首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tuberculosis (TB) remains a major global public health problem. In all societies, the disease affects the poorest individuals the worst. A new post-2015 global TB strategy has been developed by WHO, which explicitly highlights the key role of universal health coverage (UHC) and social protection. One of the proposed targets is that “No TB affected families experience catastrophic costs due to TB.” High direct and indirect costs of care hamper access, increase the risk of poor TB treatment outcomes, exacerbate poverty, and contribute to sustaining TB transmission. UHC, conventionally defined as access to health care without risk of financial hardship due to out-of-pocket health care expenditures, is essential but not sufficient for effective and equitable TB care and prevention. Social protection interventions that prevent or mitigate other financial risks associated with TB, including income losses and non-medical expenditures such as on transport and food, are also important. We propose a framework for monitoring both health and social protection coverage, and their impact on TB epidemiology. We describe key indicators and review methodological considerations. We show that while monitoring of general health care access will be important to track the health system environment within which TB services are delivered, specific indicators on TB access, quality, and financial risk protection can also serve as equity-sensitive tracers for progress towards and achievement of overall access and social protection.
This paper is part of the PLOS Universal Health Coverage Collection.

Summary Points

  1. The WHO has developed a post-2015 Global TB Strategy emphasizing that significant improvement to TB care and prevention will be impossible without the progressive realization of both universal health coverage and social protection. This paper discusses indicators and measurement approaches for both.
  2. While access to high-quality TB diagnosis and treatment has improved dramatically in recent decades, there is still insufficient coverage, especially for correct diagnosis and treatment of multi-drug resistant TB.
  3. Continued and expanded monitoring of effective coverage of TB diagnosis and treatment is needed, for which further improvements to existing surveillance systems are required.
  4. Many households face severe financial hardship due to TB. Out-of-pocket costs for medical care, transport, and food are often high. However, income loss is the largest financial threat for TB-affected households.
  5. Consequently, the financial risk protection target in the post-2015 Global TB Strategy—“No TB affected families experience catastrophic costs due to TB”—concerns all direct costs as well as income loss. This definition is more inclusive than the one conventionally used for “catastrophic health expenditure,” which concerns only direct medical costs.
  相似文献   

2.
The year 2011 marked the 40 year anniversary of Richard Nixon signing the National Cancer Act, thus declaring the beginning of the “War on Cancer” in the United States. Whereas we have made tremendous progress toward understanding the genetics of tumors in the past four decades, and in developing enabling technology to dissect the molecular underpinnings of cancer at unprecedented resolution, it is only recently that the important role of the stromal microenvironment has been studied in detail. Cancer is a tissue-specific disease, and it is becoming clear that much of what we know about breast cancer progression parallels the biology of the normal breast differentiation, of which there is still much to learn. In particular, the normal breast and breast tumors share molecular, cellular, systemic and microenvironmental influences necessary for their progression. It is therefore enticing to consider a tumor to be a “rogue hacker”—one who exploits the weaknesses of a normal program for personal benefit. Understanding normal mammary gland biology and its “security vulnerabilities” may thus leave us better equipped to target breast cancer. In this review, we will provide a brief overview of the heterotypic cellular and molecular interactions within the microenvironment of the developing mammary gland that are necessary for functional differentiation, provide evidence suggesting that similar biology—albeit imbalanced and exaggerated—is observed in breast cancer progression particularly during the transition from carcinoma in situ to invasive disease. Lastly we will present evidence suggesting that the multigene signatures currently used to model cancer heterogeneity and clinical outcome largely reflect signaling from a heterogeneous microenvironment—a recurring theme that could potentially be exploited therapeutically.  相似文献   

3.
Mycobacterium tuberculosis is a fascinating object of study: it is one of the deadliest pathogens of humankind, able to fend off persistent attacks by the immune system or drugs Subject Categories: Immunology, Microbiology, Virology & Host Pathogen Interaction, Chemical Biology

I have always been interested in infectious diseases since I began to study biology. As a graduate student, my pathogen of choice was Salmonella typhimurium, which typically causes diarrhea that can potentially lead to death. Salmonella''s rapid doubling time, and the availability of elegant genetic tools, a wealth of reagents, and a robust animal infection model put this bug at the apex of ideal host–pathogen systems to study. After I finished my PhD studies—and for reasons to be told another day—my career took an unexpected detour into an area of research I never thought I would be interested in: I went from the sublime to the ridiculous, from Salmonella to Mycobacterium tuberculosis (Mtb), an excruciatingly slow‐growing bacillus with few genetic tools, a paucity of reagents, and an animal model in which an experiment can take a year or longer. Having said all of that, I love working on this pathogen.For those of you who do not know much about Mtb, it is the world''s deadliest bacterium that causes the disease tuberculosis (TB). As Mtb is spread in aerosol droplets coughed up by infected individuals, TB is highly contagious, and about one‐third of the world''s population may be infected with Mtb, although this number has been reasonably challenged (Behr et al, 2021). Even if the numbers of latent or asymptomatic infections are debated, there are some back‐of‐the‐envelope estimates that Mtb has killed more than a billion humans over the millennia. Although TB is often treatable with antibiotics and most Mtb‐infected healthy individuals are asymptomatic, the appearance of multi‐drug‐resistant Mtb and HIV/AIDS has further increased the number of deaths caused by this pathogen.How has Mtb become such a successful pathogen? For one, we lack an effective vaccine to prevent infection. Many readers may point out that they have themselves been given a TB vaccine; known as “BCG” for bacille Calmette–Guérin, this is a laboratory‐attenuated strain of a species related to Mtb called Mycobacterium bovis. While BCG does provide some protection for children against TB, BCG is essentially ineffective against pulmonary TB in adults. For this reason, it is not used in the USA and many other countries.Another major challenge to treating TB has been a lack of antimicrobials that can access Mtb bacilli in privileged sites known as granulomas, which are cell‐fortified structures our immune system builds to contain microbial growth. In addition to the granuloma walls, Mtb has a highly complex cell envelope that protects it from many small molecules. I imagine that antimicrobial molecules have the challenging task of reaching an enemy shielded in armor, hiding deep inside a castle keep, and surrounded by a vast moat, and an army of orcs.On top of these therapeutic barriers, most antimicrobials work on metabolically active or growing bacteria. Mtb, however, grows very slowly, with a doubling time under optimal laboratory conditions of about 20 h—compared with 20 min for Salmonella. Moreover, Mtb is believed to enter a “persistent” or “latent” state in its natural host with limited cell divisions. This extremely slow growth makes treatment a long and tedious prospect: 6–12 months of antibiotic treatment are generally required, during which time one cannot drink alcohol due to the potential liver toxicity of the drugs. Believe it or not, there are people who would rather refuse TB treatment than give up alcohol for a few months. Additionally, the perception of “feeling cured” after a few weeks of TB therapy can also lead to a lapse in compliance. The consequence of failing to clear a partially treated infection is the emergence of drug resistance, which has created strains that are extensively resistant to most frontline TB drugs.When thinking about the difficulty of curing Mtb infections, I am reminded of the fierce and fearless honey badger, which came to fame through a viral YouTube video. The narrator points out how honey badgers “don''t care” about battling vicious predators in order to get food: venomous snakes, stinging bees—you name it. I once saw a photo of a honey badger that looked more like a pin cushion, harpooned with numerous porcupine quills. This battle royale of the wilderness is a perfect analogy of Mtb versus the immune system: Like the honey badger, Mtb really don''t care.Vaccines primarily work by coaxing our immune system to make antibodies that neutralize foreign invaders, most typically viruses, but also bacteria, some of which have evolved mechanisms to evade detection by antibodies or otherwise render them useless. In most cases, phagocytes then gobble up and kill invading bacteria. While phagocytes are critical in controlling Mtb infections, it is unclear which of their molecules or “effectors” act as executioners of Mtb. For example, nitric oxide and copper play roles in controlling Mtb in a mouse model, but it is unknown how these molecules exert their host‐protective activity, and whether or not they play a similar role in humans. Furthermore, despite the production of these antibacterial effectors—the “porcupine quills”—Mtb often persists due to intrinsic resistance mechanisms. Thus, while our immune system may have the tools to keep Mtb under control, it falls short of eradicating it from our bodies and, in many cases, fails to prevent the progression of the disease. Perhaps a most worrying observation is that prior infection, which is generally considered the most effective path to immunity for many infectious diseases, does not consistently protect against reinfection with Mtb.The above facts have left the TB field scrambling to identify new ways to fight this disease. Much of this work requires that researchers understand both the fundamental processes of the bacterium and its host. Studies of human populations around the globe have revealed differences in susceptibility to infection, the genetic and immunological bases of which are being investigated (Bellamy et al, 2000; Berry et al, 2010; Möller et al, 2010). These studies have made researchers increasingly aware that how the immune system responds to Mtb may play a critical role in disease control. For example, understanding why some individuals or populations are more or less susceptible to TB may help in the development of better vaccines. Also, the more we understand what makes this pathogen so resilient to the immune system could facilitate the development of new antibacterial drugs or host‐directed therapies. These questions can only be answered once we fully understand how the host combats Mtb infections, and how the bacteria counteract these host defenses. While it is a daunting endeavor, my hope is that the efforts of many laboratories around the world will get a better understanding of the host–Mtb interface and ultimately help to eradicate this disease for good.  相似文献   

4.
5.
Frederic Bass 《CMAJ》1996,154(2):226-227
The director of British Columbia''s Doctors'' Stop-Smoking Project says that, whether they recognize it or not, doctors have the best and most competitive position within the tobacco industry because they have the best product line. Dr. Frederic Bass says physicians'' products—health and freedom from addiction—will win against the competition, which can offer only smoke, addiction to nicotine and ill health. “We offer the better deal,” he says, “but are we selling like we could? That''s the issue.”  相似文献   

6.
Today''s parents tend to be overwhelmed with advice from many sources. In his role as family counselor, the pediatrician must understand and consider the emotional development of parents in relation to their child''s development; otherwise, his advice and counsel do not “take” and he becomes tired and frustrated and angry.Parents progress through definite stages of development: Stage 1: Learning the cues—the struggle of the parents to interpret the infant''s needs. Stage 2: Learning to accept growth and development—the parent learning to accept some loss of control of the toddler. Stage 3: Learning to separate—the parent learning to allow the child to develop independently. Stage 4: Learning to accept rejection, without deserting—the struggle of the parents not to intrude and yet to be there when needed. Stage 5: Learning to build a new life having been thoroughly discredited by one''s teenager—the parent learning to live independently while the teenager struggles to develop his own identity.The pediatrician who is accepting, sensitive and a good listener and who keeps in mind that parents as well as children have capacities for growth and development, will be a potent factor in promoting good parent-child relationships and many times more effective in dealing with the child in health and disease.  相似文献   

7.
Donald O. Anderson 《CMAJ》1965,93(19):1019-1027
Canadian epidemiology is currently in transition from being primarily interested in infectious disease to becoming active in investigating causes of non-infectious disease. Generally, epidemiologists limit their work to “field”, “basic”, or “theoretical” epidemiology. In all three fields there appears to be a shortage of qualified personnel which is likely to become even more acute because of new roles that epidemiologists will probably play in the future. A minimum of 40 full-time epidemiologists is currently required in Canada.Departments other than departments of preventive medicine at medical schools and teaching hospitals are currently spending 79.5% of all funds allocated for non-microbiological epidemiological research in Canada. Since epidemiology is by its very nature population orientated, rather than clinically orientated, clinicians require consultative advice from epidemiologists at many stages of their research. Epidemiological facilities in departments of preventive medicine should therefore be strengthened in order to provide research training and didactic courses needed as the numbers of physicians, nurses and paramedical persons are increased.  相似文献   

8.
Ionotropic glutamate receptors (iGluRs) are a highly conserved family of ligand-gated ion channels present in animals, plants, and bacteria, which are best characterized for their roles in synaptic communication in vertebrate nervous systems. A variant subfamily of iGluRs, the Ionotropic Receptors (IRs), was recently identified as a new class of olfactory receptors in the fruit fly, Drosophila melanogaster, hinting at a broader function of this ion channel family in detection of environmental, as well as intercellular, chemical signals. Here, we investigate the origin and evolution of IRs by comprehensive evolutionary genomics and in situ expression analysis. In marked contrast to the insect-specific Odorant Receptor family, we show that IRs are expressed in olfactory organs across Protostomia—a major branch of the animal kingdom that encompasses arthropods, nematodes, and molluscs—indicating that they represent an ancestral protostome chemosensory receptor family. Two subfamilies of IRs are distinguished: conserved “antennal IRs,” which likely define the first olfactory receptor family of insects, and species-specific “divergent IRs,” which are expressed in peripheral and internal gustatory neurons, implicating this family in taste and food assessment. Comparative analysis of drosophilid IRs reveals the selective forces that have shaped the repertoires in flies with distinct chemosensory preferences. Examination of IR gene structure and genomic distribution suggests both non-allelic homologous recombination and retroposition contributed to the expansion of this multigene family. Together, these findings lay a foundation for functional analysis of these receptors in both neurobiological and evolutionary studies. Furthermore, this work identifies novel targets for manipulating chemosensory-driven behaviours of agricultural pests and disease vectors.  相似文献   

9.
Despite being a curable disease, tuberculosis (TB) killed more people in 2009 than during any previous year in history. Progress in TB research has been slow, and remains burdened by important gaps in our knowledge of the basic biology of Mycobacterium tuberculosis, the causative agent of TB, and its interaction with the human host. Fortunately, major systems biology initiatives have recently been launched that will help fill some of these gaps. However, to fully comprehend TB and control this disease globally, current systems biological approaches will not suffice. The influence of host and pathogen diversity, changes in human demography, and socioeconomic and environmental factors will also need to be considered. Such a multidisciplinary approach might be best described as 'systems epidemiology' in an effort to overcome the traditional boundaries between basic biology and classical epidemiology.  相似文献   

10.
The Global Health 2035 report notes that the “grand convergence”—closure of the infectious, maternal, and child mortality gap between rich and poor countries—is dependent on research and development (R&D) of new drugs, vaccines, diagnostics, and other health tools. However, this convergence (and the R&D underpinning it) will first require an even more fundamental convergence of the different worlds of public health and innovation, where a largely historical gap between global health experts and innovation experts is hindering achievement of the grand convergence in health.The Global Health 2035 report notes that the “grand convergence”—closure of the infectious, maternal, and child mortality gap between rich and poor countries—is dependent on research and development (R&D) of new drugs, vaccines, diagnostics, and other health tools. New tools alone are estimated to deliver a 2% decline each year in the under-5 mortality rate, maternal mortality ratio, and deaths from HIV/AIDS and tuberculosis (TB) [1].However, this convergence (and the R&D underpinning it) is unlikely unless we first have an even more fundamental convergence of the parallel worlds of public health and innovation. At the moment, these worlds are often disconnected, with major gaps to be bridged at both the intellectual and practical levels before we can truly reach a grand convergence in health.  相似文献   

11.

Background

South Africa has one of the highest per capita rates of tuberculosis (TB) incidence in the world. In 2012, the South African government produced a National Strategic Plan (NSP) to control the spread of TB with the ambitious aim of zero new TB infections and deaths by 2032, and a halving of the 2012 rates by 2016.

Methods

We used a transmission model to investigate whether the NSP targets could be reached if immediate scale up of control methods had happened in 2014. We explored the potential impact of four intervention portfolios; 1) “NSP” represents the NSP strategy, 2) “WHO” investigates increasing antiretroviral therapy eligibility, 3) “Novel Strategies” considers new isoniazid preventive therapy strategies and HIV “Universal Test and Treat” and 4) “Optimised” contains the most effective interventions.

Findings

We find that even with this scale-up, the NSP targets are unlikely to be achieved. The portfolio that achieved the greatest impact was “Optimised”, followed closely by “NSP”. The “WHO” and “Novel Strategies” had little impact on TB incidence by 2050. Of the individual interventions explored, the most effective were active case finding and reductions in pre-treatment loss to follow up which would have a large impact on TB burden.

Conclusion

Use of existing control strategies has the potential to have a large impact on TB disease burden in South Africa. However, our results suggest that the South African TB targets are unlikely to be reached without new technologies. Despite this, TB incidence could be dramatically reduced by finding and starting more TB cases on treatment.  相似文献   

12.

Objectives

Xinjiang is one of the high TB burden provinces of China. A spatial analysis was conducted using geographical information system (GIS) technology to improve the understanding of geographic variation of the pulmonary TB occurrence in Xinjiang, its predictors, and to search for targeted interventions.

Methods

Numbers of reported pulmonary TB cases were collected at county/district level from TB surveillance system database. Population data were extracted from Xinjiang Statistical Yearbook (2006~2014). Spatial autocorrelation (or dependency) was assessed using global Moran’s I statistic. Anselin’s local Moran’s I and local Getis-Ord statistics were used to detect local spatial clusters. Ordinary least squares (OLS) regression, spatial lag model (SLM) and geographically-weighted regression (GWR) models were used to explore the socio-demographic predictors of pulmonary TB incidence from global and local perspectives. SPSS17.0, ArcGIS10.2.2, and GeoDA software were used for data analysis.

Results

Incidence of sputum smear positive (SS+) TB and new SS+TB showed a declining trend from 2005 to 2013. Pulmonary TB incidence showed a declining trend from 2005 to 2010 and a rising trend since 2011 mainly caused by the rising trend of sputum smear negative (SS-) TB incidence (p<0.0001). Spatial autocorrelation analysis showed the presence of positive spatial autocorrelation for pulmonary TB incidence, SS+TB incidence and SS-TB incidence from 2005 to 2013 (P <0.0001). The Anselin’s Local Moran’s I identified the “hotspots” which were consistently located in the southwest regions composed of 20 to 28 districts, and the “coldspots” which were consistently located in the north central regions consisting of 21 to 27 districts. Analysis with the Getis-Ord Gi* statistic expanded the scope of “hotspots” and “coldspots” with different intensity; 30 county/districts clustered as “hotspots”, while 47 county/districts clustered as “coldspots”. OLS regression model included the “proportion of minorities” and the “per capita GDP” as explanatory variables that explained 64% the variation in pulmonary TB incidence (adjR2 = 0.64). The SLM model improved the fit of the OLS model with a decrease in AIC value from 883 to 864, suggesting “proportion of minorities” to be the only statistically significant predictor. GWR model also improved the fitness of regression (adj R2 = 0.68, AIC = 871), which revealed that “proportion of minorities” was a strong predictor in the south central regions while “per capita GDP” was a strong predictor for the southwest regions.

Conclusion

The SS+TB incidence of Xinjiang had a decreasing trend during 2005–2013, but it still remained higher than the national average in China. Spatial analysis showed significant spatial autocorrelation in pulmonary TB incidence. Cluster analysis detected two clusters—the “hotspots”, which were consistently located in the southwest regions, and the “coldspots”, which were consistently located in the north central regions. The exploration of socio-demographic predictors identified the “proportion of minorities” and the “per capita GDP” as predictors and may help to guide TB control programs and targeting intervention.  相似文献   

13.

Introduction

Tuberculosis (TB) is now a relatively uncommon disease in high income countries. As such, its diagnosis may be missed or delayed resulting in death before or shortly after the introduction of treatment. Whether early TB death is associated with increased TB transmission is unknown. To determine the transmission risk attributable to early TB death we undertook a case-control study.

Methods

All adults who were: (1) diagnosed with culture-positive pulmonary TB in the Province of Alberta, Canada between 1996 and 2012, and (2) died a TB-related death before or within the first 60 days of treatment, were identified. For each of these “cases” two sets of “controls” were randomly selected from among culture-positive pulmonary TB cases that survived beyond 60 days of treatment. “Controls” were matched by age, sex, population group, +/- smear status. Secondary cases of “cases” and “controls” were identified using conventional and molecular epidemiologic tools and compared. In addition, new infections were identified and compared in contacts of “cases” that died before treatment and contacts of their smear-matched “controls”. Conditional logistic regression was used to find associations in both univariate and multivariate analysis.

Results

“Cases” were as, but not more, likely than “controls” to transmit. This was so whether transmission was measured in terms of the number of “cases” and smear-unmatched or -matched “controls” that had a secondary case, the number of secondary cases that they had or the number of new infections found in contacts of “cases” that died before treatment and their smear-matched “controls”.

Conclusion

In a low TB incidence/low HIV prevalence country, pulmonary TB patients that die a TB-related death before or in the initial phase of treatment and pulmonary TB patients that survive beyond the initial phase of treatment are equally likely to transmit.  相似文献   

14.
Tuberculosis (TB) remains an infectious disease of global significance and a leading cause of death in low- and middle-income countries. Significant effort has been directed towards understanding Mycobacterium tuberculosis genomics, virulence, and pathophysiology within the framework of Koch postulates. More recently, the advent of “-omics” approaches has broadened our appreciation of how “commensal” microbes have coevolved with their host and have a central role in shaping health and susceptibility to disease. It is now clear that there is a diverse repertoire of interactions between the microbiota and host immune responses that can either sustain or disrupt homeostasis. In the context of the global efforts to combatting TB, such findings and knowledge have raised important questions: Does microbiome composition indicate or determine susceptibility or resistance to M. tuberculosis infection? Is the development of active disease or latent infection upon M. tuberculosis exposure influenced by the microbiome? Does microbiome composition influence TB therapy outcome and risk of reinfection with M. tuberculosis? Can the microbiome be actively managed to reduce risk of M. tuberculosis infection or recurrence of TB? Here, we explore these questions with a particular focus on microbiome-immune interactions that may affect TB susceptibility, manifestation and progression, the long-term implications of anti-TB therapy, as well as the potential of the host microbiome as target for clinical manipulation.  相似文献   

15.
Patrick Sullivan 《CMAJ》1995,153(11):1643-1644
The first part of the CMA''s efforts to spark a public debate on the future of Canada''s health care system is a “visioning exercise” in which the Board of Directors will attempt to spell out the association''s views on how the system should develop. The board also discussed CMA initiatives concerning two major public-health issues — smoking and blood transfusions.  相似文献   

16.
Stochastic resonance is said to be observed when increases in levels of unpredictable fluctuations—e.g., random noise—cause an increase in a metric of the quality of signal transmission or detection performance, rather than a decrease. This counterintuitive effect relies on system nonlinearities and on some parameter ranges being “suboptimal”. Stochastic resonance has been observed, quantified, and described in a plethora of physical and biological systems, including neurons. Being a topic of widespread multidisciplinary interest, the definition of stochastic resonance has evolved significantly over the last decade or so, leading to a number of debates, misunderstandings, and controversies. Perhaps the most important debate is whether the brain has evolved to utilize random noise in vivo, as part of the “neural code”. Surprisingly, this debate has been for the most part ignored by neuroscientists, despite much indirect evidence of a positive role for noise in the brain. We explore some of the reasons for this and argue why it would be more surprising if the brain did not exploit randomness provided by noise—via stochastic resonance or otherwise—than if it did. We also challenge neuroscientists and biologists, both computational and experimental, to embrace a very broad definition of stochastic resonance in terms of signal-processing “noise benefits”, and to devise experiments aimed at verifying that random variability can play a functional role in the brain, nervous system, or other areas of biology.  相似文献   

17.
The degree to, and the mechanisms through, which stem cells are able to build, maintain, and heal the body have only recently begun to be understood. Much of the stem cell’s power resides in the release of a multitude of molecules, called stem cell released molecules (SRM). A fundamentally new type of therapeutic, namely “systems therapeutic”, can be realized by reverse engineering the mechanisms of the SRM processes. Recent data demonstrates that the composition of the SRM is different for each type of stem cell, as well as for different states of each cell type. Although systems biology has been successfully used to analyze multiple pathways, the approach is often used to develop a small molecule interacting at only one pathway in the system. A new model is emerging in biology where systems biology is used to develop a new technology acting at multiple pathways called “systems therapeutics”. A natural set of healing pathways in the human that uses SRM is instructive and of practical use in developing systems therapeutics. Endogenous SRM processes in the human body use a combination of SRM from two or more stem cell types, designated as S2RM, doing so under various state dependent conditions for each cell type. Here we describe our approach in using state-dependent SRM from two or more stem cell types, S2RM technology, to develop a new class of therapeutics called “systems therapeutics.” Given the ubiquitous and powerful nature of innate S2RM-based healing in the human body, this “systems therapeutic” approach using S2RM technology will be important for the development of anti-cancer therapeutics, antimicrobials, wound care products and procedures, and a number of other therapeutics for many indications.  相似文献   

18.
The development of high-throughput sequencing technologies has transformed our capacity to investigate the composition and dynamics of the microbial communities that populate diverse habitats. Over the past decade, these advances have yielded an avalanche of metagenomic data. The current stage of “van Leeuwenhoek”–like cataloguing, as well as functional analyses, will likely accelerate as DNA and RNA sequencing, plus protein and metabolic profiling capacities and computational tools, continue to improve. However, it is time to consider: what’s next for microbiome research? The short pieces included here briefly consider the challenges and opportunities awaiting microbiome research.
This Perspective is part of the “Where next?” Series.
Soon, we will enter an era when “the number of population genomes deposited in public databases will dwarf those from isolates and single cells” (Gene Tyson). Clearly, as all authors noted in the following, our focus will move from describing the composition of microbial communities to elucidating the principles that govern their assembly, dynamics, and functions. How will such principles be discovered? Elhanan Borenstein proposes that a systems biology–based approach, particularly the development of mathematical and computational models of the interactions between the specific community components, will be critical for understanding the function and dynamics of microbiomes. Evolutionary biologists Howard Ochman and Andrew Moeller want to decipher how microbial assemblies evolve but challenge us to also consider the role of microbial communities in organismal evolution, and they make the exciting prediction that microbes will be implicated in the evolution of eusociality and cooperation. Brett Finlay underscores the need for deciphering the mechanistic bases—particularly the chemical/metabolite signals—for interactions between members of microbial communities and their hosts. He emphasizes how this knowledge will enable creation of new tools to manipulate the microbiota, a key challenge for future investigation. Heidi Kong also encourages deciphering the mechanisms that underlie associations between particular skin surfaces and disorders and their respective microbiota. Jeffrey Gordon considers several intriguing opportunities as well as challenges that manipulation of the gut microbiota presents for improved human nutrition and health. Finally, Karen Nelson, Karim Dabbagh and Hamilton Smith suggest that using synthetic genomes to create novel microbes or even synthetic microbiomes offers a new way to engineer the microbiota. Overall, future microbiome research regarding the molecules and mechanisms mediating interactions between members of microbial communities and their hosts should lead to discovery of exciting new biology and transformative therapeutics.  相似文献   

19.
A P Hendry 《Heredity》2013,111(6):456-466
Increasing acceptance that evolution can be ‘rapid'' (or ‘contemporary'') has generated growing interest in the consequences for ecology. The genetics and genomics of these ‘eco-evolutionary dynamics'' will be—to a large extent—the genetics and genomics of organismal phenotypes. In the hope of stimulating research in this area, I review empirical data from natural populations and draw the following conclusions. (1) Considerable additive genetic variance is present for most traits in most populations. (2) Trait correlations do not consistently oppose selection. (3) Adaptive differences between populations often involve dominance and epistasis. (4) Most adaptation is the result of genes of small-to-modest effect, although (5) some genes certainly have larger effects than the others. (6) Adaptation by independent lineages to similar environments is mostly driven by different alleles/genes. (7) Adaptation to new environments is mostly driven by standing genetic variation, although new mutations can be important in some instances. (8) Adaptation is driven by both structural and regulatory genetic variation, with recent studies emphasizing the latter. (9) The ecological effects of organisms, considered as extended phenotypes, are often heritable. Overall, the study of eco-evolutionary dynamics will benefit from perspectives and approaches that emphasize standing genetic variation in many genes of small-to-modest effect acting across multiple traits and that analyze overall adaptation or ‘fitness''. In addition, increasing attention should be paid to dominance, epistasis and regulatory variation.  相似文献   

20.
The use of computational modeling and simulation has increased in many biological fields, but despite their potential these techniques are only marginally applied in nutritional sciences. Nevertheless, recent applications of modeling have been instrumental in answering important nutritional questions from the cellular up to the physiological levels. Capturing the complexity of today''s important nutritional research questions poses a challenge for modeling to become truly integrative in the consideration and interpretation of experimental data at widely differing scales of space and time. In this review, we discuss a selection of available modeling approaches and applications relevant for nutrition. We then put these models into perspective by categorizing them according to their space and time domain. Through this categorization process, we identified a dearth of models that consider processes occurring between the microscopic and macroscopic scale. We propose a “middle-out” strategy to develop the required full-scale, multilevel computational models. Exhaustive and accurate phenotyping, the use of the virtual patient concept, and the development of biomarkers from “-omics” signatures are identified as key elements of a successful systems biology modeling approach in nutrition research—one that integrates physiological mechanisms and data at multiple space and time scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号