首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
During the past few years Archaea have been recognized as a widespread and significant component of marine picoplankton assemblages and, more recently, the presence of novel archaeal phylogenetic lineages has been reported in coastal marine benthic environments. We investigated the relative abundance, vertical distribution, phylogenetic composition, and spatial variability of Archaea in deep-sea sediments collected from several stations in the Atlantic Ocean. Quantitative oligonucleotide hybridization experiments indicated that the relative abundance of archaeal 16S rRNA in deep-sea sediments (1500 m deep) ranged from about 2.5 to 8% of the total prokaryotic rRNA. Clone libraries of PCR-amplified archaeal rRNA genes (rDNA) were constructed from 10 depth intervals obtained from sediment cores collected at depths of 1,500, 2,600, and 4,500 m. Phylogenetic analysis of rDNA sequences revealed the presence of a complex archaeal population structure, whose members could be grouped into discrete phylogenetic lineages within the two kingdoms, Crenarchaeota and Euryarchaeota. Comparative denaturing gradient gel electrophoresis profile analysis of archaeal 16S rDNA V3 fragments revealed a significant depth-related variability in the composition of the archaeal population.  相似文献   

2.
Prokaryotic Diversity in Zostera noltii-Colonized Marine Sediments   总被引:2,自引:0,他引:2       下载免费PDF全文
The diversity of microorganisms present in a sediment colonized by the phanerogam Zostera noltii has been analyzed. Microbial DNA was extracted and used for constructing two 16S rDNA clone libraries for Bacteria and Archaea. Bacterial diversity was very high in these samples, since 57 different sequences were found among the 60 clones analyzed. Eight major lineages of the Domain Bacteria were represented in the library. The most frequently retrieved bacterial group (36% of the clones) was δ-Proteobacteria related to sulfate-reducing bacteria. The second most abundant group (27%) was γ-Proteobacteria, including five clones closely related to S-oxidizing endosymbionts. The archaeal clone library included members of Crenarchaeota and Euryarchaeota, with nine different sequences among the 15 analyzed clones, indicating less diversity when compared to the Bacteria organisms. None of these sequences was closely related to cultured Archaea organisms.  相似文献   

3.
Archaea assemblages from the Arctic Ocean and Antarctic waters were compared by PCR-denaturing gradient gel electrophoresis (DGGE) analysis of 16S rRNA genes amplified using the Archaea-specific primers 344f and 517r. Inspection of the DGGE fingerprints of 33 samples from the Arctic Ocean (from SCICEX submarine cruises in 1995, 1996, and 1997) and 7 Antarctic samples from Gerlache Strait and Dallman Bay revealed that the richness of Archaea assemblages was greater in samples from deep water than in those from the upper water column in both polar oceans. DGGE banding patterns suggested that most of the Archaea ribotypes were common to both the Arctic Ocean and the Antarctic Ocean. However, some of the Euryarchaeota ribotypes were unique to each system. Cluster analysis of DGGE fingerprints revealed no seasonal variation but supported depth-related differences in the composition of the Arctic Ocean Archaea assemblage. The phylogenetic composition of the Archaea assemblage was determined by cloning and then sequencing amplicons obtained from the Archaea-specific primers 21f and 958r. Sequences of 198 clones from nine samples covering three seasons and all depths grouped with marine group I Crenarchaeota (111 clones), marine group II Euryarchaeota (86 clones), and group IV Euryarchaeota (1 clone). A sequence obtained only from a DGGE band was similar to those of the marine group III Euryarchaeota.  相似文献   

4.
Bacterial and archaeal community structures and diversity of three different sedimentary environments (BH1A, BH2A and BH3A) in the acid pit lake of a chalcopyrite mine at Touro (Spain) were determined by 16S rRNA gene PCR-DGGE and sequencing of clone libraries. DGGE of bacterial and archaeal amplicons showed that the sediments harbor different communities. Bacterial 16S rRNA gene sequences were assigned to Acidobacteria, Actinobacteria, Cyanobacteria, Planctomycetes, Proteobacteria, Chloroflexi and uncultured bacteria, after clustering into 42 operational taxonomic units (OTUs). OTU 2 represented approximately 37, 42 and 37 % of all sequences from sediments BH1A, BH2A and BH3A, respectively, and was phylogenetically related to uncultured Chloroflexi. Remaining OTUs were phylogenetically related to heterotrophic bacteria, including representatives of Ferrithrix and Acidobacterium genera. Archaeal 16S rRNA gene sequences were clustered into 54 OTUs. Most of the sequences from the BH1A sediment were assigned to Euryarchaeota, whereas those from BH2A sediment were assigned to Crenarchaeota. The majority of the sequences from BH3A sediment were assigned to unclassified Archaea, and showed similarities to uncultured and unclassified environmental clones. No sequences related to Acidithiobacillus and Leptospirillum, commonly associated with acid mine drainage, were detected in this study.  相似文献   

5.
While the contribution of Bacteria to bioremediation of oil-contaminated shorelines is well established, the response of Archaea to spilled oil and bioremediation treatments is unknown. The relationship between archaeal community structure and oil spill bioremediation was examined in laboratory microcosms and in a bioremediation field trial. 16S rRNA gene-based PCR and denaturing gradient gel analysis revealed that the archaeal community in oil-free laboratory microcosms was stable for 26 days. In contrast, in oil-polluted microcosms a dramatic decrease in the ability to detect Archaea was observed, and it was not possible to amplify fragments of archaeal 16S rRNA genes from samples taken from microcosms treated with oil. This was the case irrespective of whether a bioremediation treatment (addition of inorganic nutrients) was applied. Since rapid oil biodegradation occurred in nutrient-treated microcosms, we concluded that Archaea are unlikely to play a role in oil degradation in beach ecosystems. A clear-cut relationship between the presence of oil and the absence of Archaea was not apparent in the field experiment. This may have been related to continuous inoculation of beach sediments in the field with Archaea from seawater or invertebrates and shows that the reestablishment of Archaea following bioremediation cannot be used as a determinant of ecosystem recovery following bioremediation. Comparative 16S rRNA sequence analysis showed that the majority of the Archaea detected (94%) belonged to a novel, distinct cluster of group II uncultured Euryarchaeota, which exhibited less than 87% identity to previously described sequences. A minor contribution of group I uncultured Crenarchaeota was observed.  相似文献   

6.
The objective of this study was to examine the presence and diversity of Archaea within mineral and ornithogenic soils from 12 locations across the Ross Sea region. Archaea were not abundant but DNA sufficient for producing 16S rRNA gene clone libraries was extracted from 18 of 51 soil samples, from four locations. A total of 1452 clones were analysed by restriction fragment length polymorphism and assigned to 43 operational taxonomic units from which representatives were sequenced. Archaea were primarily restricted to coastal mineral soils which showed a predominance of Crenarchaeota belonging to group 1.1b (> 99% of clones). These clones were assigned to six clusters (A through F), based on shared identity to sequences in the GenBank database. Ordination indicated that soil chemistry and water content determined archaeal community structure. This is the first comprehensive study of the archaeal community in Antarctic soils and as such provides a reference point for further investigation of microbial function in this environment.  相似文献   

7.
Culture‐dependent and culture‐independent methods were used in an investigation of the microbial diversity in a permafrost/massive ground ice core from the Canadian high Arctic. Denaturing gradient gel electrophoresis as well as Bacteria and Archaea 16S rRNA gene clone libraries showed differences in the composition of the microbial communities in the distinct core horizons. Microbial diversity was similar in the active layer (surface) soil, permafrost table and permafrost horizons while the ground ice microbial community showed low diversity. Bacteria and Archaea sequences related to the Actinobacteria (54%) and Crenarchaeota (100%) respectively were predominant in the active layer while the majority of sequences in the permafrost were related to the Proteobacteria (57%) and Euryarchaeota (76%). The most abundant phyla in the ground ice clone libraries were the Firmicutes (59%) and Crenarchaeota (82%). Isolates from the permafrost were both less abundant and diverse than in the active layer soil, while no culturable cells were recovered from the ground ice. Mineralization of [1‐14C] acetic acid and [2‐14C] glucose was used to detect microbial activity in the different horizons in the core. Mineralization was detected at near ambient permafrost temperatures (?15°C), indicating that permafrost may harbour an active microbial population, while the low microbial diversity, abundance and activity in ground ice suggests a less hospitable microbial habitat.  相似文献   

8.
Archaeal 16S rRNA gene clone libraries using PCR amplicons from eight different layers of the MD06-3051 core were obtained from the tropical Western Pacific sediments. A total of 768 clones were randomly selected, and 264 representative clones were sequenced by restriction fragment length polymorphism. Finally, 719 valid clones and 104 operational taxonomic units were identified after chimera-check and ≥97% similarity analysis. The phylogenetic analysis of 16S rDNA sequences obtained from sediment samples were very diverse and showed stratification with depth. Majority of the members were most closely related to uncultivated groups and physiologically uncharacterized assemblages. All phylotypes were affiliated with Crenarchaeota (76%) and Euryarchaeota (24%), respectively. Deep-sea archaeal group (DSAG, 41% of total clones) and miscellaneous crenarchaeotic group (MCG, 29% of total clones) belonging to Crenarchaeota were the most predominant archaeal 16S rDNA phylotypes in clone libraries. Phylotypes in this study shared high similarity with those in subsurface sediments from Peru Margin sites, which indicated that different geographical zones might host similar members of archaeal populations based on similar sedimentary environments. In our study, members of DSAG and MCG seemed to dominate certain layers of the nonhydrate sediments, suggesting a wide ecophysiological adaptation than previously appreciated. The spatial distribution and community structure of these groups might vary with the different geochemical gradients of the environment.  相似文献   

9.
Microorganisms remineralize and respire half of marine primary production, yet the niches occupied by specific microbial groups, and how these different groups may interact, are poorly understood. In this study, we identify co-occurrence patterns for marine Archaea and specific bacterial groups in the chlorophyll maximum of the Southern California Bight. Quantitative PCR time series of marine group 1 (MG1) Crenarchaeota 16S rRNA genes varied substantially over time but were well-correlated (r2=0.94, P<0.001) with ammonia monooxygenase subunit A (amoA) genes, and were more weakly related to 16S rRNA genes for all Archaea (r2=0.39), indicating that other archaeal groups (for example, Euryarchaeota) were numerically important. These data sets were compared with variability in bacterial community composition based on automated ribosomal intergenic spacer analysis (ARISA). We found that archaeal amoA gene copies and a SAR11 (or Pelagibacter) group Ib operational taxonomic unit (OTU) displayed strong co-variation through time (r2=0.55, P<0.05), and archaeal amoA and MG1 16S rRNA genes also co-occurred with two SAR86 and two Bacteroidetes OTUs. The relative abundance of these groups increased and decreased in synchrony over the course of the time series, and peaked during periods of seasonal transition. By using a combination of quantitative and relative abundance estimates, our findings show that abundant microbial OTUs—including the marine Crenarchaeota, SAR11, SAR86 and the Bacteroidetes—co-occur non-randomly; they consequently have important implications for our understanding of microbial community ecology in the sea.  相似文献   

10.
Environmental shaping of sponge associated archaeal communities   总被引:1,自引:0,他引:1  

Background

Archaea are ubiquitous symbionts of marine sponges but their ecological roles and the influence of environmental factors on these associations are still poorly understood.

Methodology/Principal Findings

We compared the diversity and composition of archaea associated with seawater and with the sponges Hymeniacidon heliophila, Paraleucilla magna and Petromica citrina in two distinct environments: Guanabara Bay, a highly impacted estuary in Rio de Janeiro, Brazil, and the nearby Cagarras Archipelago. For this we used metagenomic analyses of 16S rRNA and ammonia monooxygenase (amoA) gene libraries. Hymeniacidon heliophila was more abundant inside the bay, while P. magna was more abundant outside and P. citrina was only recorded at the Cagarras Archipelago. Principal Component Analysis plots (PCA) generated using pairwise unweighted UniFrac distances showed that the archaeal community structure of inner bay seawater and sponges was different from that of coastal Cagarras Archipelago. Rarefaction analyses showed that inner bay archaeaoplankton were more diverse than those from the Cagarras Archipelago. Only members of Crenarchaeota were found in sponge libraries, while in seawater both Crenarchaeota and Euryarchaeota were observed. Although most amoA archaeal genes detected in this study seem to be novel, some clones were affiliated to known ammonia oxidizers such as Nitrosopumilus maritimus and Cenarchaeum symbiosum.

Conclusion/Significance

The composition and diversity of archaeal communities associated with pollution-tolerant sponge species can change in a range of few kilometers, probably influenced by eutrophication. The presence of archaeal amoA genes in Porifera suggests that Archaea are involved in the nitrogen cycle within the sponge holobiont, possibly increasing its resistance to anthropogenic impacts. The higher diversity of Crenarchaeota in the polluted area suggests that some marine sponges are able to change the composition of their associated archaeal communities, thereby improving their fitness in impacted environments.  相似文献   

11.
Grassland management influences soil archaeal communities, which appear to be dominated by nonthermophilic crenarchaeotes. To determine whether methanogenic Archaea associated with the Euryarchaeota lineage are also present in grassland soils, anaerobic microcosms containing both managed (improved) and natural (unimproved) grassland rhizosphere soils were incubated for 28 days to encourage the growth of anaerobic Archaea. The contribution of potential methanogenic organisms to the archaeal community was assessed by the molecular analysis of RNA extracted from soil, using primers targeting all Archaea and Euryarchaeota. Archaeal RT‐PCR products were obtained from all anaerobic microcosms. However, euryarchaeal RT‐PCR products (of putative methanogen origin) were obtained only from anaerobic microcosms of improved soil, their presence coinciding with detectable methane production. Sequence analysis of excised denaturing gradient gel electrophoresis (DGGE) bands revealed the presence of euryarchaeal organisms that could not be detected before anaerobic enrichment. These data indicate that nonmethanogenic Crenarchaeota dominate archaeal communities in grassland soil and suggest that management practices encourage euryarchaeal methanogenic activity.  相似文献   

12.
To study how archaeal community responds to environmental changes, we investigated archaeal community structures in waters of three Tibetan saline lakes in northwestern China (Gahai, Xiaochaidan, and Charhan Lakes) with 16S rRNA gene phylogenetic analysis. Temperature, pH, and water chemistry (major anions and cations) of the lakes were measured. Three archaeal clone libraries were constructed with a total of 297 sequences. Incorporating our previous data obtained from other lakes on the Tibetan Plateau, we performed statistical analyses to identify dominant environmental parameters that could account for the observed variations in archaeal community structure. We concluded that salinity and water chemistry (Na and bicarbonate concentration in particular) played an important role in shaping archaeal community. In particular, the relative abundance of archaeal 16S rRNA genes affiliated with the Halobacteriales of the Euryarchaeota increased with salinity, whereas that of crenarchaeotal 16S rRNA gene sequences showed the opposite trend. Crenarchaeotal 16S rRNA gene sequences were retrieved from lake waters with salinity up to 28.3%. These results have important implications for our understanding of response of archaeal community to environmental changes in high-altitude lake ecosystems.  相似文献   

13.
Fluorescence in situ hybridization (FISH) in combination with polynucleotide probes revealed that the two major groups of planktonic Archaea (Crenarchaeota and Euryarchaeota) exhibit a different distribution pattern in the water column of the Pacific subtropical gyre and in the Antarctic Circumpolar Current system. While Euryarchaeota were found to be more dominant in nearsurface waters, Crenarchaeota were relatively more abundant in the mesopelagic and bathypelagic waters. We determined the abundance of archaea in the mesopelagic and bathypelagic North Atlantic along a south-north transect of more than 4,000 km. Using an improved catalyzed reporter deposition-FISH (CARD-FISH) method and specific oligonucleotide probes, we found that archaea were consistently more abundant than bacteria below a 100-m depth. Combining microautoradiography with CARD-FISH revealed a high fraction of metabolically active cells in the deep ocean. Even at a 3,000-m depth, about 16% of the bacteria were taking up leucine. The percentage of Euryarchaeota and Crenarchaeaota taking up leucine did not follow a specific trend, with depths ranging from 6 to 35% and 3 to 18%, respectively. The fraction of Crenarchaeota taking up inorganic carbon increased with depth, while Euryarchaeota taking up inorganic carbon decreased from 200 m to 3,000 m in depth. The ability of archaea to take up inorganic carbon was used as a proxy to estimate archaeal cell production and to compare this archaeal production with total prokaryotic production measured via leucine incorporation. We estimate that archaeal production in the mesopelagic and bathypelagic North Atlantic contributes between 13 to 27% to the total prokaryotic production in the oxygen minimum layer and 41 to 84% in the Labrador Sea Water, declining to 10 to 20% in the North Atlantic Deep Water. Thus, planktonic archaea are actively growing in the dark ocean although at lower growth rates than bacteria and might play a significant role in the oceanic carbon cycle.  相似文献   

14.
Archaeal Diversity in Waters from Deep South African Gold Mines   总被引:12,自引:5,他引:7       下载免费PDF全文
A culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold mines was performed by performing a PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with a sequencing analysis of archaeal rDNA clone libraries. The water samples used represented various environments, including deep fissure water, mine service water, and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied with the source of water. The archaeal communities in the deep gold mine environments exhibited great phylogenetic diversity; the majority of the members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to environmental rDNA clones from surface soil (soil clones) and marine environments (marine group I [MGI]). Other clones exhibited intermediate phylogenetic affiliation between soil clones and MGI in the Crenarchaeota. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences that exhibited novel phylogeny, including a novel lineage of Euryarchaeota. These results suggest that deep South African gold mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including the newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea are reevaluated.  相似文献   

15.
Surface seawater in the South Pacific Gyre (SPG) is one of the cleanest oceanic environments on earth, and the photosynthetic primary production is extremely low. Despite the ecological significance of the largest aquatic desert on our planet, microbial community composition in the ultra-oligotrophic seawater remain largely unknown. In this study, we collected surface seawater along a southern transect of the SPG during the Integrated Ocean Drilling Program (IODP) Expedition 329. Samples from four distinct sites (Sites U1368, U1369, U1370 and U1371) were examined, representing ∼5400 kilometers of transect line from the gyre heart to the edge area. Real-time PCR analysis showed 16S rRNA gene abundance in the gyre seawater, ranging from 5.96×105 to 2.55×106 copies ml−1 for Bacteria and 1.17×103 to 1.90×104 copies ml−1 for Archaea. The results obtained by statistic analyses of 16S rRNA gene clone libraries revealed the community composition in the southern SPG area: diversity richness estimators in the gyre center (Sites U1368 & U1369) are generally lower than those at sites in the gyre edge (Sites U1370 & U1371) and their community structures are clearly distinguishable. Phylogenetic analysis showed the predominance of Proteobacteria (especially Alphaproteobacteria) and Cyanobacteria in bacterial 16S rRNA gene clone libraries, whereas phylotypes of Betaproteobacteria were only detected in the central gyre. Archaeal 16S rRNA genes in the clone libraries were predominated by the sequences of Marine Group II within the Euryarchaeota, and the Crenarchaeota sequences were rarely detected, which is consistent with the real-time PCR data (only 9.9 to 22.1 copies ml−1). We also performed cultivation of heterotrophic microbes onboard, resulting in 18.9% of phylogenetically distinct bacterial isolates at least at the species level. Our results suggest that the distribution and diversity of microbial communities in the SPG surface seawater are closely related to the ultra-oligotrophic oceanographic features in the Pacific Ocean.  相似文献   

16.
For the analysis of microbial community structure based on 16S rDNA sequence diversity, sensitive and robust PCR amplification of 16S rDNA is a critical step. To obtain accurate microbial composition data, PCR amplification must be free of bias; however, amplifying all 16S rDNA species with equal efficiency from a sample containing a large variety of microorganisms remains challenging. Here, we designed a universal primer based on the V3-V4 hypervariable region of prokaryotic 16S rDNA for the simultaneous detection of Bacteria and Archaea in fecal samples from crossbred pigs (Landrace×Large white×Duroc) using an Illumina MiSeq next-generation sequencer. In-silico analysis showed that the newly designed universal prokaryotic primers matched approximately 98.0% of Bacteria and 94.6% of Archaea rRNA gene sequences in the Ribosomal Database Project database. For each sequencing reaction performed with the prokaryotic universal primer, an average of 69,330 (±20,482) reads were obtained, of which archaeal rRNA genes comprised approximately 1.2% to 3.2% of all prokaryotic reads. In addition, the detection frequency of Bacteria belonging to the phylum Verrucomicrobia, including members of the classes Verrucomicrobiae and Opitutae, was higher in the NGS analysis using the prokaryotic universal primer than that performed with the bacterial universal primer. Importantly, this new prokaryotic universal primer set had markedly lower bias than that of most previously designed universal primers. Our findings demonstrate that the prokaryotic universal primer set designed in the present study will permit the simultaneous detection of Bacteria and Archaea, and will therefore allow for a more comprehensive understanding of microbial community structures in environmental samples.  相似文献   

17.
To understand the composition and structure of microbial communities in acid (pH 3.0) mine drainage (AMD) associated with pyrite mine tailings in Anhui Province, China, molecular diversities of 16S rRNA and 18S rRNA genes were examined using a PCR-based cloning approach. Bacterial, archaeal and microeukaryotic clone libraries were constructed. In contrast to typical dominance of autotrophic acidophiles, genus Acidiphilium, which consists of mixotrophic acidophiles capable of chemoorganotrophic and photosynthetic metabolisms, was the largest group in the bacterial clone library. These mixotrophic organisms may be advantageous in the oligotrophic AMD environment of the study site (certain amounts of dissolved organic carbon and light) by switching between two modes of metabolisms. Unexpectedly, a large fraction of bacterial clones (12.7%) were related to the neutrophilic genus Legionella, which can cause Legionnaires’ disease, a potentially lethal pneumonia. The eukaryotic 18S rRNA gene sequences were mostly related to Oxytricha, Nuclearia, and Penicillium. In the archaeal clone library, all the sequences were affiliated to the phylum Crenarchaeota, while the Euryarchaeota was not present.  相似文献   

18.
Over the last decades, the demand for pork products has increased significantly, along with concern about suitable waste management. Anaerobic-lagoon fermentation for swine-sludge stabilization is a good strategy, although little is known about the microbial communities in the lagoons. Here, we employed a cloning- and sequencing-based analysis of the 16S rRNA gene to characterize and quantify the prokaryotic community composition in a swine-waste-sludge anaerobic lagoon (SAL). DNA sequence analysis revealed that the SAL library harbored 15 bacterial phyla: Bacteroidetes, Cloroflexi, Proteobacteria, Firmicutes, Deinococcus-Thermus, Synergystetes, Gemmatimonadetes, Chlorobi, Fibrobacteres, Verrucomicrobia and candidates division OP5, OP8, WWE1, KSB1, WS6. The SAL library was generally dominated by carbohydrate-oxidizing bacteria. The archaeal sequences were related to the Crenarchaeota and Euryarchaeota phyla. Crenarchaeota predominated in the library, demonstrating that it is not restricted to high-temperature environments, being also responsible for ammonium oxidation in the anaerobic lagoon. Euryarchaeota sequences were associated with the hydrogenotrophic methanogens (Methanomicrobiales and Methanobacteriales). Quantitative PCR analysis revealed that the number of bacterial cells was at least three orders of magnitude higher than the number of archaeal cells in the SAL. The identified prokaryotic diversity was ecologically significant, particularly the archaeal community of hydrogenotrophic methanogens, which was responsible for methane production in the anaerobic lagoon. This study provided insight into the archaeal involvement in the overall oxidation of organic matter and the production of methane. Therefore, the treatment of swine waste in the sludge anaerobic lagoon could represent a potential inoculum for the start-up of municipal solid-waste digesters.  相似文献   

19.
Based on comparative phylogenetic analysis of 16S rRNA gene sequences deposited in an RDP database, we constructed a local database of thaumarchaeotal 16S rRNA gene sequences and developed a novel PCR primer specific for the archaeal phylum Thaumarchaeota. Among 9,727 quality-filtered (chimeral-checked, size >1.2 kb) archaeal sequences downloaded from the RDP database, 1,549 thaumarchaeotal sequences were identified and included in our local database. In our study, Thaumarchaeota included archaeal groups MG-I, SAGMCG-I, SCG, FSCG, RC, and HWCG-III, forming a monophyletic group in the phylogenetic tree. Cluster analysis revealed 114 phylotypes for Thaumarchaeota. The majority of the phylotypes (66.7%) belonged to the MG-I and SCG, which together contained most (93.9%) of the thaumarchaeotal sequences in our local database. A phylum-directed primer was designed from a consensus sequence of the phylotype sequences, and the primer’s specificity was evaluated for coverage and tolerance both in silico and empirically. The phylum-directed primer, designated THAUM-494, showed >90% coverage for Thaumarchaeota and <1% tolerance to non-target taxa, indicating high specificity. To validate this result experimentally, PCRs were performed with THAUM-494 in combination with a universal archaeal primer (ARC917R or 1017FAR) and DNAs from five environmental samples to construct clone libraries. THAUM-494 showed a satisfactory specificity in empirical studies, as expected from the in silico results. Phylogenetic analysis of 859 cloned sequences obtained from 10 clone libraries revealed that >95% of the amplified sequences belonged to Thaumarchaeota. The most frequently sampled thaumarchaeotal subgroups in our samples were SCG, MG-I, and SAGMCG-I. To our knowledge, THAUM-494 is the first phylum-level primer for Thaumarchaeota. Furthermore, the high coverage and low tolerance of THAUM-494 will make it a potentially valuable tool in understanding the phylogenetic diversity and ecological niche of Thaumarchaeota.  相似文献   

20.
The temporal variation in archaeal diversity in vent fluids from a midocean ridge subseafloor habitat was examined using PCR-amplified 16S rRNA gene sequence analysis and most-probable-number (MPN) cultivation techniques targeting hyperthermophiles. To determine how variations in temperature and chemical characteristics of subseafloor fluids affect the microbial communities, we performed molecular phylogenetic and chemical analyses on diffuse-flow vent fluids from one site shortly after a volcanic eruption in 1998 and again in 1999 and 2000. The archaeal population was divided into particle-attached (>3-μm-diameter cells) and free-living fractions to test the hypothesis that subseafloor microorganisms associated with active hydrothermal systems are adapted for a lifestyle that involves attachment to solid surfaces and formation of biofilms. To delineate between entrained seawater archaea and the indigenous subseafloor microbial community, a background seawater sample was also examined and found to consist only of Group I Crenarchaeota and Group II Euryarchaeota, both of which were also present in vent fluids. The indigenous subseafloor archaeal community consisted of clones related to both mesophilic and hyperthermophilic Methanococcales, as well as many uncultured Euryarchaeota, some of which have been identified in other vent environments. The particle-attached fraction consistently showed greater diversity than the free-living fraction. The fluid and MPN counts indicate that while culturable hyperthermophiles represent less than 1% of the total microbial community, the subseafloor at new eruption sites does support a hyperthermophilic microbial community. The temperature and chemical indicators of the degree of subseafloor mixing appear to be the most important environmental parameters affecting community diversity, and it is apparent that decreasing fluid temperatures correlated with increased entrainment of seawater, decreased concentrations of hydrothermal chemical species, and increased incidence of seawater archaeal sequences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号