首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 515 毫秒
1.
This paper compares the behavior of bowhead whales of the Davis Strait/Baffin Bay stock, as observed along the east coast of Baffin Island in 1979–1986, with behavior of the Bering/Chukchi/Beaufort Sea stock observed in the Beaufort Sea in 1980–1986. All data used here were collected during late summer and early autumn in the absence of acute human disturbance. The behavioral repertoires of the two populations were similar. However, quantitative differences were found for whales engaged in all three activities studied: (1) Bowheads feeding in deep water off Isabella Bay, Baffin Island, had longer dives and surfacings, on average, than noted for bowheads feeding in the Beaufort Sea. (2) Among whales socializing in shallow water, we saw sexual interactions more often at Isabella Bay than in the Beaufort Sea. Calls emitted by socializing whales off Baffin Island were similar to those heard in the Chukchi and Beaufort Seas. However, pulsed tonal calls were longer off Baffin Island, and previously undescribed mechanical "crunch" sounds were recorded there near socializing bowheads. (3) During autumn migration, "fluke-out" dives were less common, and dive durations were longer, in the Beaufort Sea than off Baffin Island (P<0.001). Multivariate and other analyses indicated that some but not all differences can be ascribed to regional differences in the natural environment or in whale activities, However, during 1974–1986, Bering/Chukchi/Beaufort bowheads were exposed to more industrial, hunting and other human activity than Davis Strait/Baffin Bay bowheads. The "inconspicuous" behavior during autumn migration in the Beaufort may have been attributable to human activities, but causative links cannot be isolated.  相似文献   

2.
In April 2006, a dedicated survey of bowhead whales (Balaena mysticetus) was conducted on the former whaling ground in West Greenland to determine the current wintering population abundance. This effort included a double platform aerial survey design, satellite tracking of the movements of nine whales, and estimation of high-resolution surface time from 14 whales instrumented with time-depth recorders. Bowhead whales were estimated to spend an average of 24% (cv=0.03) of the time at or above 2m depth, the maximum depth at which they can be seen on the trackline. This resulted in a fully corrected abundance estimate of 1229 (95% CI: 495-2939) bowhead whales when the availability factor was applied and sightings missed by observers were corrected. This surprisingly large population estimate is puzzling given that the change in abundance cannot be explained by a recent or rapid growth in population size. One possible explanation is that the population, which demonstrates high age and sex segregation, has recently attained a certain threshold size elsewhere, and a higher abundance of mature females appears on the winter and spring feeding ground in West Greenland. This in combination with the latest severe reduction in sea ice facilitating access to coastal areas might explain the surprising increase in bowhead whale abundance in West Greenland.  相似文献   

3.
Five belugas, or white whales (Delphinapterus leucas), were tracked by satellite from Creswell Bay, Somerset Island, in the Canadian high Arctic towards West Greenland in autumn 2001. After 1 October, three of the whales stayed in the North Water polynya and the other two whales moved to West Greenland. One of the whales that moved to Greenland migrated south along the west coast, following a route and timing similar to another beluga tracked in 1996. The belugas that moved towards West Greenland from Canada did so before or near 1 October. The movements of both these whales followed a similar timing and assumed migratory route of belugas hunted in autumn in West Greenland. In Greenland, the hunt begins in September, where the first whales are taken in the northernmost community of Qaanaaq. Hunting takes place farther south in Upernavik in October, and finally in November and December, belugas are taken even farther south in Uummannaq and Disko Bay. The whales that remain in the North Water after 1 October most likely do not contribute to the harvest in West Greenland. Based on the total number of belugas satellite-tracked in Canada between 1995 and 2001 with tags that lasted beyond 1 October, approximately 0.15 (95% CI 0.06-0.35; n=26) of the summering stock of belugas in the Canadian high Arctic move to West Greenland for the winter. Genetic studies have indicated that belugas moving east through Lancaster Sound are significantly differentiated from belugas taken in the autumn hunt in West Greenland. These conflicting results suggest molecular genetics cannot be solely relied on to reveal the stock identity of these belugas.  相似文献   

4.
Seven narwhals (Monodon monoceros) were instrumented with satellite transmitters in Tremblay Sound, northeast Canada in August 1999. The whales were tracked for 5-218 days with positions received until 17 March 2000. All whales stayed in the fjord system where they were tagged until the end of August. Three whales went northwest visiting adjacent fjords before moving south, together with the three other whales, along the east coast of Baffin Island. The narwhals arrived on the wintering ground in northern Davis Strait in late October. Speed and range of movements declined once the wintering ground was reached. Dive depths increased from summer to autumn, and reached at least 1,500 m. Late summer and winter kernel home ranges were approximately 3,400 km2 and 12,000 km2, respectively. The relative abundance of whales on the wintering ground was 936 narwhals. Assuming that the home range defines the winter distribution of the stock, an estimated 5,348 narwhals (corrected for perception and availability bias) were present in this area.  相似文献   

5.
The loss of Arctic sea ice is predicted to open up the Northwest Passage, shortening shipping routes and facilitating the exchange of marine organisms between the Atlantic and the Pacific oceans. Here, we present the first observations of distribution overlap of bowhead whales (Balaena mysticetus) from the two oceans in the Northwest Passage, demonstrating this route is already connecting whales from two populations that have been assumed to be separated by sea ice. Previous satellite tracking has demonstrated that bowhead whales from West Greenland and Alaska enter the ice-infested channels of the Canadian High Arctic during summer. In August 2010, two bowhead whales from West Greenland and Alaska entered the Northwest Passage from opposite directions and spent approximately 10 days in the same area, documenting overlap between the two populations.  相似文献   

6.
Beluga whales ( Delphinapterus leucas ) in North American waters migrate seasonally between wintering areas in broken pack ice and summering locations in estuaries and other open water areas in the Arctic and sub-Arctic. Results from our previous investigation of beluga whale mitochondrial DNA (mtDNA) revealed genetic heterogeneity among beluga from different summering locations that was interpreted as representing a high degree of summering site philopatry. However, mtDNA is maternally inherited and does not reflect mating that may occur among beluga from different summering locations in wintering areas or during annual migrations. To test the possibility that breeding occurs among beluga from different summering locations, genetic variability at five nuclear DNA (nDNA) microsatellite loci was examined in the same animals tested in the mtDNA study. Beluga samples ( n = 640) were collected between 1984 and 1994 from 24 sites across North America, mostly during the summer. Whales from the various sites were categorized into eight summering locations as identified by mtDNA analysis, as well as four hypothesized wintering areas: Bering Sea, Hudson Strait (Hudson Strait, Labrador Sea, southwest Davis Strait), Baffin Bay (North Water, east Davis Strait), and St Lawrence River. Microsatellite allele frequencies indicated genetic homogeneity among animals from summering sites believed to winter together but differentiation among whales from some of the wintering areas. In particular, beluga from western North America (Bering Sea) were clearly distinguished from beluga from eastern North America (Hudson Strait, Baffin Bay, and St Lawrence River). Based upon the combined data set, the population of North American beluga whales was divided into two evolutionarily significant units. However, the population may be further subdivided into management units to reflect distinct groups of beluga at summering locations.  相似文献   

7.
Beluga whales ( Delphinapterus leucas ) in North American waters migrate seasonally between wintering areas in broken pack ice and summering locations in estuaries and other open water areas in the Arctic and sub-Arctic. Results from our previous investigation of beluga whale mitochondrial DNA (mtDNA) revealed genetic heterogeneity among beluga from different summering locations that was interpreted as representing a high degree of summering site philopatry. However, mtDNA is maternally inherited and does not reflect mating that may occur among beluga from different summering locations in wintering areas or during annual migrations. To test the possibility that breeding occurs among beluga from different summering locations, genetic variability at five nuclear DNA (nDNA) microsatellite loci was examined in the same animals tested in the mtDNA study. Beluga samples ( n = 640) were collected between 1984 and 1994 from 24 sites across North America, mostly during the summer. Whales from the various sites were categorized into eight summering locations as identified by mtDNA analysis, as well as four hypothesized wintering areas: Bering Sea, Hudson Strait (Hudson Strait, Labrador Sea, southwest Davis Strait), Baffin Bay (North Water, east Davis Strait), and St Lawrence River. Microsatellite allele frequencies indicated genetic homogeneity among animals from summering sites believed to winter together but differentiation among whales from some of the wintering areas. In particular, beluga from western North America (Bering Sea) were clearly distinguished from beluga from eastern North America (Hudson Strait, Baffin Bay, and St Lawrence River). Based upon the combined data set, the population of North American beluga whales was divided into two evolutionarily significant units. However, the population may be further subdivided into management units to reflect distinct groups of beluga at summering locations.  相似文献   

8.
The route taken by northward migrating gray whales during spring between Vancouver Island and southeastern Alaska, a distance of about 575 km, has long been uncertain. It is generally believed that the whales closely follow the western, outer coastline of Haida Gwaii (formerly the Queen Charlotte Islands), an archipelago lying between Vancouver Island and southeastern Alaska, consistent with their pattern of migrating close to shore over the majority of their northward migratory corridor. By tracking satellite‐tagged individuals and surveying whales from shore bases, we provide evidence that this is not the primary migratory corridor, but instead that most whales migrate through Hecate Strait and Dixon Entrance, broad waterways that lie to the east and north of Haida Gwaii. By using this route, northbound gray whales potentially face a wider range of industrial activities and developments than they would by migrating along the outer coast.  相似文献   

9.
Defining subpopulations using genetics has traditionally used data from microsatellite markers to investigate population structure; however, single‐nucleotide polymorphisms (SNPs) have emerged as a tool for detection of fine‐scale structure. In Hudson Bay, Canada, three polar bear (Ursus maritimus) subpopulations (Foxe Basin (FB), Southern Hudson Bay (SH), and Western Hudson Bay (WH)) have been delineated based on mark–recapture studies, radiotelemetry and satellite telemetry, return of marked animals in the subsistence harvest, and population genetics using microsatellites. We used SNPs to detect fine‐scale population structure in polar bears from the Hudson Bay region and compared our results to the current designations using 414 individuals genotyped at 2,603 SNPs. Analyses based on discriminant analysis of principal components (DAPC) and STRUCTURE support the presence of four genetic clusters: (i) Western—including individuals sampled in WH, SH (excluding Akimiski Island in James Bay), and southern FB (south of Southampton Island); (ii) Northern—individuals sampled in northern FB (Baffin Island) and Davis Strait (DS) (Labrador coast); (iii) Southeast—individuals from SH (Akimiski Island in James Bay); and (iv) Northeast—individuals from DS (Baffin Island). Population structure differed from microsatellite studies and current management designations demonstrating the value of using SNPs for fine‐scale population delineation in polar bears.  相似文献   

10.
The stomach contents of four bowhead whales (Balaena mysticetus) harvested between 1994 and 2008 from the Canadian Arctic were examined to assess diet composition. Three samples were collected from bowhead whales of the Eastern Canada–West Greenland (EC–WG) population and represent, according to our knowledge, the first diet analysis from this bowhead whale stock. We also examined the stomach content of one bowhead whale from the Bering-Chukchi-Beaufort (BCB) population hunted in 1996. All four whales had food in their stomachs and their diet varied from exclusively pelagic (BCB whale), with Limnocalanus macrurus being the main prey, to epibenthic and benthic (EC–WG) with Mysis oculata playing an important role. These results indicate broad foraging spectrum of the bowhead whales and add to a basic knowledge of their diet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号