首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cathelicidins are a family of cationic peptides expressed in mammals that possess numerous bactericidal and immunomodulatory properties. In vitro analyses showed that human, mouse, and pig cathelicidins inhibited Bacillus anthracis bacterial growth at micromolar concentrations in the presence or absence of capsule. Combined in vitro analyses of the effects of each peptide on spore germination and vegetative outgrowth by time lapse phase contrast microscopy, transmission electron microscopy, and flow cytometric analysis showed that only the pig cathelicidin was capable of directly arresting vegetative outgrowth and killing the developing bacilli within the confines of the exosporium. C57BL/6 mice were protected from spore-induced death by each cathelicidin in a time- and dose-dependent manner. Protection afforded by the porcine cathelicidin was due to its bactericidal effects, whereas the human and mouse cathelicidins appeared to mediate protection through increased recruitment of neutrophils to the site of infection. These findings suggest that cathelicidins might be utilized to augment the initial innate immune response to B. anthracis spore exposure and prevent the development of anthrax.  相似文献   

2.
Characterization of Bacillus anthracis germinant receptors in vitro   总被引:2,自引:0,他引:2       下载免费PDF全文
Bacillus anthracis begins its infectious cycle as a metabolically dormant cell type, the endospore. Upon entry into a host, endospores rapidly differentiate into vegetative bacilli through the process of germination, thus initiating anthrax. Elucidation of the signals that trigger germination and the receptors that recognize them is critical to understanding the pathogenesis of B. anthracis. Individual mutants deficient in each of the seven putative germinant receptor-encoding loci were constructed via temperature-dependent, plasmid insertion mutagenesis and used to correlate these receptors with known germinant molecules. These analyses showed that the GerK and GerL receptors are jointly required for the alanine germination pathway and also are individually required for recognition of either proline and methionine (GerK) or serine and valine (GerL) as cogerminants in combination with inosine. The germinant specificity of GerS was refined from a previous study in a nonisogenic background since it was required only for germination in response to aromatic amino acid cogerminants. The gerA and gerY loci were found to be dispensable for recognition of all known germinant molecules. In addition, we show that the promoter of each putative germinant receptor operon, except that of the gerA locus, is active during sporulation. A current model of B. anthracis endospore germination is presented.  相似文献   

3.
The spore forming Gram-positive bacterium Bacillus anthracis, the causative agent of anthrax, has achieved notoriety due to its use as a bioterror agent. In the environment, B. anthracis exists as a dormant endospore. Germination of endospores during their internalization within the myeloid phagocyte, and the ability of those endospores to survive exposure to antibacterial killing mechanisms such as superoxide (O(2)*-, is a key initial event in the infective process. We report herein that endospores exposed to fluxes of O(2)*- typically found in stimulated phagocytes had no effect on viability. Further endospores of the Sterne strain of B. anthracis were found to scavenge O(2)*-, which may enhance the ability of the bacterium to survive within the hostile environment of the phagolysosome. Most intriguing was the observation that endospore germination was stimulated by a flux of O(2)*- as low as 1 microM/min. Data presented herein suggest that B. anthracis may co-opt O(2)*- which is produced by stimulated myeloid phagocytes and is an essential element of host immunity, as a necessary step in productive infection of the host.  相似文献   

4.
5.
This study describes early intracellular events occurring during the establishment phase of Bacillus anthracis infections. Anthrax infections are initiated by dormant endospores gaining access to the mammalian host and becoming engulfed by regional macrophages (Mφ). During systemic anthrax, late stage events include vegetative growth in the blood to very high titres and the synthesis of the anthrax exotoxin complex, which causes disease symptoms and death. Experiments focus on the early events occurring during the first few hours of the B. anthracis infectious cycle, from endospore germination up to and including release of the vegetative cell from phagocytes. We found that newly vegetative bacilli escape from the phagocytic vesicles of cultured Mφ and replicate within the cytoplasm of these cells. Release from the Mφ occurs 4–6 h after endospore phagocytosis, timing that correlates with anthrax infection of test animals. Genetic analysis from this study indicates that the toxin plasmid pXO1 is required for release from the Mφ, whereas the capsule plasmid pXO2 is not. The transactivator atxA , located on pXO1, is also found to be essential for release, but the toxin genes themselves are not required. This suggests that Mφ release of anthrax bacilli is atxA regulated. The putative 'escape' genes may be located on the chromosome and/or on pXO1.  相似文献   

6.
Bacillus anthracis, a gram-positive, endospore-forming, aerobic rod-shaped bacterium, interacts with macrophages at various stages of the disease. Spore germination and the outgrowth of vegetative bacilli are crucial steps enabling the bacteria to proliferate actively and to synthesize the virulence factors leading to a massive septicemia. In this study, we performed a proteomic analysis and MALDI-TOF/MS were carried out to identify proteins using human macrophages infected with the spores of B. anthracis live-Sterne or inactivated-Sterne. We identified 21 proteins which are related to the infection of B. anthracis spores on human macrophages at the early stage events. These proteins function in processes such as cytoskeleton regulation, apoptosis, cell division, and protein degradation. Proteins such as PAK 2 revealed a relationship to apoptosis in human macrophages. These proteins play an important role in the macrophage survival and death on human macrophages with infected B. anthracis spores.  相似文献   

7.
8.
Bacillus anthracis, the spore-forming agent of anthrax, requires iron for growth and is capable of scavenging heme-iron during infection. We show here that the B. anthracis iron-regulated surface determinants (isd) locus encompasses isdC, specifying a heme-iron binding surface protein. Anchoring of IsdC to the cell wall envelopes of vegetative bacilli requires srtB, which encodes sortase B. Purified sortase B cleaves IsdC between the threonine and the glycine of its NPKTG motif sorting signal. B. anthracis variants lacking either isdC or srtB display defects in heme-iron scavenging, suggesting that IsdC binding to heme-iron in the cell wall envelope contributes to bacterial uptake of heme.  相似文献   

9.
Bacillus anthracis is a sporulating Gram-positive bacterium that causes the disease anthrax. The highly stable spore is the infectious form of the bacterium that first interacts with the prospective host, and thus the interaction between the host and spore is vital to the development of disease. We focused our study on the response of murine splenocytes to the B. anthracis spore by using paraformaldehyde-inactivated spores (FIS), a treatment that prevents germination and production of products associated with vegetative bacilli. We found that murine splenocytes produce IL-12 and IFN-gamma in response to FIS. The IL-12 was secreted by CD11b cells, which functioned to induce the production of IFN-gamma by CD49b (DX5) NK cells. The production of these cytokines by splenocytes was not dependent on TLR2, TLR4, TLR9, Nod1, or Nod2; however, it was dependent on the signalling adapter protein MyD88. Unlike splenocytes, Nod1- and Nod2-transfected HEK cells were activated by FIS. Both IL-12 and IFN-gamma secretion were inhibited by treatment with B. anthracis lethal toxin. These observations suggest that the innate immune system recognizes spores with a MyD88-dependent receptor (or receptors) and responds by secreting inflammatory cytokines, which may ultimately aid in resisting infection.  相似文献   

10.
The Gram-positive pathogen Bacillus anthracis causes anthrax, a fulminant and lethal infection of mammals. Two large virulence plasmids, pXO1 and pXO2, harbour genes required for anthrax pathogenesis and encode secreted toxins or provide for the poly γ- d -glutamic acid capsule. In addition to capsule, B. anthracis harbours additional cell wall envelope structures, including the surface layer (S-layer), which is composed of crystalline protein arrays. We sought to identify the B. anthracis envelope factor that mediates adherence of vegetative forms to human cells and isolated BslA ( B . anthracis S - l ayer protein A ). Its structural gene, bslA , is located on the pXO1 pathogenicity island (pXO1-90) and bslA expression is both necessary and sufficient for adherence of vegetative forms to host cells. BslA assembly into S-layers and surface exposure is presumably mediated by three N-terminal SLH domains. Twenty-three B. anthracis genes, whose products harbour similar SLH domains, may provide additional surface molecules that allow bacilli to engage cells or tissues of specific hosts during anthrax pathogenesis.  相似文献   

11.
12.
Bacillus anthracis spores germinate to vegetative forms in host cells, and produced fatal toxins. A toxin-targeting prophylaxis blocks the effect of toxin, but may allow to grow vegetative cells which create subsequent toxemia. In this study, we examined protective effect of extractable antigen 1 (EA1), a major S-layer component of B. anthracis, against anthrax. Mice were intranasally immunized with recombinant EA1, followed by a lethal challenge of B. anthracis spores. Mucosal immunization with EA1 resulted in a significant level of anti-EA1 antibodies in feces, saliva and serum. It also delayed the onset of anthrax and remarkably decreased the mortality rate. In addition, the combination of EA1 and protective antigen (PA) protected all immunized mice from a lethal challenge with B. anthracis spores. The numbers of bacteria in tissues of EA1-immunized mice were significantly decreased compared to those in the control and PA alone-immunized mice. Immunity to EA1 might contribute to protection at the early phase of infection, i.e., before massive multiplication and toxin production by vegetative cells. These results suggest that EA1 is a novel candidate for anthrax vaccine and provides a more effective protection when used in combination with PA.  相似文献   

13.
The use of anthrax spores as a bioweapon has spurred efforts aimed at identifying key proteins expressed in Bacillus anthracis. Because spore germination and outgrowth occur prior to and are required for disease manifestations, blocking germination and early outgrowth with novel vaccines or inhibitors targeting critical B. anthracis germination and outgrowth-associated factors is a promising strategy in mitigating bioterror. By screening 587 paired protein spots that were isolated from dormant and germinating anthrax spores, respectively, we identified 10 spore proteins with statistically significant germination-associated increases and decreases. It is likely that proteins whose levels change during germination may play key roles in the germination and outgrowth processes, and they should be listed as priority targets for development of prophylactic and therapeutic agents against anthrax. The 31 new proteins identified in this study also complement an emerging proteomic database of B. anthracis.  相似文献   

14.
We identified a tri-cistronic operon, gerH, in Bacillus anthracis that is important for endospore germination triggered by two distinct germination response pathways termed inosine-His and purine-Ala. Together, the two pathways allow B. anthracis endospores a broader recognition of purines and amino acids that may be important for host-mediated germination.  相似文献   

15.
Bacillus anthracis , the causative agent of anthrax, is a dangerous biological weapon, as spores derived from drug-resistant strains cause infections for which antibiotic therapy is no longer effective. We sought to develop an anti-infective therapy for anthrax and targeted CapD, an enzyme that cleaves poly-γ- d -glutamate capsule and generates amide bonds with peptidoglycan cross-bridges to deposit capsular material into the envelope of B. anthracis . In agreement with the model that capsule confers protection from phagocytic clearance, B. anthracis capD variants failed to deposit capsule into the envelope and displayed defects in anthrax pathogenesis. By screening chemical libraries, we identified the CapD inhibitor capsidin, 4-[(4-bromophenyl)thio]-3-(diacetylamino)benzoic acid), which covalently modifies the active-site threonine of the transpeptidase. Capsidin treatment blocked capsular assembly by B. anthracis and enabled phagocytic killing of non-encapsulated vegetative forms.  相似文献   

16.
The members of Bacillus species are Gram-positive, ubiquitous spore-forming bacilli. Several genomic sequences have been made available during recent years, including Bacillus subtilis, a model organism among this genus, Bacillus anthracis, and their analyses provided a wealth of information about spore-forming bacteria. Some members of this species can cause serious diseases in livestock and humans. An important pathogen in this group of organisms is B. anthracis, which is the causative agent of anthrax. A summary of the B. subtilis genome information, based on the publicly released sequence, that allowed for the identification and characterization of new and novel proteins of this organism as well as similar proteins from other members of Bacillus species is provided. The primary goal for this work is to present a review of the genome sequence-identified genes that encode proteins involved in the sporulation, germination, and outgrowth processes. These three processes are essential for spore development and later its transformation into a vegetative cell. Additionally, for a few selected examples of the protein products of the identified genes, the application of bioinformatics and modeling tools is illustrated in order to determine their likely structure and function. Two three-dimensional models of the structures of such proteins, PrfA endonuclease and phosphatase PhoE, are presented together with the structure-based functional conclusions. The review of such studies provides an example of how the genomic sequence can be utilized in order to elucidate the structure and function of proteins, in particular proteins of the Bacillus species. Because only a limited number of proteins of Bacillus species organisms are involved in the synthesis and degradation of spores and have been characterized to date, this genome-based analysis may provide new insights into the developmental processes of bacterial organism.  相似文献   

17.
The gene encoding for B. intermedius glutamyl endopeptidase (gseBi) has previously been cloned and its nucleotide sequence analyzed. In this study, the expression of this gene was explored in protease-deficient strain B. subtilis AJ73 during stationary phase of bacterial growth. We found that catabolite repression usually involved in control of endopeptidase expression during vegetative growth was not efficient at the late stationary phase. Testing of B. intermedius glutamyl endopeptidase gene expression with B. subtilis spo0-mutants revealed slight effect of these mutations on endopeptidase expression. Activity of glutamyl endopeptidase was partly left in B. subtilis ger-mutants. Probably, gseBi expression was not connected with sporulation. This enzyme might be involved in outgrowth of the spore, when germinating endospore converts into the vegetative cell. These data suggest complex regulation of B. intermedius glutamyl endopeptidase gene expression with contribution of several regulatory systems and demonstrate changes in control of enzyme biosynthesis at different stages of growth.  相似文献   

18.
The current model for Bacillus anthracis dissemination in vivo focuses on macrophages as carriers. However, recent evidence suggested that other host cells may also play a role in the process. Here, we tested the possibility of B. anthracis being internalized by a human fibroblast cell line, HT1080 and an epithelial cell line, Caco-2. A combination of gentamicin protection assays, scanning and transmission electron microscopy (EM) and fluorescence microscopy was used. The results demonstrated for the first time that both spores and vegetative cells of B. anthracis Sterne strain 7702 were able to adhere to and be internalized by cultured HT1080 and Caco-2 cells. Spore adherence to and internalization by HT1080 cells were not affected by a germination inhibitor. This suggested that certain features on dormant spores were sufficient for these processes. Vegetative cell adherence to and internalization by both cell lines were growth phase-dependent. EM images suggested that vegetative cells may have the ability to escape phagocytic vacuoles. Finally, we showed that internalization of both spores and vegetative cells required active functions of the host cell cytoskeleton. These results raised the possibility that B. anthracis may disseminate in vivo by directly infecting non-phagocytic cells.  相似文献   

19.
Since the anthrax spore bioterrorism attacks in America in 2001, the early detection of Bacillus anthracis spores and vegetative cells has gained significant interest. At present, many polyclonal antibody-based quartz crystal microbalance (QCM) sensors have been developed to detect B. anthracis simulates. To achieve a simultaneous rapid detection of B. anthracis spores and vegetative cells, this paper presents a biosensor that utilizes an anti-B. anthracis monoclonal antibody designated to 8G3 (mAb 8G3, IgG) functionalized QCM sensor. Having compared four kinds of antibody immobilizations on Au surface, an optimized mAb 8G3 was immobilized onto the Au electrode with protein A on a mixed self-assembled monolayer (SAM) of 11-mercaptoundecanoic acid (11-MUA) and 6-mercaptohexan-1-ol (6-MHO) as adhesive layer. The detection of B. anthracis was investigated under three conditions: dip-and-dry, static addition and flow through procedure. The results indicated that the sensor yielded a distinct response to B. anthracis spores or vegetative cells but had no significant response to Bacillus thuringiensis species. The functionalized sensor recognized B. anthracis spores and vegetative cells specifically from its homophylic ones, and the limit of detection (LOD) reached 10(3)CFU or spores/ml of B. anthracis in less than 30 min. Cyclic voltammogram (CV) and scanning electronic microscopy (SEM) were performed to characterize the surface of the sensor in variable steps during the modification and after the detection. The mAb functionalized QCM biosensor will be helpful in the fabrication of a similar biosensor that may be available in anti-bioterrorism in the future.  相似文献   

20.
Bacillus anthracis, the causative agent of anthrax, is known for its rapid proliferation and dissemination in mammalian hosts. In contrast, little information exists regarding the lifestyle of this important pathogen outside of the host. Considering that Bacillus species, including close relatives of B. anthracis, are saprophytic soil organisms, we investigated the capacity of B. anthracis spores to germinate in the rhizosphere and to establish populations of vegetative cells that could support horizontal gene transfer in the soil. Using a simple grass plant-soil model system, we show that B. anthracis strains germinate on and around roots, growing in characteristic long filaments. From 2 to 4 days postinoculation, approximately one-half of the B. anthracis CFU recovered from soil containing grass seedlings arose from heat-sensitive organisms, while B. anthracis CFU retrieved from soil without plants consisted of primarily heat-resistant spores. Co-inoculation of the plant-soil system with spores of a fertile B. anthracis strain carrying the tetracycline resistance plasmid pBC16 and a selectable B. anthracis recipient strain resulted in transfer of pBC16 from the donor to the recipient as early as 3 days postinoculation. Our findings demonstrate that B. anthracis can survive as a saprophyte outside of the host. The data suggest that horizontal gene transfer in the rhizosphere of grass plants may play a role in the evolution of the Bacillus cereus group species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号