-methyltransferase activity. Expression of either E. coli ubiX or the Saccharomyces cerevisiae ortholog PAD1, rescues the deficient phenotypes of LL1, identifying PAD1 as an ortholog of ubiX. Our results suggest that both UbiX and UbiD are required for the decarboxylation of 4-hydroxy-3-octaprenyl-benzoate in E. coli coenzyme Q biosynthesis, especially during logarithmic growth.  相似文献   

9.
Edwardsiella tarda and Streptococcus iniae are important aquaculture pathogens that affect many species of farmed fish. In this study, we analyzed the expression, activity, and immunoprotective potential of E. tarda heat shock protein DnaK. We found that dnaK expression was upregulated under conditions of heat shock, oxidative stress, and infection of host cells. Recombinant DnaK (rDnaK) purified from Escherichia coli exhibited ATPase activity and induced protection in Japanese flounder (Paralichthys olivaceus) against lethal E. tarda challenge. On the basis of these results and our previous observation that a protective S. iniae antigen Sia10 which, when expressed heterogeneously in E. coli DH5α, is secreted into the extracellular milieu, we constructed a chimeric antigen by fusing DnaK to Sia10. The resulting fusion protein Sia10-DnaK was expressed in DH5α via the plasmid pTDK. Western blot analysis indicated that Sia10-DnaK was detected in the culture supernatant of DH5α/pTDK. When flounder were vaccinated with live DH5α/pTDK, strong protection was observed against both E. tarda and S. iniae. ELISA analysis detected specific serum antibody production in fish vaccinated with rDnaK and DH5α/pTDK. Taken together, these results indicate that rDnaK is an intrinsic ATPase with immunoprotective property and that Sia10-DnaK delivered by a live bacterial host is an effective bivalent vaccine candidate against E. tarda and S. iniae infection.  相似文献   

10.
The accurate sub-typing of Salmonella enterica isolates is essential for epidemiological investigations and surveillance of Salmonella infections. Salmonella isolates are currently identified using the Kauffman-White serotyping scheme. Multilocus sequence typing (MLST) schemes have been developed for the major bacterial pathogens including Salmonella and have assisted in understanding the molecular epidemiology and population biology of these organisms. Recently, the DiversiLab rep-PCR system has been developed using micro-fluidic chips to provide standardized, semi-automated fingerprinting for pathogens including S. enterica. In the current study, 71 isolates of S. enterica, representing 21 serovars, were analyzed using MLST and the DiversiLab rep-PCR system. MLST was able to identify 31 sequence types (STs), while the DiversiLab system revealed 38 DiversiLab types (DTs). The rep-PCR distinguished isolates of different serovars and showed greater discriminatory power (0.95) than MLST typing (0.89). Rep-PCR exhibited 92% concordance with MLST and 90% with serotyping, while the concordance level of MLST typing with serotyping was 96%, representing a strong association. Comparison of rep-PCR profiles with those held in an online library database led to the accurate prediction of serovar in 63% of cases and resulted in inaccurate predictions for 10% of profiles. MLST and the rep-PCR system may provide useful additional informative techniques for the molecular identification of S. enterica. We conclude that the DiversiLab rep-PCR system may provide a rapid (less than 4 h) and standardized method for sub-typing isolates of S. enterica.  相似文献   

11.
12.
Microbial systems have become the preferred testing grounds for experimental work on the evolution of traits that benefit other group members. This work, based on conceptual and theoretical models of frequency-dependent selection within populations, has proven fruitful in terms of understanding the dynamics of group beneficial or ‘public goods’ traits within species. Here, we expand the scope of microbial work on the evolution of group-beneficial traits to the case of multi-species communities, particularly those that affect human health. We examined whether β-lactamase-producing Escherichia coli could protect ampicillin-sensitive cohorts of other species, particularly species that could cause human disease. Both β-lactamase-secreting E. coli and, surprisingly, those engineered to retain it, allowed for survival of a large number of ampicillin-sensitive cohorts of Salmonella enterica serovar Typhimurium, including both laboratory and clinical isolates. The Salmonella survivors, however, remained sensitive to ampicillin when re-plated onto solid medium and there was no evidence of gene transfer. Salmonella survival did not even require direct physical contact with the resistant E. coli. The observed phenomenon appears to involve increased release of β-lactamase from the E. coli when present with S. enterica. Significantly, these findings imply that resistant E. coli, that are not themselves pathogenic, may be exploited, even when they are normally selfish with respect to other E. coli. Thus, Salmonella can gain protection against antibiotics from E. coli without gene transfer, a phenomenon not previously known. As a consequence, antibiotic-resistant E. coli can play a decisive role in the survival of a species that causes disease and may thereby interfere with successful treatment.  相似文献   

13.
Epi- and endozoic bacterial communities associated with four bryozoan species from the Jade (North Sea, Germany) were investigated by the combined application of molecular tools and electron microscopic visualisation of zooids. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments of associated bacteria displayed specific bacterial community profiles in the examined species Aspidelectra melolontha, Conopeum reticulum, Electra monostachys and Electra pilosa. Actual bacterial epibiosis was only observed on C. reticulum whilst the other bryozoans under investigation were largely free of microbial epibionts. These observations indicated that bryozoan-associated bacteria identified by molecular methods originated from internal cavities of bryozoan zooids. Cluster analysis of DGGE band patterns revealed species-specific bacterial communities in A. melolontha, E. monostachys and E. pilosa. Bacteria associated with C. reticulum were seemingly influenced by site-specific parameters. A comparison of bacterial community profiles between reference and invertebrate surfaces allowed for an interpretation of conspicuous group-specific differences. Operational taxonomic units (OTUs) obtained from a single set of bryozoan replicates that were absent on the inorganic reference samples (mussel shells) were hypothesized to be favourable endobionts. Contrary, OTUs present in the references but absent in bryozoan samples could be assumed to stem from bryozoan-specific defenses against ubiquitous bacterial colonizers. Although there was no experimental evidence for a mutual relationship between prokaryotes and their eukaryotic bryozoan hosts, this study demonstrated that in three out of four bryozoans under investigation associated bacterial communities were characteristically shaped by host attributes.  相似文献   

14.
15.
Adult mesenchymal stem cells (MSC) are present in several tissues, e.g. bone marrow, heart muscle, brain and subcutaneous adipose tissue. In invasive infections MSC get in contact with bacteria and bacterial components. Not much is known about how bacterial pathogens interact with MSC and how contact to bacteria influences MSC viability and differentiation potential. In this study we investigated the impact of three different wound infection relevant bacteria, Escherichia coli, Staphylococcus aureus, and Streptococcus pyogenes, and the cell wall components lipopolysaccharide (LPS; Gram-negative bacteria) and lipoteichoic acid (LTA; Gram-positive bacteria) on viability, proliferation, and osteogenic as well as adipogenic differentiation of human adipose tissue-derived mesenchymal stem cells (adMSC). We show that all three tested species were able to attach to and internalize into adMSC. The heat-inactivated Gram-negative E. coli as well as LPS were able to induce proliferation and osteogenic differentiation but reduce adipogenic differentiation of adMSC. Conspicuously, the heat-inactivated Gram-positive species showed the same effects on proliferation and adipogenic differentiation, while its cell wall component LTA exhibited no significant impact on adMSC. Therefore, our data demonstrate that osteogenic and adipogenic differentiation of adMSC is influenced in an oppositional fashion by bacterial antigens and that MSC-governed regeneration is not necessarily reduced under infectious conditions.  相似文献   

16.
The Mur ligases (MurC, MurD, MurE and MurF) catalyze the stepwise synthesis of the UDP-N-acetylmuramoyl-pentapeptide precursor of peptidoglycan. The murC, murD, murE and murF genes from Staphylococcus aureus, a major pathogen, were cloned and the corresponding proteins were overproduced in Escherichia coli and purified as His6-tagged forms. Their biochemical properties were investigated and compared to those of the E. coli enzymes. Staphylococcal MurC accepted l-Ala, l-Ser and Gly as substrates, as the E. coli enzyme does, with a strong preference for l-Ala. S. aureus MurE was very specific for l-lysine and in particular did not accept meso-diaminopimelic acid as a substrate. This mirrors the E. coli MurE specificity, for which meso-diaminopimelic acid is the preferred substrate and l-lysine a very poor one. S. aureus MurF appeared less specific and accepted both forms (l-lysine and meso-diaminopimelic acid) of UDP-MurNAc-tripeptide, as the E. coli MurF does. The inverse and strict substrate specificities of the two MurE orthologues is thus responsible for the presence of exclusively meso-diaminopimelic acid and l-lysine at the third position of the peptide in the peptidoglycans of E. coli and S. aureus, respectively. The specific activities of the four Mur ligases were also determined in crude extracts of S. aureus and compared to cell requirements for peptidoglycan biosynthesis.  相似文献   

17.
杨娜  杨波 《生态学报》2011,31(5):1203-1212
为了研究褐斑病与蕙兰根部内生细菌群落结构和多样性的关联,从野生蕙兰健株和褐斑病株根部分离出内生细菌112株,采用核糖体DNA扩增片段限制性酶切分析(ARDRA),研究了健株和病株内生细菌多样性与群落结构。将内生细菌纯培养物扩增近全长的16S rDNA,并用ARDRA (Amplified Ribosomal DNA Restriction Analysis) 对所分离的菌株进行分型,根据酶切图谱的差异,将健株中的内生细菌分成8个ARDRA型,病株分成13个ARDRA型。并选取代表性菌株进行16S rDNA序列测定。结果表明,健株分离出内生细菌6个属,优势菌群为Bacillus;病株分离出11个属,优势菌群为 MitsuariaFlavobacterium。通过回接兰花植物和初步拮抗实验发现,从病株分离出的H5号菌株 (Flavobacterium resistens)使兰花产生病症,而健株中的B02 (Bacillus cereus) 和B22号菌株 (Burkholderia stabilis) 对菌株H5有拮抗作用。  相似文献   

18.
The significant increase in foodborne outbreaks caused by contaminated fresh produce, such as alfalfa sprouts, lettuce, melons, tomatoes and spinach, during the last 30 years stimulated investigation of the mechanisms of persistence of human pathogens on plants. Emerging evidence suggests that Salmonella enterica and Escherichia coli, which cause the vast majority of fresh produce outbreaks, are able to adhere to and to form biofilms on plants leading to persistence and resistance to disinfection treatments, which subsequently can cause human infections and major outbreaks. In this review, we present the current knowledge about host, bacterial and environmental factors that affect the attachment to plant tissue and the process of biofilm formation by S. enterica and E. coli, and discuss how biofilm formation assists in persistence of pathogens on the plants. Mechanisms used by S. enterica and E. coli to adhere and persist on abiotic surfaces and mammalian cells are partially similar and also used by plant pathogens and symbionts. For example, amyloid curli fimbriae, part of the extracellular matrix of biofilms, frequently contribute to adherence and are upregulated upon adherence and colonization of plant material. Also the major exopolysaccharide of the biofilm matrix, cellulose, is an adherence factor not only of S. enterica and E. coli, but also of plant symbionts and pathogens. Plants, on the other hand, respond to colonization by enteric pathogens with a variety of defence mechanisms, some of which can effectively inhibit biofilm formation. Consequently, plant compounds might be investigated for promising novel antibiofilm strategies.  相似文献   

19.
Sprout producers have recently been faced with several Salmonella enterica and Escherichia coli O157:H7 outbreaks. Many of the outbreaks have been traced to sprout seeds contaminated with low levels of human pathogens. Alfalfa seeds were inoculated with S. enterica and E. coli O157:H7 strains isolated from alfalfa seeds or other environmental sources and sprouted to examine growth of these human pathogens in association with sprouting seeds. S. enterica strains grew an average of 3.7 log10 on sprouting seeds over 2 days, while E. coli O157:H7 strains grew significantly less, an average of 2.3 log10. The initial S. enterica or E. coli O157:H7 inoculum dose and seed-sprouting temperature significantly affected the levels of both S. enterica and E. coli O157:H7 on the sprouts and in the irrigation water, while the frequency of irrigation water replacement affected only the levels of E. coli O157:H7. Colonization of sprouting alfalfa seeds by S. enterica serovar Newport and E. coli O157:H7 strains transformed with a plasmid encoding the green fluorescent protein was examined with fluorescence microscopy. Salmonella serovar Newport colonized both seed coats and sprout roots as aggregates, while E. coli O157:H7 colonized only sprout roots.  相似文献   

20.
Molecular tools for Gram-positive bacteria such as Mycobacterium are less well-developed than those for Gram-negatives such as Escherichiacoli. This has slowed the molecular-genetic characterisation of Mycobacterium spp, which is unfortunate, since this genus has high medical, environmental and industrial significance. Here, we developed a new Mycobacterium shuttle vector (pMycoFos, 12.5 kb, KmR) which combines desirable features of several previous vectors (controllable copy number in E. coli, inducible gene expression in Mycobacterium) and provides a new multiple cloning site compatible with large inserts of high-GC content DNA. Copy number control in E. coli was confirmed by the increased KmR of cultures after arabinose induction and the greater DNA yield of vector from arabinose-induced cultures. Measurement of beta-galactosidase activity in pMycoFos clones carrying the lacZ gene showed that in Mycobacterium smegmatis mc2-155, expression was inducible by acetamide, but in E. coli EPI300, the expression level was primarily determined by the vector copy number. Examination of protein profiles on SDS-PAGE gels confirmed the beta-galactosidase assay results. Construction of a fosmid library with the new vector confirmed that it could carry large DNA inserts. The new vector enabled the stable cloning and expression of an ethene monooxygenase gene cluster, which had eluded previous attempts at heterologous expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号