首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Inherited congenital myoclonus (ICM) of Poll Hereford cattle is a neurological disease in which there are severe alterations in spinal cord glycine-mediated neurotransmission. There is a specific and marked decrease, or defect, in glycine receptors and a significant increase in neuronal (synaptosomal) glycine uptake. Here we have examined the characteristics of the cerebral gamma-aminobutyric acid (GABA) receptor complex, and demonstrate that the malfunction of the spinal cord inhibitory system is accompanied by a change in the major inhibitory system in the cerebral cortex. In synaptic membrane preparations from ICM calves, both high-and low-affinity binding sites for the GABA agonist [3H]muscimol were found (KD = 9.3 +/- 1.5 and 227 +/- 41 nM, respectively), whereas only the high-affinity site was detectable in controls (KD = 14.0 +/- 3.1 nM). The density and affinity of benzodiazepine agonist binding sites labelled by [3H]diazepam were unchanged, but there was an increase in GABA-stimulated benzodiazepine binding. The affinity for t-[3H]butylbicyclo-o-benzoate, a ligand that binds to the GABA-activated chloride channel, was significantly increased in ICM brain membranes (KD = 148 +/- 14 nM) compared with controls (KD = 245 +/- 33 nM). Muscimol-stimulated 36Cl- uptake was 12% greater in microsacs prepared from ICM calf cerebral cortex, and the uptake was more sensitive to block by the GABA antagonist picrotoxin. The results show that the characteristics of the GABA receptor complex in ICM calf cortex differ from those in cortex from unaffected calves, a difference that is particularly apparent for the low-affinity, physiologically relevant GABA receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
GABA and benzodiazepine receptors were solubilized from bovine cerebral cortex, cerebellum, and hippocampus and then partially purified by gel filtration and characterized. The apparent molecular weights of all these receptors were determined to be 600,000-650,000 by gel filtration, the sedimentation coefficients being 11.0-11.3 S by sucrose density gradient centrifugation. [3H]Muscimol was bound to two classes of sites in fractions from all three regions, and [3H]flunitrazepam bound to one class of sites. A comparison of the ratios of Bmax for flunitrazepam binding to Bmax for muscimol binding revealed that the fractions from the hippocampus exhibited a much higher ratio of benzodiazepine binding sites than were detected in fractions from the cortex and cerebellum. GABA agonist and antagonist inhibited [3H]muscimol binding to the fractions from these regions, at similar concentrations. Benzodiazepine agonists and antagonists also inhibited [3H]flunitrazepam binding in these three fractions, with similar potency. CL 218,872, however, inhibited [3H]flunitrazepam binding in the cerebellar fraction with the lowest IC50 value and that in th hippocampal fraction with the highest IC50 value. Hill coefficients for CL 218,872 inhibition were 0.98, 0.64, and 0.58 for cerebellum, cortex, and hippocampus, respectively.  相似文献   

3.
Synthetic n-butyl beta-carboline-3-carboxylate, an endogenous central benzodiazepine receptor inhibitor found in brain, was tritium-labeled from the butenyl ester. Binding of this [3H]beta-carboline was concentrated particularly in the synaptosomal membrane fraction of the cerebral cortex; this fraction showed a single type of high-affinity site (KD = 2.7 +/- 0.1 nM) with a Bmax of 1.16 +/- 0.08 pmol/mg of protein. The number of sites labeled was about half of that obtained with [3H]flunitrazepam binding (Bmax = 2.36 +/- 0.06 pmol/mg of protein). On the other hand, in the cerebellum, both ligands bound to practically the same number of sites. When [3H]flunitrazepam binding was done in the presence of 10(-11)-10(-5) M butyl beta-carboline, the differences between the two brain regions were more apparent. In cerebellar membranes the data fitted a straight line in the Eadie-Hofstee plot; this finding and a Hill number near unity suggest a single type of binding site. In the cortical membranes the data of binding fitted a concave curve, and the Hill number was 0.6. These are characteristics of two types of binding sites with different affinities (KD1 = 0.6-1.5 nM and KD2 = 12-18 nM). The differentiation of a high- and low-affinity site in the cerebral cortex was corroborated by experiments in which [3H]butyl beta-carboline binding was displaced by the triazolopyridazine CL 218,872. These results demonstrate that in the cerebral cortex there are two subtypes of sites (1 and 2) of central benzodiazepine receptors and that CL 218,872 binds preferentially to subtype 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The effect of gamma-aminobutyric acid (GABA) on the binding of PK 8165, a quinoline derivative, and CGS 8216, a pyrazoloquinoline, was assessed in two different regions of the rat brain. PK 8165, a compound with reported anxiolytic properties, inhibited [3H]-propyl beta-carboline-3-carboxylate labeled receptors in the cerebellum with an IC50 of 844 nM and 370 nM in the absence and presence of micro M GABA, respectively. GABA (100 micro M) was less effective in the cerebral cortex, decreasing the IC50 value from 280 to 197 nM. In saturation isotherm studies with [3H]-CGS 8216, a benzodiazepine receptor antagonist, GABA (100 micro M) induced a small but significant reduction in the apparent affinity of [3H]-CGS 8216 for benzodiazepine receptors in the cerebral cortex but the Bmax was unchanged.  相似文献   

5.
In the present communication we have investigated the allosteric coupling between the gamma-aminobutyric acidA (GABAA) receptor and the pharmacologically different benzodiazepine (BZD) receptor subtypes in membranes from various rat nervous system regions. Two types of BZD receptors (type I and type II) have been classically defined using CL 218.872. However, using zolpidem, three different BZD receptors have been identified by binding displacement experiments in membranes. These BZD receptor subtypes displayed high, low, and very low affinity for zolpidem. The distribution of the high- and low-affinity binding sites for zolpidem was similar to that of type I and type II subtypes in cerebellum, prefrontal cortex, and adult cerebral cortex. On the other hand, the very-low-affinity binding site was localized in relative high proportion in spinal cord, hippocampus, and newborn cerebral cortex and, to a minor extent, in superior colliculus. The allosteric coupling between the GABAA receptor and the BZD receptor subtypes was different. The high- and low-affinity binding sites for zolpidem seemed to have a similar high degree of coupling, except in spinal cord. On the other hand, the very-low-affinity binding site for zolpidem displayed a low degree of coupling with the GABAA receptor. These results seem to indicate that the different efficacy of GABA in enhancing the [3H]flunitrazepam binding could be due to the different BZD receptor subtypes present in the GABAA/BZD receptor complex and, moreover, led us to speculate that the low GABA efficacy found in membranes from spinal cord, hippocampus, and newborn cerebral cortex might be due to the presence in relatively high proportion of the very-low-affinity binding site for zolpidem.  相似文献   

6.
The regional distribution of [3H]zolpidem, a novel imidazopyridine hypnotic possessing preferential affinity for the BZD1 (benzodiazepine subtype 1) receptor, has been studied autoradiographically in the rat CNS and compared with that of [3H]flunitrazepam. The binding of [3H]zolpidem to rat brain sections was saturable, specific, reversible, and of high affinity (KD = 6.4 nM). It occurred at a single population of sites whose pharmacological characteristics were similar to those of the benzodiazepine receptors labeled with [3H]flunitrazepam. However, ethyl-beta-carboline-3-carboxylate and CL 218,872 were more potent displacers of [3H]zolpidem than of [3H]flunitrazepam. The autoradiographic brain distribution of [3H]zolpidem binding sites was qualitatively similar to that previously reported for benzodiazepine receptors. The highest levels of [3H]-zolpidem binding sites occurred in the olfactory bulb (glomerular layer), inferior colliculus, ventral pallidum, nucleus of the diagonal band of Broca, cerebral cortex (layer IV), medial septum, islands of Calleja, subthalamic nucleus, and substantia nigra pars reticulata, whereas the lowest densities were found in parts of the thalamus, pons, and medulla. Comparative quantitative autoradiographic analysis of the binding of [3H]zolpidem and [3H]flunitrazepam [a mixed BZD1/BZD2 (benzodiazepine subtype 2) receptor agonist] in the CNS revealed that the relative density of both 3H-labeled ligands differed in several brain areas. Similar levels of binding for both ligands were found in brain regions enriched in BZD1 receptors, e.g., substantia nigra pars reticulata, inferior colliculus, cerebellum, and cerebral cortex lamina IV. The levels of [3H]zolpidem binding were five times lower than those of [3H]flunitrazepam binding in those brain regions enriched in BZD2 receptors, e.g., nucleus accumbens, dentate gyrus, and striatum. Moreover, [3H]zolpidem binding was undetectable in the spinal cord (which contains predominantly BZD2 receptors). Finally, like CL 218,872 and ethyl-beta-carboline-3-carboxylate, zolpidem was a more potent displacer of [3H]flunitrazepam binding in brain regions enriched in BZD1 receptors than in brain areas enriched in BZD2 receptors. The present data add further support to the view that zolpidem, although structurally unrelated to the benzodiazepines, binds to the benzodiazepine receptor and possesses selectivity for the BZD1 receptor subtype.  相似文献   

7.
The presence of two heterologous alpha subunits and a single benzodiazepine binding site in the GABA(A) receptor implicates the existence of pharmacologically active and inactive alpha subunits. This fact raises the question of whether a particular alpha subtype could predominate performing the benzodiazepine binding site. The hippocampal formation expresses high levels of alpha subunits with different benzodiazepine binding properties (alpha1, alpha2 and alpha5). Thus, we first demonstrated the existence of alpha2-alpha1 (36.3 +/- 5.2% of the alpha2 population) and alpha2-alpha5 (20.2 +/- 2.1%) heterologous receptors. A similar alpha2-alpha1 association was observed in cortex. This association allows the direct comparison of the pharmacological properties of heterologous native GABA(A) receptors containing a common (alpha2) and a different (alpha1 or alpha5) alpha subunit. The alpha2 subunit pharmacologically prevailed over the alpha1 subunit in both cortex and hippocampus (there was an absence of high-affinity binding sites for Cl218,872, zolpidem and [3H]zolpidem). This prevalence was directly probed by zolpidem displacement experiments in alpha2-alpha1 double immunopurified receptors (K(i) = 295 +/- 56 nM and 200 +/- 8 nM in hippocampus and cortex, respectively). On the contrary, the alpha5 subunit pharmacologically prevailed over the alpha2 subunit (low- and high-affinity binding sites for zolpidem and [3H]L-655,708, respectively). This prevalence was probed in alpha2-alpha5 double immunopurified receptors. Zolpidem displayed a single low-affinity binding site (K(i) = 1.73 +/- 0.54 microM). These results demonstrated the existence of a differential dominance between the different alpha subunits performing the benzodiazepine binding sites in the native GABA(A) receptors.  相似文献   

8.
W F Herblin 《Life sciences》1986,38(6):507-514
Membranes prepared from rat cerebral cortex were irradiated with short-wave UV light in the presence of flunitrazepam (FZ). This photo-affinity labeling (PAL) drastically reduces the potency of FZ binding to these membranes, but the binding of 3H-beta-carboline-3-carboxylate ethyl ester (3H-BCCE) was found to be essentially unchanged. 3H-BCCE binding was therefore determined in the presence of an antagonist (BCCE itself), an agonist (FZ) and a compound reported to discriminate between multiple benzodiazepine sites (CL 218,872). The results with BCCE are consistent with a single population of sites, but FZ binds to some of the sites with a reduced affinity (KI = 30 nM) and to the remaining sites with a very low affinity (KI approximately equal to 1 microM). CL 218,872 shows a reduced affinity but appears to interact with all of the sites. Taken together, these results indicate that the binding domains for BCCE and FZ are not identical, and that CL 218,872 interacts more strongly with the antagonist domain.  相似文献   

9.
The properties of muscimol, beta-carboline (BC), and benzodiazepine (BZD) binding to crude synaptic membranes were studied in the spinal cord and cerebellum of rats. In cerebellar membranes, the density of high-affinity [3H]muscimol and [3H]6,7-dimethoxy-4-ethyl-beta-carboline ([3H]BCCM) binding sites is almost identical to that of [3H]flunitrazepam ([3H]FLU) or [3H]flumazenil (Ro 15-1788; ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a] [1-4]benzodiazepine-3-carboxylate). In contrast to the cerebellum, the number of muscimol and BC binding sites in rat spinal cord is approximately 20-25% of the number of FLU or flumazenil binding sites. Moreover, in spinal cord membranes, BC recognition site ligands displace [3H]-flumazenil bound to those sites, with low affinity and a Hill slope significantly less than 1; the potency of the different BCs in displacing [3H]flumazenil is 20-50-fold lower in the spinal cord than in the cerebellum. [3H]Flumazenil is not displaced from spinal cord membranes by the peripheral BZD ligand Ro 5-4864 (4'-chlorodiazepam), whereas it is displaced with low affinity and a Hill slope of less than 1 (nH = 0.4) by CL 218,872 (3-methyl-6-(3-trifluoromethylphenyl)-1,2,4-triazolol[4,3-b] pyridazine). These data suggest that a large number of BZD binding sites in spinal cord (approximately 80%) are of the central-type, BZD2 subclass, whereas the BZD binding sites in cerebellum are predominantly of the central-type, BZD1 subclass.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In 100 and 200 mumol/l concentration, pyritinol inhibited GABA binding to the GABA receptors of brain synaptosomal membranes. GABA receptors from the cerebral cortex, diencephalon and striatum were inhibited to approximately the same degree; those from the cerebellum and spinal cord were inhibited more. Both high and low affinity receptors were inhibited. Pyritinol did not greatly affect the number of binding sites (Bmax), but reduced the affinity (raised the dissociation constant KD) of both receptors. The benzodiazepine receptor, which is connected with the postsynaptic GABAA receptor, was also inhibited by pyritinol. The character of inhibition was the same as for GABA receptors, i.e. there was no change in the number of binding sites, but there was a decrease in their affinity. It is assumed that the similarity of the effect on GABA and benzodiazepine receptors is associated with their occurrence on one, or on two relatively firmly interconnected, protein molecules. Depression of the affinities of GABA and the associated benzodiazepine receptor, together with inhibition of GABA synthesis, in the presence of pyritinol indicate that diminished activity of the GABA system in the brain might be related to the activating effect of pyritinol.  相似文献   

11.
An impermeant benzodiazepine receptor ligand was prepared by derivatization of the aminobenzodiazepine 1012-S with 4-sulfophenylisothiocyanate. The resulting N-(4-sulfophenyl)-thiocarbamoyl derivative of 1012-S (SPTC-1012S) was purified by reverse-phase HPLC, and the predicted structure was verified by mass spectrometry. The apparent affinity of SPTC-1012S (IC50 = 9.8 +/- 2.9 nM) for displacement of [3H]flunitrazepam from intact chick cortical neurons was similar to that of 1012-S (IC50 = 4.0 +/- 0.3 nM). However, at concentrations from 0.1 to 10 microM, 1012-S was consistently more efficacious than SPTC-1012S, a finding indicating that 6-8% of the benzodiazepine receptor pool was not accessible to the impermeant compound. This inaccessible pool was eliminated by permeabilization of the cells with saponin or Triton X-100, a result suggesting that approximately 7% of neuronal benzodiazepine receptors are intracellular. Acute treatment (1-4 h at 37 degrees C) of neurons with 100 microM gamma-aminobutyric acid (GABA) or 100 nM clonazepam had little effect on the level of [3H]flunitrazepam binding but increased the proportion of intracellular receptors by 61 and 74%, respectively, compared with untreated controls. Similar treatment with 1 mM GABA increased the level of intracellular sites by 154-176%. The effect of GABA on receptor internalization was blocked by cotreatment with the GABAA receptor antagonist R 5135. The results suggest that SPTC-1012S can be used as a probe to study the internalization of the GABAA/benzodiazepine receptor complex under normal conditions or following acute or chronic treatment with agonists.  相似文献   

12.
Differential ontogeny of type 1 and type 2 benzodiazepine receptors   总被引:9,自引:0,他引:9  
The postnatal development of Type 1 and Type 2 benzodiazepine receptors in rat cerebral cortex was studied using CL 218,872, a novel triazolopyridazine. On postnatal day 1 most 3H-flunitrazepam binding sites appeared to be Type 2 receptors, which increased rapidly during the first week of life and reached adult levels by 3–4 weeks of age. Type 1 receptors, on the other hand, represented only a small percentage of the binding sites on postnatal day 1 and did not begin to increase in number until approximately 7–16 days of age. These results demonstrate a differential postnatal development of two sub-populations of benzodiazepine receptors.  相似文献   

13.
Moran JM  Enna SJ  McCarson KE 《Life sciences》2001,68(19-20):2287-2295
GABA(B) receptors are heterodimers coupled to G-proteins. The present study was undertaken to investigate activation of GABA(B) receptors in cerebral cortex and spinal cord using [35S]GTPgammaS binding assays, a direct measure of G-protein activity. The results revealed that the GABA(B) agonist baclofen stimulates GTPgammaS binding in cerebral cortex, with an ED50 of 50microM. This response is blocked by the GABA(B) receptor antagonist CGP 55845A (100nM). In contrast, baclofen-stimulated GTPgammaS binding was not observed in adult spinal cord tissue under similar incubation conditions, or after varying magnesium, calcium, GDP, [35S]GTPgammaS, or membrane concentrations in the assay medium. Stimulation of adult rat spinal cord muscarinic receptors did result in a concentration-related increase in [35S]GTPgammaS binding. Baclofen-stimulated GTPgammaS binding in adult spinal cord did not appear after peripheral inflammation, despite significant increases in GABA(B) subunit mRNA levels. As opposed to adult, appreciable GTPgammaS binding was observed in membranes prepared from spinal cords of rats within the first 14 days of postnatal development, suggesting that GABA(B) receptor function in the rat spinal cord is developmentally regulated. The results indicate that GABA(B) receptors may not be coupled to G-proteins in the adult rat spinal cord, or couple in a way that differs from that in newborns or adult cerebral cortex.  相似文献   

14.
The gamma-aminobutyric acid (GABA) type A receptor was purified several thousandfold by affinity chromatography from rat cerebellum, adult cortex, and neonatal cortex. Competition for the benzodiazepine binding site by CL 218872 indicated that cerebellar receptors were predominantly type I, adult cortical receptors were a mixture of subtypes, and neonatal cortex was enriched in type II receptor. The receptor purified from neonatal cortex contained predominantly a 54-kilodalton (kDa), beta-subunit-like protein, whereas receptors from cerebellum and adult cortex contained nearly equal amounts of a 50-kDa, alpha-subunit-like protein and a 54-kDa polypeptide. Peptide maps of trypsin-digested 54-kDa subunits from cerebellum, adult cortex, and neonatal cortex exhibited very similar profiles, a result indicating considerable homology between these proteins in the receptor subtypes. A 59-kDa subunit protein was detected in the receptor complex purified from neonatal cortex. Like the 50-kDa, alpha-subunit of the type I receptor, this protein was photolabeled with [3H]flunitrazepam. The photolabeled peptide fragments, produced by trypsin digestion of these alpha 50- and alpha 59-subunits, exhibited the same retention times on reverse-phase HPLC. A less highly purified GABAA receptor preparation from adult rat spinal cord possessed characteristics that were very similar to those of the receptors purified from neonatal cortex.  相似文献   

15.
The specific bindings of [3H]flunitrazepam [( 3H]FLU), [3H]CGS 8216, and t-[35S]butylbicyclophosphorothionate [( 35S]TBPS) to sites on rat cerebellar granule cells all increase from 4 to 15 days in culture, although their time courses differ. Specific [3H]FLU binding doubles, [3H]CGS 8216 binding triples, and [35S]TBPS binding increases about fourfold from 4 to 15 days in culture. Displacement studies, using the type I-selective ligand CL 218,872, indicate that at 4 days the [3H]FLU binding sites are almost entirely "type II," judging from an IC50 value near 300 nM and a pseudo-Hill number near 1. By 10 days, approximately equal numbers of type I and type II binding sites are present in the cultured cells, and this ratio remains constant thereafter (12 and 15 days). At days 10-15, both the IC50 value for CL 218,872 (near 100 nM) and the pseudo-Hill number (near 0.7) remain constant and are significantly different from the values at culture day 4. The development of specific [35S]TBPS binding parallels that of [3H]CGS 8216 binding more closely than the development of [3H]FLU binding. The [3H]CGS 8216/[3H]FLU ratio increased by a factor of 1.6 from day 4 to day 15 (p less than 0.001). Taken together, our data suggest the existence of several gamma-aminobutyric acidA (GABAA) receptor subunits, the relative proportions of which change during development. The presence of the GABA-mimetic 4,5,6,7-tetrahydroisoxazolo[5,4c]pyridine-3-ol (THIP) in the culture medium had no apparent effect on any of the binding sites studied, although THIP was shown previously to induce low-affinity GABA binding sites.  相似文献   

16.
In vitro effects of dihydroergotoxine, dihydroergosine, dihydroergotamine, alpha-dihydroergocriptine (ergot alkaloids), diazepam, methyl-beta-Carboline-3-carboxilate (beta-CCM), flumazenil (benzodiazepines), gamma-amino butyric acid (GABA) and thiopental (barbiturate) were studied on mouse brain (cerebrum minus cerebral cortex) benzodiazepine binding sites labeled with 3H-flunitrazepam. Specific, high affinity (affinity constant, Kd = 57.7 8.6 nM) binding sites for 3H-flunitrazepam on mouse brain membranes were identified. All benzodiazepine drugs inhibited 3H-flunitrazepam binding with nanomolar potencies. In contrast to benzodiazepines, all ergot drugs, GABA and thiopental produced an enhancement of 3H-flunitrazepam binding to its binding site at the GABAA receptor of the mouse brain. The rank order of potency was: neurotransmitter (GABA) > dihydroergotoxine > thiopental > alpha-dihydroergocriptine > dihydroergosine > dihydroergotamine. The results suggest that dihydrogenated ergot derivatives do not bind to the brain benzodiazepine binding sites labeled with 3H-flunitrazepam. However, an enhancement of 3H-flunitrazepam binding by all ergot drugs tested, clearly identifies an allosteric interaction with the benzodiazepine binding sites of GABAA receptors.  相似文献   

17.
(R)-N-[4,4-Bis(3-methyl-2-thienyl)but-3-en-1-yl]nipecotic acid (NO 328) has previously been shown to be a potent anticonvulsant in both mice and rats. Here, we report that NO 328 is a potent inhibitor of gamma-[3H]aminobutyric acid [( 3H]GABA) uptake in a rat forebrain synaptosomal preparation (IC50 = 67 nM) and in primary cultures of neurons and astrocytes. Inhibition of [3H]GABA uptake by NO 328 is apparently of a mixed type when NO 328 is preincubated before [3H]GABA uptake; the inhibition is apparently competitive without preincubation. NO 328 itself is not a substrate for the GABA uptake carrier, but NO 328 is a selective inhibitor of [3H]GABA uptake. Binding to benzodiazepine receptors, histamine H1 receptors, and 5-hydroxytryptamine1A receptors was inhibited by NO 328 at 5-30 microM, whereas several other receptors and uptake sites were unaffected. [3H]NO 328 showed saturable and reversible binding to rat brain membranes in the presence of NaCl. The specific binding of [3H]NO 328 was inhibited by known inhibitors of [3H]GABA uptake; GABA and the cyclic amino acid GABA uptake inhibitors were, however, less potent than expected. This indicates that the binding site is not identical to, but rather overlapping with, the GABA recognition site of the uptake carrier. The affinity constant for binding of [3H]NO 328 is 18 nM, and the Bmax is 669 pmol/g of original rat forebrain tissue. The regional distribution of NaCl-dependent [3H]NO 328 binding followed that of synaptosomal [3H]GABA uptake.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
We examined the interaction of GABA and the competitive inhibitor SR95531 at human alpha1beta1gamma2S and alpha1beta1 GABA(A) receptors expressed in Sf9 cells. The efficacy and potency of inhibition depended on the relative timing of the GABA and SR95531 applications. In saturating (10 mM) GABA, the half-inhibitory concentrations of SR95531 (IC50) when coapplied with GABA to alpha1beta1gamma2S or alpha1beta1 receptors were 49 and 210 microM for the peak and 18 and 130 microM for the plateau current, respectively. Our data are explained by an inhibition mechanism in which SR95531 and GABA bind to two sites on the receptor where the binding of GABA allows channel opening but SR95531 does not. The SR95531 affinity for both receptor types was approximately 200 nM and the binding rate was found to be 10-fold faster than that for GABA. The dual binding-site model gives insights into the differential effects of GABA and SR95531 on the peak and plateau currents. The model predicts the effect of SR95531 on GABA currents in the synapse (GABA concentration approximately mM) and at extrasynaptic (GABA concentration < or = microM) sites. The IC50 (50-100 nM) for the synaptic response to SR95531 was insensitive to the GABA affinity of the receptors whereas the IC50 (50-800 nM) for extrasynaptic inhibition correlated with the GABA affinity.  相似文献   

19.
A series of cyclic conformationally restricted penicillamine containing somatostatin octapeptide analogues have been prepared by standard solid phase synthetic techniques and tested for their ability to inhibit specific [125I]CGP 23,996 (des-Ala1-,Gly2-[desamino-Cys3Tyr11]-dicarba3, 14-somatostatin), [3H]naloxone or [3H]DPDPE ([D-Pen2-D-Pen5]enkephalin) binding in rat brain membrane preparations. We now report structure-activity relationship studies with the synthesis of our most potent and selective mu opioid receptor compound D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2, which we refer to as Cys2Tyr3Orn5Pen7-amide. While this octapeptide exhibited high affinity (IC50 = 2.80 nM) for an apparently single population of binding sites (nH = 0.89 +/- 0.1) and exceptional selectivity for mu opioid receptors with an IC50(DPDPE)/IC50 (naloxone) ratio of 4,829, it also displayed very low affinity for somatostatin receptors (IC50 = 22,700 nM). Thus, Cys2Tyr3Orn5Pen7-amide may be the ligand of choice for further characterization of mu opioid receptors and for examining the physiological role of this class of receptors.  相似文献   

20.
Buprenorphine: High-Affinity Binding to Dorsal Spinal Cord   总被引:1,自引:0,他引:1  
The binding of the mixed opiate agonist-antagonist [3H]buprenorphine was compared with [3H]naloxone and [3H]dihydromorphine binding in membranes prepared from rat whole brain and dorsal spinal cord. Scatchard analysis of binding to whole brain yielded KD values close to 1.0 nM for all three 3H-ligands studied, although [3H]buprenorphine labelled five times as many binding sites. [3H]Naloxone and [3H]dihydromorphine bound to dorsal spinal cord with approximately the same affinity as to whole brain, although both 3H-ligands labelled fewer sites in the spinal cord. In contrast, Scatchard analysis of [3H]buprenorphine binding to spinal cord yielded curvilinear Scatchard plots, suggesting the presence of a very high-affinity (KD = 0.12 nM) binding site in addition to the high-affinity site (KD = 1.0 nM) present in the brain. Studies on the displacement of [3H]buprenorphine by opiates and D-Ala2,Met5-enkephalinamide supported the presence of two binding sites for this ligand in the spinal cord.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号