首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study examined the induction of the defence-related hormones jasmonic acid (JA), salicylic acid (SA) and abscisic acid (ABA) and the phytoalexin medicarpin in Medicago truncatula when challenged by the pea aphid Acyrthosiphon pisum. There was some induction of hormones in the compatible interaction between A. pisum clone N116 and M. truncatula cultivar DZA315, whereas JA, SA and medicarpin exhibited more significant increases in foliage concentration during the incompatible interaction between A. pisum clone PS01 and M. truncatula cultivar Jemalong A17. Foliar concentration of JA, SA and medicarpin exhibited a positive relationship with aphid density after 3-day feeding, whereas ABA was not affected by the presence of aphids. When aphids were restricted to a single leaf using plastic tubes, JA, SA and medicarpin displayed strong local induction, whereas there were no significant systemic increases in uninfested leaves. Medicarpin and SA appeared to increase with duration of aphid feeding, whereas JA showed a more transient increase in concentration 24 h after challenge commenced. Results suggest that increases in JA, SA and medicarpin are associated with M. truncatula resistance to particular clones of A. pisum. The variation in concentration of the defence-related compounds recorded with regard to aphid density, duration of challenge, genotypes of plant and aphids, and between locally challenged and distant leaves reinforces the need for consideration of these experimental factors when generalizing about the plant defence processes that occur during aphid–plant interactions.  相似文献   

2.
Low temperatures limit plant growth, development, and reproductive success. A series of complex adaptive responses in plants evolved to withstand this environmental challenge. Here, eight accessions of Elymus nutans, which originated in Tibet at altitudes between 3720 and 5012 m above sea level, were used to identify heritable adaptations to chilling stress. Dynamic responses of phytohormone, sugar, and gene expression levels related to chilling tolerance were analyzed. During the initial stage of chilling stress (0–24 h), some high-altitude E. nutans accessions exhibited rapid increases in abscisic acid (ABA), jasmonic acid (JA), and zeatin content. This coordinated with decreases in the levels of auxin (IAA), salicylic acid (SA), gibberellins (GA), and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC). EnCBF9 and EnCBF14 expression in the high-altitude accessions, Baqing, Xainza, Damxung, and Ali, increased within 1 h of chilling exposure, while chilling induction of EnCOR14a was detected after 3 h of chilling stress. Accessions from high altitudes displayed an increased sucrose and raffinose accumulation and a reduced degradation of chlorophyll under chilling stress. After 24–120 h of chilling exposure, plant adaptation to the chilling treatment was associated with a lower accumulation of ABA and moderate rise of zeatin, IAA, GA, ACC, SA, and JA. EnCBF9, EnCBF14, and EnCOR14a genes were down-regulated during the late stage of chilling stress. Taken together, the dynamic responses of phytohormones and sugars, and the higher expression of the EnCBFs and EnCOR genes play critical roles in the acclimation to chilling in high-altitude accessions of E. nutans, thereby allowing them to achieve higher chilling tolerance.  相似文献   

3.
Pathogenesis-related proteins (PRs) are the antimicrobial proteins which are commonly used as signatures of defense signaling pathways and systemic acquired resistance. However, in Brassica juncea most of the PR proteins have not been fully characterized and remains largely enigmatic. In this study, full-length cDNA sequences of SA (PR1, PR2, PR5) and JA (PR3, PR12 and PR13) marker genes were isolated from B. juncea and were named as BjPR proteins. BjPR proteins showed maximum identity with known PR proteins of Brassica species. Further, expression profiling of BjPR genes were investigated after hormonal, biotic and abiotic stresses. Pre-treatment with SA and JA stimulators downregulates each other signature genes suggesting an antagonistic relationship between SA and JA in B. juncea. After abscisic acid (ABA) treatment, SA signatures were downregulated while as JA signature genes were upregulated. During Erysiphe cruciferarum infection, SA- and JA-dependent BjPR genes showed distinct expression pattern both locally and systemically, thus suggesting the activation of SA- and JA-dependent signaling pathways. Further, expression of SA marker genes decreases while as JA-responsive genes increases during drought stress. Interestingly, both SA and JA signature genes were induced after salt stress. We also found that BjPR genes displayed ABA-independent gene expression pattern during abiotic stresses thus providing the evidence of SA/JA cross talk. Further, in silico analysis of the upstream regions (1.5 kb) of both SA and JA marker genes showed important cis-regulatory elements related to biotic, abiotic and hormonal stresses.  相似文献   

4.
5.
A change in the contents of endogenous salicylic and jasmonic acids in the roots of the host plant at the preinfectious stage of interaction with symbiotic (Rhizobium leguminosarum) and pathogenic (Agrobacterium rizogenes) bacteria belonging for to the family Rhizobiaceae was studied. It was found that the jasmonic acid content increased 1.5–2 times 5 min after inoculation with these bacterial species. It was shown that dynamics of the change in the JA and SA contents depends on the type of infection. Thus, the JA content decreased in the case of pathogenesis, while the SA content increased. At the same time, an increased JA content was observed during symbiosis. The observed regularities could indicate the presence of different strategies of hormonal regulation for interaction with symbiotic and pathogenic bacteria belonging to the family Rhizobiaceae in peas plants.  相似文献   

6.
Hormonal regulation and symbiotic relationships provide benefits for plants to overcome stress conditions. The aim of this study was to elucidate the effects of exogenous methyl jasmonate (MeJA) application on root hydraulic conductivity (L) of Phaseolus vulgaris plants which established arbuscular mycorrhizal (AM) symbiosis under two water regimes (well-watered and drought conditions). The variation in endogenous contents of several hormones (MeJA, JA, abscisic acid (ABA), indol-3-acetic acid (IAA), salicylic acid (SA)) and the changes in aquaporin gene expression, protein abundance and phosphorylation state were analyzed. AM symbiosis decreased L under well-watered conditions, which was partially reverted by the MeJA treatment, apparently by a drop in root IAA contents. Also, AM symbiosis and MeJA prevented inhibition of L under drought conditions, most probably by a reduction in root SA contents. Additionally, the gene expression of two fungal aquaporins was upregulated under drought conditions, independently of the MeJA treatment. Plant aquaporin gene expression could not explain the behaviour of L. Conversely, evidence was found for the control of L by phosphorylation of aquaporins. Hence, MeJA addition modified the response of L to both AM symbiosis and drought, presumably by regulating the root contents of IAA and SA and the phosphorylation state of aquaporins.  相似文献   

7.
8.
9.
The physiological effects of Fusarium oxysporum on in-root parasitic weed, Orobanche spp. (broomrape) with references to change in plant hormones and secondary plant constituents were investigated. The levels of IAA, GA, ABA and JA in the experimental group were significantly lower than those in the control group, while the level of SA was higher in the experimental group. In secondary metabolic studies, the quantities of various phenols were measured in the two groups and catechin, syringic acid and p-coumaric acid amounts were significantly higher in the experimental group than in the control group, unlike gallic acid which have a lower amount. Consequently, in the light of all data, it was concluded that Fusarium oxysporum (1) causes heavy hormonal disorder, (2) triggered only SA-mediated defense and (3) induced intensively accumulation of phenolic substances in orobanche. Fusarium oxysporum causes lethal physiological damage on Orobanche spp.  相似文献   

10.
F. Liu  J. Li  Y. Liu 《Biologia Plantarum》2016,60(2):311-319
Molecular hydrogen (H2) could be a novel signal in phytohormone signaling pathways in response to biotic and abiotic stresses. Here, we employed two wild rice species (Oryza rufipogon Griff. and O. minuta J. Presl) to test this hypothesis using hydrogen-rich water (HW). The expression differences of phytohormone and hydrogenase genes between conventional rice (Oryza sativa L,) and wild rice were determined by real-time quantitative polymerase chain reaction, and the effects of HW on gene expression of wild rice were detected during three growth stages. Expression of hydrogenase genes, synthesis genes, and receptor genes of salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) signalling pathways was higher in six wild rice types than in conventional rice. Hydrogen-rich water up-regulated expression of two hydrogenase genes, SA, JA, and ET receptor genes and synthesis genes in the seedling stage of wild rice. But this positive regulation by HW was less significant in the vegetative and reproductive stages.  相似文献   

11.
The effects of blue light (BL) and jasmonic acid (JA) on morphogenesis of Arabidopsis thaliana (L.) Heynh seedlings of genotypes Col and Ler and their mutants, namely, axr1-3 and jar1-1 mutants resistant to IAA and JA, respectively, and a CRY1 photoreceptor-deficient mutant hy4 were studied. Both 1 μM JA and BL exposure retarded hypocotyl growth of Ler, Col, and jar1-1 seedlings, whereas JA had no effect on hypocotyl growth of axr1-3, but the suppression of hypocotyl growth of this mutant by BL was even more noticeable than that of Ler, Col, and jar1-1. JA and BL applied simultaneously inhibited hypocotyl growth of axr1-3 and especially of Ler, Col, and jar1-1 more than either of factors applied separately. The hy4 mutant did not respond to BL, whereas JA stimulated its hypocotyl growth. JA did not change the cotyledon size of Col, axr1-3, and jar1-1 and reduced the cotyledon size of Ler and hy4. BL enhanced the cotyledon growth of all wild-type and mutant plants used in the study. The cotyledon sizes of all plants except Ler were also increased when JA and BL were applied together. Some of the growth responses correlated with the endogenous IAA and ABA contents. Thus, for example, the hypocotyl and cotyledon growth retardation of Ler seedlings in the presence of JA correlated with a reduced level of free IAA and a considerable increase in the free ABA level in plants grown both in darkness and in BL. Under other growth conditions, no correlation between the endogenous IAA and ABA levels and A. thaliana seedling growth was noted. The interaction between the signal transduction pathways triggered by BL and JA at the early stages of arabidopsis morphogenesis is discussed on the basis of Col, Ler, axr1-3, and jar1-1 hypocotyl growth responses.  相似文献   

12.
Although it is well known that jasmonic acid (JA) and cytokinin (CK) are involved in regulating leaf senescence, the antagonistic mechanisms of JA and CK on leaf senescence are still unknown. To explore the antagonistic effects of JA and CK on leaf senescence, we treated detached rice flag leaves with JA and CK under dark conditions, and evaluated their chlorophyll contents, membrane deterioration, and expression levels of chlorophyll-degradation-related genes (CDRGs) and senescence-associated genes (SAGs). Our results demonstrated that exogenous application of JA promoted chlorophyll degradation by enhancing the expression levels of CDRGs, promoted membrane deterioration by accelerating the increases in lipid peroxidation and membrane permeability, enhanced the expression levels of SAGs, and consequently accelerated rice flag leaf senescence. On the other hand, exogenous application of CK retarded chlorophyll degradation by down-regulating the expression levels of CDRGs, retarded membrane deterioration by retarding the increases in lipid peroxidation and membrane permeability, down-regulated the expression levels of SAGs, and consequently delayed rice flag leaf senescence. Furthermore, the senescence-accelerating effect of a certain concentration of JA was nullified by the senescence-retarding effect of a certain concentration of CK. These results suggested that exogenous applications of JA and CK were able to antagonistically regulate flag leaf senescence by mediating chlorophyll degradation, membrane deterioration, and SAGs expression. In addition, our results suggested that the progression of flag leaf senescence might not only depend on the level of JA or CK but also depend on the balance between JA and CK.  相似文献   

13.
The rice EMS-derived mutant leaf adaxialized 1 (lad1) was isolated based on its upward rolling leaf phenotype. Besides the adaxially rolled leaf, many other agronomic traits were also compromised in lad1. The rolling trait was characterized by a noticeable alteration of bulliform cells in the adaxial side of the leaves. Map-based cloning showed a single nucleotide substitution in the promoter region of the KAN1 gene in lad1 mutant. Further, over-expressing and CRISPR/cas9-edited knockdown transgenic plants confirmed that KAN1 was responsible for the mutant phenotype of lad1. Yeast two-hybrid and bimolecular fluorescence complementation assay demonstrated that KAN1 can interact with the auxin response factors ARF3, ARF7 and ARF15. Physiologically, the contents of auxin (IAA), abscisic acid (ABA), jasmonic acid (JA) and gibberellin (GA) were all significantly increased in the lad1 mutant. Moreover, the GA3 content dramatically decrease in wild-type, but increased in lad1 under IAA induction. Additionally, the expression levels of several IAA and GA biosynthesis and responsive-related genes and genes involved in leaf polarity determination were altered in lad1. Therefore, we hypothesized that KAN1/ARFs protein complexes act as auxin-dependent regulatory units that play a conserved role in leaf development.  相似文献   

14.
Salt stress is a critical factor that affects the growth and development of plants. Salicylic acid (SA) is an important signal molecule that mitigates the negative effects of salt stress on plants. To elucidate salt tolerance in large pink Dianthus superbus L. (Caryophyllaceae) and the regulatory mechanism of exogenous SA on D. superbus under different salt stresses, we conducted a pot experiment to evaluate leaf biomass, leaf anatomy, soluble protein and sugar content, and the relative expression of salt-induced genes in D. superbus under 0.3, 0.6, and 0.9% NaCl conditions with and without 0.5 mM SA. The result showed that exposure of D. superbus to salt stress lead to a decrease in leaf growth, soluble protein and sugar content, and mesophyll thickness, together with an increase in the expression of MYB and P5CS genes. Foliar application of SA effectively increased leaf biomass, soluble protein and sugar content, and upregulated the expression of MYB and P5CS in the D. superbus, which facilitated in the acclimation of D. superbus to moderate salt stress. However, when the plants were grown under severe salt stress (0.9% NaCl), no significant difference in plant physiological responses and relevant gene expression between plants with and without SA was observed. The findings of this study suggest that exogenous SA can effectively counteract the adverse effects of moderate salt stress on D. superbus growth and development.  相似文献   

15.
Salicylic acid (SA) functions in the plant response to drought stress were assessed using SA-altering Arabidopsis mutants, including snc1 (with constitutively high levels of SA) and its nahG-transformed plants (named as snc1/nahG, with a comparable SA level to the wild type), sid2 and transgenic line nahG (both with SA deficiency), and npr1-1 (with SA signaling blockage). The drought stress was simulated by polyethylene glycol (PEG)-6000 treatment. Compared with wild-type (wt) plants, the snc1 plants displayed obvious easing of PEG-induced growth inhibition, leaf water loss, and photosynthesis-related impairment, whereas in nahG, sid2, and npr1-1 mutants the effect was more severe. PEG stress reduced stomatal conductance, to a higher extent in the snc1 line, whereas it was lower in nahG, sid2, and npr1-1 lines as compared with the wt. The snc1 plants accumulated higher levels of H2O2 than the other genotypes tested. PEG stress increased activities of superoxide dismutase and peroxidase, but decreased activities of catalase in all lines tested, to a greater extent in snc1 and less in sid2, nahG, and npr1-1 relative to wt. Proline was significantly increased, especially in snc1 line at 6 % and higher PEG stress. Noticeably, the performance of snc1 under PEG stress was dependent on SA levels, as the expression of nahG in snc1 plants did not only significantly reduce SA levels, but largely reversed the above-mentioned parameters, as well as eliminated the drought tolerance. Based on these data, it was concluded that endogenous SA levels and signaling provided a protective role in the Arabidopsis response to PEG-simulated drought.  相似文献   

16.
17.
Glucosinolates are a branch of amino acid-derived metabolites, which are specifically found in Brassicales. In Arabidopsis, tryptophan derived indolic glucosinolates are required for plant defense against a wide range of pathogens and herbivores due to their strong antimicrobial activity and potential signaling function. An important enzyme in indolic glucosinolate biosynthesis pathway is CYP83B1, which oxidizes indole-3-acetaldoxime, a precursor of indole-3-acetic acid (IAA). In this study, we reported isolation and expression characterization of a CYP83B1 gene from Brassica oleracea L. var. italica Plenck, which we termed BoCYP83B1. Overexpression of BoCYP83B1 in Arabidopsis resulted in an altered glucosinolate profile and early flowering phenotype. By expressing the reporter gene β-glucuronidase under the control of the BoCYP83B1 promoter in Arabidopsis, we analyzed the spatial expression pattern of BoCYP83B1 under normal growth conditions as well as in response to several hormones and stresses. The BoCYP83B1 was primarily expressed in vascular tissue through the almost whole plant. It was strongly induced by methyl jasmonate, 1-amino-1-cyclopropanecarboxylic acid, salicylic acid (SA), gibberellin, and IAA, suggesting its involvement in complex signaling pathways. Mannitol, NaCl, UV, and Flagelin 22 significantly up-regulated BoCYP83B1 expression, indicating its possible role in stress response. Interestingly, the response of BoCYP83B1 to SA and NaCl showed tissue specificity. Thus, BoCYP83B1 might have different functions in different tissues.  相似文献   

18.
A fast regenerating Agrobacterium tumefaciens-mediated transformation protocol for Bacopa monnieri (L.) Wettst. was developed as a model system for heterologous expression of terpenoid indole alkaloid pathway genes from Catharanthus roseus (L.) G. Don. The direct regeneration of shoots from leaf explants co-cultured with A. tumefaciens resulted in the integration of a tryptophan decarboxylase (tdc) and strictosidine synthase (str) cassette (<hpt-<Tdc2-<Str-gus>) in the regenerated progeny. The highest transformation efficiency (83.88%) was achieved when leaf explants were infected on the adaxial laminar surface by manual pricking with 48- to 72-h-old suspensions (OD600 = 0.5–0.6) of A. tumefaciens strain LBA1119 (carrying the binary vector pMOG22). The heterologous expression of tryptophan decarboxylase and strictosidine synthase genes that are otherwise not present in B. monnieri plants was confirmed through semi-quantitative PCR and metabolite quantification assays. The entire protocol duration from co-cultivation through regeneration of transgenic plants to their establishment in the glass house took 40–45 d. The developed B. monnieri model can be used to test expression cassettes carrying genes for plant secondary metabolic pathway engineering, especially those genes that are expressed in differentiated cell, tissue, or organs.  相似文献   

19.
The leafhopper Empoasca vitis (Göthe) (Homoptera: Cicadellidae) can cause economic damage in European vineyards. Egg parasitoids, in particular Anagrus atomus (Linnaeus) (Hymenoptera: Mymaridae), are the most important natural enemies of the leafhopper. In four different years, leaves of ten grapevine cultivars, which were grown in a vineyard of north-eastern Italy, were collected at the end of the leafhopper 2nd generation to determine the total number of E. vitis eggs per leaf and the percentage of the E. vitis eggs parasitized. These data were analysed for correlation with leaf density and foliar pubescence. The E. vitis eggs per leaf and the percentage of eggs parasitized by Anagrus spp. were significantly influenced by the cultivar. The number of E. vitis eggs per leaf was positively correlated to leaf density, but it was not influenced by leaf hair density. The parasitization rate by Anagrus spp. was affected by foliar pubescence, especially by erect hairs on the veins. These findings could be used for integrated pest management. In particular, (1) the more susceptible cultivars can be used as early indicators of leafhopper infestation, (2) agronomic practices, that reduce leaf density, could decrease the E. vitis population level and (3) clones with glabrous leaves would favour egg parasitoid activity.  相似文献   

20.
The fluid-feeding aphid Schlechtendalia chinensis (Bell) induces horned galls on its primary host, the Chinese Sumac (Rhus chinensis Mill). Horned galls are harvested for their high content of tannins, and used in a range of medical and chemical applications. Gall development is a complex and highly controlled physiological process, where the growing insect population manipulates the plant developmental programs that allow the transformation of plant tissue into a gall. In this study, we examine whether Schlechtendalia alters the balance of plant hormones in the host tree as a means to achieve gall formation. For this, we measured concentrations for a series of endogenous hormones, including indole-3-acetic acid (IAA), cytokinin (CTK), gibberellic acid (GA), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and ethylene (ETH). Specifically, we conducted a time course (namely, 30, 85, 100, 115, 125, 140, 155, and 170 days from gall initiation) analysis, where we measured both gall and leaf samples representing different developmental stages that spanned an entire growing season. To correlate these hormone data with developmental parameters during gall growth, we determined gall volume, tannin content, and aphid population size for the same time points. Interestingly, tannin production rose steeply in the early stages of gall development, while the aphid population size grew little. After this single peak (day 100), tannin concentrations declined moderately and aphid population size increased from then on. This switch in population growth was accompanied by notable changes in plant hormone titers. In general, all hormones but GA were elevated in all sample types isolated from the host tree (gall, leaves near and distant from gall) when compared with samples from an uninfected tree. Most of the elevated hormones showed similar changes over time; however, GA appeared to display the opposite behavior in all samples, suggesting that GA is a key target for controlling gall growth. When tannin concentrations spiked, GA levels peaked as well, while the remaining plant hormones exhibited a decline at that time. Principle component analysis revealed distinct functional groups in our hormone cohort. This yielded three groups comprising (1) CTK, ABA, ETH, and JA, (2) IAA and SA, (3) GA. The fact that GA comprised its own group and exhibited a unique profile during gall development prompted us to examine whether exogenous GA would alter the rate of gall growth. Indeed, we found that ectopic GA significantly accelerated gall growth, and more strongly than all other hormones, consistent with the notion that controlling GA levels within the gall is crucial for stimulating gall development. We propose a model, whereby the host plant downregulates GA concentrations in an attempt to throttle gall growth, while the gall-inducing aphid population counters these attempts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号