首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ethanol, added as a de-emulsifier to separate oil and biocatalyst (or bacterial cells) from a three-phase (oil/biocatalyst/aqueous phase) emulsion, formed in diesel biodesulfurization employing Gordonia nitida, improved oil recovery by centrifugation from about 50% in its absence to almost 100% at 3% (v/v). The biocatalyst recovered with ethanol addition showed similar specific growth rates (0.03 h–1) and dibenzothiophene desulfurization rates (6–7.2 mol l–1 h–1) to those (0.03 h–1 and 7.1 mol l–1, respectively) of the biocatalyst recovered with no ethanol addition. The desulfurization activity significantly increased as the number of the repeated recovery and reuse of the biocatalyst.  相似文献   

2.
The dsz desulfurization gene cluster from Rhodococcus erythropolis KA2-5-1 was transferred into the chromosomes of Pseudomonas aeruginosa NCIMB 9571 by using a transposon vector. Resting cells of the recombinant strain, PAR41, desulfurized 63 mg sulfur l–1 of light gas oil (LGO) containing 360 mg S l–1. The desulfurization activity for LGO by the resting cells of strain PAR41 grown with n-tetradecane (50% v/v) was much higher (1018-fold) than in glucose-grown cells. P. aeruginosa NCIMB 9571 is able to take up water-insoluble compounds from an oil phase which is enhanced by n-alkane.  相似文献   

3.
Dibenzothiophene (DBT) degradation activity of recombinant Rhodococcus sp. T09/pRKPP was increased by about 3.5-fold by introduction of the NAD(P)H/FMN oxidoreductase gene (dszD), while DBT desulfurization activity remained the same with production of dibenzo[1,2]oxathiin-6-oxide, which was caused by insufficient activity of the last desulfurization step involving a desulfinase. Introduction of an additional dsz operon resulted in a 3.3-fold increase DBT desulfurization activity (31 mol g dry cell–1 h–1) compared with that of T09/pRKPP (9.5 mol g dry cell–1 h–1). Furthermore, optimization of DBT at 25 mg l–1 and glucose at 10 g l–1, increased the total DBT desulfurization activity 2- to 3-fold due to increases in the DBT desulfurizing specific activity and the final cell concentration.  相似文献   

4.
The tolerance of sol-gel immobilised and free Saccharomyces cerevisiae to ethanol was studied. The effects of ethanol preincubation time showed that the specific death velocity decreased from 2×105 c.f.u. min–1 for free cells to 2×104 c.f.u. min–1 for immobilised cells thus indicating that immobilised yeast was far less sensitive to the ethanol damage. The specific glucose consumption of immobilised and free cells on a per cell basis was 3×10–12 g cell–1 h–1 and 9×10–12 g cell–1 h–1, respectively.  相似文献   

5.
Three 5 l working volume fermenters were used to investigate the growth of the yeast Kluyveromyces fragilis in acid cheese whey under ambient temperature in order to assess the specific growth rate and yield, the lactose and oxygen uptake rates during the various phases of batch culture, the effect of increasing temperature on the various kinetic parameters, and the need for a cooling unit for single cell production batch systems. The initial dissolved oxygen in the medium was 5.5 mg l–1 and the pH was maintained at 4.5. The observed lag phase, specific growth rate and maximum cell number were 4 h, 0.2 h–1 and 8.4 × 108 cells ml–1, respectively. About 99% of the lactose in cheese whey was utilized within 20 h, 85% during the exponential growth phase. The specific lactose utilization rates by K. fragilis were 0.20 × 10–12, 1.457 × 10–12, 0.286 × 10–12 and 0.00 g lactose cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The dissolved oxygen concentration in the medium decreased as the cell number increased. The lowest oxygen concentration of 1.2 mg l–1 was observed during the stationary phase. The volumetric oxygen transfer coefficient was 0.41 h–1 and the specific oxygen uptake rates were 0.32 × 10–12, 2.14 × 10–12, 0.51 × 10–12 and 0.003 × 10–12 mg O2 cell–1 h–1, for the lag, exponential, stationary and death phases, respectively. The maximum temperature recorded for the medium was 33 °C, indicating that a cooling unit for batch production of single cell protein at ambient temperature is not needed for this type of bioreactor. The increase in medium temperature affected the cell growth and the lactose and oxygen uptake rates.  相似文献   

6.

The potential of Ralstonia eutropha as a biocatalyst for desulfurization of dibenzothiophene (DBT) was studied in growing and resting cell conditions. The results of both conditions showed that sulfur was removed from DBT which accompanied by the formation of 2-hydroxybiphenyl (2-HBP). In growing cell experiments, glucose was used as an energy supplying substrate in initial concentrations of 55 mM (energy-limited) and 111 mM (energy-sufficient). The growing cell behaviors were quantitatively described using the logistic equation and maintenance concept. The results indicated that 2-HBP production was higher for the energy-sufficient cultures, while the values of the specific growth rate and the maintenance coefficient for these media were lower than those of the energy-limited cultures. Additionally, the kinetic studies showed that the half-saturation constant for the energy-limited cultures was 2 times higher than the energy-sufficient ones where the inhibition constant (0.08 mM) and the maximum specific DBT desulfurization rate (0.002 mmol gcell −1 h−1) were almost constant. By defining desulfurizing capacity (D DBT) including both the biomass concentration and time to reach a particular percentage of DBT conversion, the best condition for desulfurizing cell was determined at 23% gcell L−1 h−1 which corresponded with the resting cells that were harvested at the mid-exponential growth phase.

  相似文献   

7.
When grown photoautotrophically, Chlorella zofingiensis strain CCAP 211/14 accumulates a significant amount of valuable carotenoids, namely astaxanthin and lutein, of increasing demand for use as feed additives in fish and poultry farming, as colorants in food, and in health care products. Under standard batch-culture conditions, this microalgal strain exhibits high values of both growth rate (about 0.04 h–1) and standing cell population (over 1011 cells l–1, or 7 g dry weight l–1). Lutein, in a free (unesterified) form, was the prevalent carotenoid during early stages of cultivation (over 0.3 pg cell–1, equal to 4 mg g–1 dry weight, or 20 mg l–1 culture), whereas esterified astaxanthin accumulated progressively, to reach a maximum (over 0.1 pg cell–1, equal to 1.5 mg g–1 dry weight, or 15 mg l–1 culture) in the late stationary phase. A differential response of lutein and astaxanthin accumulation was also recorded with regard to the action of some environmental and nutritional factors. C. zofingiensis CCAP 211/14 represents a unique model system for analyzing the differential regulation of the levels of primary (lutein) and secondary (astaxanthin) carotenoids. Relevant also from the biotechnological viewpoint, this photosynthetic organism, with outstanding attributes for fast photosynthetic growth and carotenoid accumulation, might prove most valuable for its application to the mass production of either or both lutein and astaxanthin.  相似文献   

8.
Li GQ  Li SS  Qu SW  Liu QK  Ma T  Zhu L  Liang FL  Liu RL 《Biotechnology letters》2008,30(10):1759-1764
Substituted benzothiophenes (BTs) and dibenzothiophenes (DBTs) remain in diesel oil following conventional desulfurization by hydrodesulfurization. A mixture of washed cells (13.6 g dry cell wt l−1) of Rhodococcus erythropolis DS-3 and Gordonia sp. C-6 were employed to desulfurize hydrodesulfurized diesel oil; its sulfur content was reduced from 1.26 g l−1 to 180 mg l−1, approx 86% (w/w) of the total sulfur was removed from diesel oil after three cycles of biodesulfurization. The average desulfurization rate was 0.22 mg sulfur (g dry cell wt)−1 h−1. A bacterial mixture is therefore efficient for the practical biodesulfurization of diesel oil.  相似文献   

9.
A high cell density cultivation method was developed to produce recombinant PvRII, a malaria vaccine candidate, in E. coli for use in vaccine studies. Cells were grown in completely defined media and glucose was fed to achieve a specific growth rate of 0.12 h–1 until cells reached 55 g dry wt l–1. Culture was then induced with 1 mm IPTG and cells were further grown for 4 h to reach 85 g dry wt l–1 at 0.1 h–1. Recombinant PvRII was purified from inclusion bodies under denaturing conditions using metal affinity chromatography which yielded 10 mg PvRII g–1 dry wt. After refolding, PvRII was greater than 98% pure, homogeneous and functionally active in that it specifically bound Duffy positive human red cells.Revisions requested 21 September 2004; Revisions received 29 October 2004  相似文献   

10.
Gordonia alkanivorans strain 1B is able to desulfurize dibenzothiophene (DBT) to 2-hydroxybiphenyl (2-HBP), the final product of the 4S pathway. However, both the cell growth and the rate of desulfurization can be largely affected by the nutrient composition of the growth medium due to cofactor requirements of many enzymes involved in the biochemical pathways. In this work, the effect of several metal ions on the growth and DBT desulfurization by G. alkanivorans was studied. From all the metal ions tested, only the absence of zinc significantly affected the cell growth and the desulfurization rate. By increasing the concentration of Zn from 1 to 10 mg L−1, 2-HBP productivity was improved by 26%. The absence of Zn2+, when sulfate was also used as the only sulfur source, did not cause any difference in the bacterial growth. Resting cells grown in the presence of Zn2+ exhibited a 2-HBP specific productivity of 2.29 μmol g−1 (DCW) h−1, 7.6-fold higher than the specific productivity obtained by resting cells grown in the absence of Zn2+ (0.30 μmol g−1 (DCW) h−1). These data suggests that zinc might have a key physiological role in the metabolism of DBT desulfurization.  相似文献   

11.
Studies were carried out for the production of aroma compounds by Kluyveromyces marxianus grown on cassava bagasse in solid state fermentation using packed bed reactors, testing two different aeration rates. Respirometric analysis was used to follow the growth of the culture. Headspace analysis of the culture by gas chromatography showed the production of 11 compounds, out of which nine were identified. Ethyl acetate, ethanol and acetaldehyde were the major compounds produced. Lower aeration rate (0.06l h–1 g–1 of initial dry matter) increased total volatile (TV) production and the rate of production was also increased at this aeration rate. Using an aeration rate of 0.06l h–1 g–1 maximum TV concentrations were reached at 24 h and at 40 h with 0.12l h–1 g–1.  相似文献   

12.
The kinetics of continuous l-sorbose fermentation using Acetobacter suboxydans with and without cell recycle (100%) were investigated at dilution rates (D) of 0.05, 0.10, 0.15 and 0.3 h–1. The biomass and sorbose concentrations for continuous fermentation without recycle increased as the dilution rate was increased from 0.05 to 0.10 h–1. A maximum biomass concentration of 8.44 g l–1 and sorbose concentration of 176.90 g l–1 were obtained at D=0.10 h–1. The specific rate of sorbose production and volumetric sorbose productivity at this dilution rate were 2.09 g g–1 h–1 and 17.69 g l–1 h–1. However, on further increasing the dilution rate to 0.3 h–1, both biomass and sorbose concentrations decreased to 2.93 and 73.20 g l–1 respectively, mainly due to washout of the reactor contents. However, the specific rate of sorbose formation and volumetric sorbose productivity at this dilution rate increased to 7.49 g g–1 h–1 and 21.96 g l–1 h–1 respectively. Continuous fermentation with 100% cell recycle served to further enhance the concentration of biomass and sorbose to 28.27 and 184.32 g l–1 respectively (in the reactor at a dilution rate of 0.05 h–1). Even though, there was a decline in the biomass and sorbose concentrations to 6.8 and 83.40 g l–1 at a dilution rate of 0.3 h–1, the specific rates of sorbose formation and volumetric sorbose productivity increased to 3.67 g g–1h–1 and 25.02 g l–1 h–1.  相似文献   

13.
A family of 10 competing, unstructured models has been developed to model cell growth, substrate consumption, and product formation of the pyruvate producing strain Escherichia coli YYC202 ldhA::Kan strain used in fed-batch processes. The strain is completely blocked in its ability to convert pyruvate into acetyl-CoA or acetate (using glucose as the carbon source) resulting in an acetate auxotrophy during growth in glucose minimal medium. Parameter estimation was carried out using data from fed-batch fermentation performed at constant glucose feed rates of qVG=10 mL h–1. Acetate was fed according to the previously developed feeding strategy. While the model identification was realized by least-square fit, the model discrimination was based on the model selection criterion (MSC). The validation of model parameters was performed applying data from two different fed-batch experiments with glucose feed rate qVG=20 and 30 mL h–1, respectively. Consequently, the most suitable model was identified that reflected the pyruvate and biomass curves adequately by considering a pyruvate inhibited growth (Jerusalimsky approach) and pyruvate inhibited product formation (described by modified Luedeking–Piret/Levenspiel term).List of symbols cA acetate concentration (g L–1) - cA,0 acetate concentration in the feed (g L–1) - cG glucose concentration (g L–1) - cG,0 glucose concentration in the feed (g L–1) - cP pyruvate concentration (g L–1) - cP,max critical pyruvate concentration above which reaction cannot proceed (g L–1) - cX biomass concentration (g L–1) - KI inhibition constant for pyruvate production (g L–1) - KIA inhibition constant for biomass growth on acetate (g L–1) - KP saturation constant for pyruvate production (g L–1) - KP inhibition constant of Jerusalimsky (g L–1) - KSA Monod growth constant for acetate (g L–1) - KSG Monod growth constant for glucose (g L–1) - mA maintenance coefficient for growth on acetate (g g–1 h–1) - mG maintenance coefficient for growth on glucose (g g–1 h–1) - n constant of extended Monod kinetics (Levenspiel) (–) - qV volumetric flow rate (L h–1) - qVA volumetric flow rate of acetate (L h–1) - qVG volumetric flow rate of glucose (L h–1) - rA specific rate of acetate consumption (g g–1 h–1) - rG specific rate of glucose consumption (g g–1 h–1) - rP specific rate of pyruvate production (g g–1 h–1) - rP,max maximum specific rate of pyruvate production (g g–1 h–1) - t time (h) - V reaction (broth) volume (L) - YP/G yield coefficient pyruvate from glucose (g g–1) - YX/A yield coefficient biomass from acetate (g g–1) - YX/A,max maximum yield coefficient biomass from acetate (g g–1) - YX/G yield coefficient biomass from glucose (g g–1) - YX/G,max maximum yield coefficient biomass from glucose (g g–1) - growth associated product formation coefficient (g g–1) - non-growth associated product formation coefficient (g g–1 h–1) - specific growth rate (h–1) - max maximum specific growth rate (h–1)  相似文献   

14.
A new hydrogen producing bacterium, Rhodopseudomonas palustris P4, originally isolated under an anaerobic/phototrophic condition, grew well under aerobic/chemoheterotrophic or anaerobic/chemoheterotrophic conditions and showed CO-dependent, H2 production activity when transferred to anaerobic conditions. Cell growth was best under an aerobic/chemoheterotrophic condition as the doubling time of 1 h, while the H2 production activity was highest in the cells grown under an aerobic/chemoheterotrophic condition at 20 mmol g–1 cell–1 h–1.  相似文献   

15.
The accumulation of biofilm by Acetobacterium sp. during continuous culture in an upflow anaerobic filter (UAF) growing on methanol-formate was the result of space velocity and inlet concentrations of substrate and Co+2. To achieve good development of biofilm, a space velocity of 0.38 h–1, inlet substrate concentrations of 125 mM of both methanol and formate, and Co+2 at 0.16 mM were required. Cell productivities in the effluent of the UAF-reactor were about 6-fold higher than in chemostat cultures (0.20 g l–1 h–1 for UAF and 0.035 g l–1 h–1 for chemostat) (previous studies), and the maximum vitamin B12 specific concentration was 5.1 mg g cell–1.  相似文献   

16.
Kinetic data of ferrous iron oxidation by Thionacillus ferrooxidans were determined. The aim was to remove H2S (<0.5 ppm) from waste gas by a process proposed earlier. Kinetic data necessary for industrial scale-up were investigated in a chemostat airlift reactor (dilution rate 0.02–0.12 h–1; pH 1.3). Due to the low pH, ferric iron precipitation and wall growth could be avoided. The maximum ferrous iron oxidation rate of submersed bacteria was 0.77 g 1–1 h–1, the maximum specific growth rate about 0.12 h–1 and the yield coefficient was found to be 0.007 g g–1 Fe2+. The specific O2 demand of an exponentially growing, ironoxidizing batch culture was 1.33 mg O2 mg–1 biomass h–1. The results indicate that a pH of 1.3 has no negative influence on the kinetics of iron oxidation and growth. Correspondence to: W. Schäfer-Treffenfeldt  相似文献   

17.
Zymomonas mobilis ZM4/AcR (pZB5), a mutant recombinant strain with increased acetate resistance, has been isolated following electroporation of Z. mobilis ZM4/AcR. This mutant strain showed enhanced kinetic characteristics in the presence of 12 g sodium acetate l–1 at pH 5 in batch culture on 40 g glucose, 40 g xylose l–1 medium when compared to ZM4 (pZB5). In continuous culture, there was evidence of increased maintenance energy requirements/uncoupling of metabolism for ZM4/AcR (pZB5) in the presence of sodium acetate; a result confirmed by analysis of the effect of acetate on other strains of Z. mobilis. Nomenclature m Cell maintenance energy coefficient (g g–1 h–1)Maximum overall specific growth rate (1 h–1)Maximum specific ethanol production rate (g g–1 h–1)Maximum specific total sugar utilization rate (g g–1 h–1)Biomass yield per mole of ATP (g mole–1 Ethanol yield on total sugars (g g–1)Biomass yield on total sugars (g g–1)True biomass yield on total sugars (g g–1)  相似文献   

18.
Grape skins as a natural support for yeast immobilization   总被引:1,自引:0,他引:1  
Grape skins were used to immobilize Saccharomyces cerevisiae. In repeated batch fermentations of grape by immobilized and free cells, the maximum specific rate of alcohol production on glucose decreased from 7.98 h–1 at 25 °C to 0.7 h–1 at 5 °C. The rate was approximately twice as high as that on fructose. The rates for free cells were very low. The maximum alcohol yield (0.45 g g–1) was obtained at 5 °C when the immobilized biocatalyst was used.  相似文献   

19.
Glucose repressed xylose utilization inCandida tropicalis pre-grown on xylose until glucose reached approximately 0–5 g l–1. In fermentations consisting of xylose (93 g l–1) and glucose (47 g l–1), xylitol was produced with a yield of 0.65 g g–1 and a specific rate of 0.09 g g–1 h–1, and high concentrations of ethanol were also produced (25 g l–1). If the initial glucose was decreased to 8 g l–1, the xylitol yield (0.79 g g–1) and specific rate (0.24 g g–1 h–1) increased with little ethanol formation (<5 g l–1). To minimize glucose repression, batch fermentations were performed using an aerobic, glucose growth phase followed by xylitol production. Xylitol was produced under O2 limited and anaerobic conditions, but the specific production rate was higher under O2 limited conditions (0.1–0.4 vs. 0.03 g g–1 h–1). On-line analysis of the respiratory quotient defined the time of xylose reductase induction.  相似文献   

20.
Staphylococcus sp. strain S3/C desulfurized dibenzothiophene/n-hexadecane (3 mg ml–1) in a hydrocarbon aqueous biphasic culture. The resting cells decreased the sulfur content of the hydrocarbon phase by 57% at 2.2 mg l–1 h–1 in the absence of any additional carbon and sulfur source.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号