首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, in vitro RNA binding by members of the mammalian 70-kDa heat shock protein (Hsp) family was examined. We show that Hsp/Hsc70 and Hsp110 proteins preferentially bound AU-rich RNA in vitro. Inhibition of RNA binding by ATP suggested the involvement of the N-terminal ATP-binding domain. By using deletion mutants of Hsp110 protein, a diverged Hsp70 family member, RNA binding was localized to the N-terminal ATP-binding domain of the molecule. The C-terminal peptide-binding domain did not bind RNA, but its engagement by a peptide substrate abrogated RNA binding by the N terminus of the protein. Interestingly, removal of the C-terminal alpha-helical structure or the alpha-loop domain unique to Hsp110 immediately downstream of the peptide-binding domain, but not both, resulted in considerably increased RNA binding as compared with the wild type protein. Finally, a 70-kDa activity was immunoprecipitated from RNA-protein complexes formed in vitro between cytoplasmic proteins of human lymphocytes and AU-rich RNA. These findings support the idea that certain heat shock proteins may act as RNA-binding entities in vivo to guide the appropriate folding of RNA substrates for subsequent regulatory processes such as mRNA degradation and/or translation.  相似文献   

2.
Shaner L  Sousa R  Morano KA 《Biochemistry》2006,45(50):15075-15084
SSE1 and SSE2 encode the essential yeast members of the Hsp70-related Hsp110 molecular chaperone family. Both mammalian Hsp110 and the Sse proteins functionally interact with cognate cytosolic Hsp70s as nucleotide exchange factors. We demonstrate here that Sse1 forms high-affinity (Kd approximately 10-8 M) heterodimeric complexes with both yeast Ssa and mammalian Hsp70 chaperones and that binding of ATP to Sse1 is required for binding to Hsp70s. Sse1.Hsp70 heterodimerization confers resistance to exogenously added protease, indicative of conformational changes in Sse1 resulting in a more compact structure. The nucleotide binding domains of both Sse1/2 and the Hsp70s dictate interaction specificity and are sufficient for mediating heterodimerization with no discernible contribution from the peptide binding domains. In support of a strongly conserved functional interaction between Hsp110 and Hsp70, Sse1 is shown to associate with and promote nucleotide exchange on human Hsp70. Nucleotide exchange activity by Sse1 is physiologically significant, as deletion of both SSE1 and the Ssa ATPase stimulatory protein YDJ1 is synthetically lethal. The Hsp110 family must therefore be considered an essential component of Hsp70 chaperone biology in the eukaryotic cell.  相似文献   

3.
Members of the 70-kDa family of molecular chaperones assist in a number of molecular interactions that are essential under both normal and stress conditions. These functions require ATP and co-chaperone molecules and are associated with a cyclic transition of intramolecular conformational changes. As a new putative function, we have previously shown that mammalian Hsp/Hsc70 as well as a distant relative, Hsp110, selectively bind certain RNA sequences via their N-terminal ATP-binding domain. To investigate this phenomenon in more detail, here we examined RNA-binding affinity and specificity of various deletion mutants of human Hsp70. We demonstrate, that, although the N-terminal ATPase domain alone is sufficient for RNA binding, its binding affinity is considerably reduced when compared to that of the full-length protein. Additionally, we provide evidence that binding of RNA to a membrane-immobilized protein partner results in complete loss of RNA sequence specificity. Using various Hsp70 homologs, we show distinct RNA-binding properties of these proteins judged by sequence specificity, ribopolymer sensitivity, and northwestern analysis. Finally, we present data disclosing that RNA binding by DnaK, the Escherichia coli homolog, is influenced by the activity of its co-chaperones, DnaJ and GrpE. We conclude that the RNA-binding capability of this class of molecular chaperones is a conserved feature and it is strongly influenced by the structural and conformational properties. Furthermore, the notion that RNA binding of some Hsp70 family members is influenced by co-chaperones suggests an RNA-binding cycle resembling the protein-binding property of the chaperones.  相似文献   

4.
Hsp70 classes of molecular chaperones are highly conserved in all organisms and play an essential role in the maintenance of cellular homeostasis. Hsp70s assist nascent chain protein folding and denatured proteins, as well as the import of proteins to the organelles, and solubilization of aggregated proteins. ATPase function is required for Hsp70 function. Hsp70s use ATP hydrolysis driven mechanism for substrate protein binding and release. Various Hsps are unregulated in cancers but their significance for tumor growth is poorly understood. Studies have linked Hsp70 to several types of carcinoma. Human Hsp70s allow proliferation of cancer cells and suppress apoptotic and senescence pathways. This review presents Hsp70s role for growth of transformed cells and the current state of Hsp70 as a drug target along with recent patents in humans in this particular area.  相似文献   

5.
Heat shock protein 27 (Hsp27) and Hsp70 have been involved in resistance to anticancer drugs in human breast cancer cells growing in vitro and in vivo. In this study, we examined the expression of Hsp25 (the rodent homologue to human Hsp27) and Hsp70 in 3 different rodent tumors (a mouse breast carcinoma, a rat sarcoma, and a rat lymphoma maintained by subcutaneous passages) treated in vivo with doxorubicin (DOX) and lovastatin (LOV). All tumors showed massive cell death under control untreated conditions, and this massive death increased after cytotoxic drug administration. In this study, we show that this death was due to classic apoptosis. The tumors also showed isolated apoptotic cells between viable tumor cells, and this occurred more significantly in the lymphoma. The tumor type that was more resistant to cell death was the sarcoma, and this was found in sarcomas growing both under control conditions and after cytotoxic drug administration. Moreover, sarcomas showed the highest expression levels of Hsp25 in the viable tumor cells growing under untreated conditions, and these levels increased after DOX and LOV administration. After drug treatment, only sarcoma tumor cells showed a significant increase in Hsp70. In other words, sarcomas were the tumors with lower cell death, displayed a competent Hsp70 and Hsp25 response with nuclear translocation, and had the highest levels of Hsp25. In sarcomas, Hsp25 and Hsp70 were found in viable tumor cells located around the blood vessels, and these areas showed the most resistant tumor cell phenotype after chemotherapy. In addition, Hsp25 expression was found in endothelial cells as unique feature revealed only in lymphomas. In conclusion, our study shows that each tumor type has unique features regarding the expression of Hsp25 and Hsp70 and that these proteins seem to be implicated in drug resistance mainly in sarcomas, making these model systems important to perform more mechanistic studies on the role of Hsps in resistance to certain cytotoxic drugs.  相似文献   

6.
Hsp 70 expression and function during gametogenesis   总被引:6,自引:1,他引:5       下载免费PDF全文
The dramatic transformations in nuclear content and cellular organization that occur during gametogenesis require unique regulation and execution of the mitotic and meiotic cell cycle, apoptotic cell death, DNA recombination and repair, and cellular differentiation. These processes are accompained by the constitutive and developmentally regulated expression of a number of hsp70 genes encoding 70 kDa heat shock proteins (Hsp70), including several hsp70s whose expression is unique to male germ cells. Examining the expression and function of Hsp70s in germ cells has provided significant insights into mechanisms of hsp70 gene regulation and Hsp70 protein function, as well as the developmental processes of gametogenesis.  相似文献   

7.
The Hsp70 superfamily is a ubiquitous chaperone class that includes conventional and large Hsp70s. BiP is the only conventional Hsp70 in the endoplasmic reticulum (ER) whose functions include: assisting protein folding, targeting misfolded proteins for degradation, and regulating the transducers of the unfolded protein response. The ER also possesses a single large Hsp70, the glucose-regulated protein of 170 kDa (Grp170). Like BiP it is an essential protein, but its cellular functions are not well understood. Here we show that Grp170 can bind directly to a variety of incompletely folded protein substrates in the ER, and as expected for a bona fide chaperone, it does not interact with folded secretory proteins. Our data demonstrate that Grp170 and BiP associate with similar molecular forms of two substrate proteins, but while BiP is released from unfolded substrates in the presence of ATP, Grp170 remains bound. In comparison to conventional Hsp70s, the large Hsp70s possess two unique structural features: an extended C-terminal α-helical domain and an unstructured loop in the putative substrate binding domain with an unknown function. We find that in the absence of the α-helical domain the interaction of Grp170 with substrates is reduced. In striking contrast, deletion of the unstructured loop results in increased binding to substrates, suggesting the presence of unique intramolecular mechanisms of control for the chaperone functions of large Hsp70s.  相似文献   

8.
9.
The 70-kDa heat shock proteins (Hsp70) are chaperones with central roles in processes that involve polypeptide remodeling events. Hsp70 proteins consist of two major functional domains: an N-terminal nucleotide binding domain (NBD) with ATPase activity, and a C-terminal substrate binding domain (SBD). We present the first crystal structures of four human Hsp70 isoforms, those of the NBDs of HSPA1L, HSPA2, HSPA5 and HSPA6. As previously with Hsp70 family members, all four proteins crystallized in a closed cleft conformation, although a slight cleft opening through rotation of subdomain IIB was observed for the HSPA5-ADP complex. The structures presented here support the view that the NBDs of human Hsp70 function by conserved mechanisms and contribute little to isoform specificity, which instead is brought about by the SBDs and by accessory proteins.

Enhanced version

This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.  相似文献   

10.
The Hsp70 molecular chaperones of plants are encoded by a multi-gene family whose members are developmentally regulated and differentially expressed in response to temperature stress and other conditions that interrupt normal protein folding or favor protein denaturation. Under non-stressful conditions, Hsp70 cognates function in concert with a variety of co-chaperones to facilitate folding of de novo synthesized proteins, assist in transport of precursor proteins into organelles and to help target damaged proteins for degradation. Stress-induced Hsp70s function to mitigate aggregation of stress-denatured proteins and to refold non-native proteins restoring their biological function through iterative cycles of adenine nucleotide hydrolysis-dependent peptide binding and release. Much of what is known about how plant Hsp70s function comes from the study of Hsp70s from other types of organisms. Owing to their unique biology, much remains to be learned about the many functions Hsp70s play in plants.  相似文献   

11.
Heat shock proteins of 70 kDa (Hsp70s) and their J domain-containing Hsp40 cofactors are highly conserved chaperone pairs that facilitate a large number of cellular processes. The observation that each Hsp70 partners with many J domain-containing proteins (JDPs) has led to the hypothesis that Hsp70 function is dictated by cognate JDPs. If this is true, one might expect highly divergent Hsp70-JDP pairs to be unable to function in vivo. However, we discovered that, when a yeast cytosolic JDP, Ydj1, was targeted to the mammalian endoplasmic reticulum (ER), it interacted with the ER-lumenal Hsp70, BiP, and bound to BiP substrates. Conversely, when a mammalian ER-lumenal JDP, ERdj3, was directed to the yeast cytosol, it rescued the temperature-sensitive growth phenotype of yeast-containing mutant alleles in two cytosolic JDPs, HLJ1 and YDJ1, and activated the ATP hydrolysis rate of Ssa1, the yeast cytosolic Hsp70 that partners with Hlj1 and Ydj1. Surprisingly, ERdj3 mutants that were compromised for substrate binding were unable to rescue the hlj1ydj1 growth defect even though they stimulated the ATPase activity of Ssa1. Yet, J domain mutants of ERdj3 that were defective for interaction with Ssa1 restored the growth of hlj1ydj1 yeast. Taken together, these data suggest that the substrate binding properties of certain JDPs, not simply the formation of unique Hsp70-JDP pairs, are critical to specify in vivo function.  相似文献   

12.
A hitchhiker's guide to the human Hsp70 family   总被引:11,自引:0,他引:11       下载免费PDF全文
The human Hsp70 family encompasses at least 11 genes which encode a group of highly related proteins. These proteins include both cognate and highly inducible members, at least some of which act as molecular chaperones. The location of cognate Hsp70s within all the major subcellular compartments is an indication of the importance of these proteins. The expression of several inducible Hsp70 genes is also an indication of the importance of these proteins in the stres response. The existence of multiple genes and protein isoforms has created confusion in the identification and naming of particular family members. We have compiled, from the literature, a list of genes and genetic loci and produced a two-dimensional protein map of the known human Hsp70 family members. This will enable researchers in the field to quickly and reliably identify human Hsp70s. We have also devised a more rational nomenclature for these genes and gene products which, subject to general acceptance, could be extended to Hsp70 families from other species.  相似文献   

13.
Cell Stress & Chaperones journal has become a major outlet for papers and review articles about anti-heat shock protein (HSP) antibodies. In the last decade, it became evident that apart from their intracellular localization, members of the heat shock protein 90 (Hsp90; HSPC) and Hsp70 (HSPA) family are also found on the cell surface. In this review, we will focus on Hsp70 (HSPA1A), the major stress-inducible member of the human Hsp70 family. Depending on the cell type, the membrane association of Hsp70 comes in two forms. In tumor cells, Hsp70 appears to be integrated within the plasma membrane, whereas in non-malignantly transformed (herein termed normal) cells, Hsp70 is associated with cell surface receptors. This observation raises the question whether or not these two surface forms of Hsp70 in tumor and normal cells can be distinguished using Hsp70 specific antibodies. Presently a number of Hsp70 specific antibodies are commercially available. These antibodies were generated by immunizing mice either with recombinant or HeLa-derived human Hsp70 protein, parts of the Hsp70 protein, or with synthetic peptides. This review aims to characterize the binding of different anti-human Hsp70 antibodies and their capacity to distinguish between integrated and receptor-bound Hsp70 in tumor and normal cells.  相似文献   

14.
Hsp90 and Hsp70 are highly conserved molecular chaperones that help maintain proteostasis by participating in protein folding, unfolding, remodeling and activation of proteins. Both chaperones are also important for cellular recovery following environmental stresses. Hsp90 and Hsp70 function collaboratively for the remodeling and activation of some client proteins. Previous studies using E. coli and S. cerevisiae showed that residues in the Hsp90 middle domain directly interact with a region in the Hsp70 nucleotide binding domain, in the same region known to bind J-domain proteins. Importantly, J-domain proteins facilitate and stabilize the interaction between Hsp90 and Hsp70 both in E. coli and S. cerevisiae. To further explore the role of J-domain proteins in protein reactivation, we tested the hypothesis that J-domain proteins participate in the collaboration between Hsp90 and Hsp70 by simultaneously interacting with Hsp90 and Hsp70. Using E. coli Hsp90, Hsp70 (DnaK), and a J-domain protein (CbpA), we detected a ternary complex containing all three proteins. The interaction involved the J-domain of CbpA, the DnaK binding region of E. coli Hsp90, and the J-domain protein binding region of DnaK where Hsp90 also binds. Additionally, results show that E. coli Hsp90 interacts with E. coli J-domain proteins, DnaJ and CbpA, and that yeast Hsp90, Hsp82, interacts with a yeast J-domain protein, Ydj1. Together these results suggest that the complexes may be transient intermediates in the pathway of collaborative protein remodeling by Hsp90 and Hsp70.  相似文献   

15.
Rapid mRNA degradation directed by A + U-rich elements (AREs) is mediated by the interaction of specific RNA-binding proteins to these sequences. The protein chaperone Hsp70 has been identified in a cellular complex containing the ARE-binding protein AUF1 and has also been detected in direct contact with A + U-rich RNA substrates, indicating that Hsp70 may be involved in the regulation of ARE-directed mRNA turnover. By using gel mobility shift and fluorescence anisotropy assays, we have determined that Hsp70 directly and specifically associates with U-rich RNA substrates in solution. With the ARE from tumor necrosis factor alpha (TNFalpha) mRNA, Hsp70 forms a dynamic complex consistent with a 1:1 association of protein:RNA but demonstrates cooperative binding behavior on polyuridylate substrates. Unlike AUF1, the RNA binding activity of Hsp70 is not regulated by ion-dependent folding of the TNFalpha ARE, suggesting that AUF1 and Hsp70 recognize distinct binding determinants on this RNA substrate. Binding of Hsp70 to the TNFalpha ARE is driven entirely by enthalpy at physiological temperatures, indicating that burial of hydrophobic surfaces is likely the principal mechanism stabilizing the Hsp70.RNA complex. Potential roles for the interaction of Hsp70 with ARE-containing mRNAs in the regulation of mRNA turnover and/or translational efficiency are discussed.  相似文献   

16.
Members of the 70-kDa heat shock family can control and manipulate a host of oncogenic client proteins. This role of Hsp70 in both the folding and degradation of these client proteins makes it a potential drug target for certain forms of cancer. The phenothiazine family of compounds, as well as the flavonoid myricetin, was recently shown to inhibit Hsp70-ATPase activity, whereas members of the dihydropyrimidine family stimulated ATPase function. Akt, a major survival kinase, was found to be under the regulation of Hsp70, and when the ATPase activity of Hsp70 was increased or decreased by these compounds, Akt levels were also increased or decreased. Also, increasing Hsp70 levels concurrent with inhibition of its ATPase function synergistically reduced Akt levels to a greater extent than either manipulation alone, providing new insights about client fate decisions. Akt reductions mediated by Hsp70 inhibitors were prevented when Hsp70 expression was silenced with small interfering RNA. Inhibiting Hsp70 ATPase function produced cytotoxic events only in breast cancer cell lines where Akt dysfunction was previously shown, suggesting therapeutic specificity depending on the Hsp70 client profile. Thus, increasing Hsp70 levels combined with inhibiting its ATPase function may serve to dramatically reduce Akt levels and facilitate cell death in certain types of cancer.  相似文献   

17.
Proteins belonging to the Hsp70 class of molecular chaperones are highly conserved and ubiquitous, performing an essential role in the maintenance of cellular homeostasis in almost all known organisms. Trypanosoma brucei, Trypanosoma cruzi and Leishmania major are human parasites collectively known as the Tritryps. The Tritryps undergo extensive morphological changes during their life cycles, largely triggered by the marked differences between conditions in their insect vector and human host. Hsp70s are synthesised in response to these marked changes in environment and are proposed to be required for these parasites to successfully transition between differentiation stages while remaining viable and infective. While the Tritryps Hsp70 complement consists of homologues of all the major eukaryotic Hsp70s, there are a number of novel members, and some unique structural features. This review critically evaluates the current knowledge on the Tritryps Hsp70 proteins with an emphasis on T. brucei, and highlights some novel and previously unstudied aspects of these multifaceted molecular chaperones.  相似文献   

18.
The Hsp90 chaperoning pathway and its model client substrate, the progesterone receptor (PR), have been used extensively to study chaperone complex formation and maturation of a client substrate in a near native state. This chaperoning pathway can be reconstituted in vitro with the addition of five proteins plus ATP: Hsp40, Hsp70, Hop, Hsp90, and p23. The addition of these proteins is necessary to reconstitute hormone-binding capacity to the immuno-isolated PR. It was recently shown that the first step for the recognition of PR by this system is binding by Hsp40. We compared type I and type II Hsp40 proteins and created point mutations in Hsp40 and Hsp70 to understand the requirements for this first step. The type I proteins, Ydj1 and DjA1 (HDJ2), and a type II, DjB1 (HDJ1), act similarly in promoting hormone binding and Hsp70 association to PR, while having different binding characteristics to PR. Ydj1 and DjA1 bind tightly to PR whereas the binding of DjB1 apparently has rapid on and off rates and its binding cannot be observed by antibody pull-down methods using either purified proteins or cell lysates. Mutation studies indicate that client binding, interactions between Hsp40 and Hsp70, plus ATP hydrolysis by Hsp70 are all required to promote conformational maturation of PR via the Hsp90 pathway.  相似文献   

19.
The cellular response to stress is orchestrated by the expression of a family of proteins termed heat shock proteins (hsp) that are involved in the stabilization of basic cellular processes to preserve cell viability and homeostasis. The bulk of hsp function occurs within the cytosol and subcellular compartments. However, some hsp have also been found outside cells released by an active mechanism independent of cell death. Extracellular hsp act as signaling molecules directed at activating a systemic response to stress. The export of hsp requires the translocation from the cytosol into the extracellular milieu across the plasma membrane. We have proposed that membrane insertion is the initial step in this export process. We investigated the interaction of the major inducible hsp from mammalian (Hsp70) and bacterial (DnaK) species with liposomes. We found that mammalian Hsp70 displayed a high specificity for negatively charged phospholipids, such as phosphatidyl serine, whereas DnaK interacted with all lipids tested regardless of the charge. Both proteins were inserted into the lipid bilayer as demonstrated by resistance to acid or basic washes that was confirmed by partial protection from proteolytic cleavage. Several regions of mammalian Hsp70 were inserted into the membrane with a small portion of the N-terminus end exposed to the outer phase of the liposome. In contrast, the N-terminus end of DnaK was inserted into the membrane, exposing the C-terminus end outside the liposome. Mammalian Hsp70 was found to make high oligomeric complexes upon insertion into the membranes whereas DnaK only formed dimers within the lipid bilayer. These observations suggest that both Hsp70s interact with lipids, but mammalian Hsp70 displays a high degree of specificity and structure as compared with the bacterial form.  相似文献   

20.
Mitochondria biogenesis requires the import of several precursor proteins that are synthesized in the cytosol. The mitochondrial heat shock protein 70 (mtHsp70) machinery components are highly conserved among eukaryotes, including humans. However, the functional properties of human mtHsp70 machinery components have not been characterized among all eukaryotic families. To study the functional interactions, we have reconstituted the components of the mtHsp70 chaperone machine (Hsp70/J-protein/GrpE/Hep) and systematically analyzed in vitro conditions for biochemical functions. We observed that the sequence-specific interaction of human mtHsp70 toward mitochondrial client proteins differs significantly from its yeast counterpart Ssc1. Interestingly, the helical lid of human mtHsp70 was found dispensable to the binding of P5 peptide as compared with the other Hsp70s. We observed that the two human mitochondrial matrix J-protein splice variants differentially regulate the mtHsp70 chaperone cycle. Strikingly, our results demonstrated that human Hsp70 escort protein (Hep) possesses a unique ability to stimulate the ATPase activity of mtHsp70 as well as to prevent the aggregation of unfolded client proteins similar to J-proteins. We observed that Hep binds with the C terminus of mtHsp70 in a full-length context and this interaction is distinctly different from unfolded client-specific or J-protein binding. In addition, we found that the interaction of Hep at the C terminus of mtHsp70 is regulated by the helical lid region. However, the interaction of Hep at the ATPase domain of the human mtHsp70 is mutually exclusive with J-proteins, thus promoting a similar conformational change that leads to ATPase stimulation. Additionally, we highlight the biochemical defects of the mtHsp70 mutant (G489E) associated with a myelodysplastic syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号