首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Light-induced efficiency and pigment alterations in red algae   总被引:3,自引:0,他引:3       下载免费PDF全文
The low photosynthetic efficiency of chlorophyll in freshly collected red algae, can, in the case of Porphyra perforata, P. nereocystis, and Porphyridium cruentum, be increased by growing the algae for 10 days in red or blue light. Exposure to darkness or to green light maintains the algae in their originally low efficiency with respect to chlorophyll, while retaining the high efficiency of phycobilins. Red- or blue-adapted algae are rapidly reversed by exposure to green light, the chlorophyll efficiency dropping to low values again in a few hours. This is assumed to account for the action spectrum of freshly gathered plants. Some pigment changes were observed, but not in the direction of "chromatic adaptation;" and the carotenoid pigments were not activated, even by blue light, but remained as photosynthetically inactive shading filters. The higher red algae (Florideae) did not show activation of chlorophyll by red or blue light.  相似文献   

2.
The effect of light quality on the photosynthetic pigments as chromatic adaptation in 8 species of lichens were examined. The chlorophylls, carotenoids in 5 species with green algae as phycobionts (Cladonia mitis, Hypogymnia physodes, H. tubulosa var. tubulosa and subtilis, Flavoparmelia caperata, Xanthoria parietina) and the chlorophyll a, carotenoids and phycobiliprotein pigments in 3 species with cyanobacteria as photobionts (Peltigera canina, P. polydactyla, P. rufescens) were determined. The total content of photosynthetic pigments was calculated according to the formule and particular pigments were determined by means CC, TLC, HPLC and IEC chromatography. The total content of the photosynthetic pigments (chlorophylls, carotenoids) in the thalli was highest in red light (genus Peltigera), yellow light (Xanthoria parietina), green light (Cladonia mitis) and at blue light (Flavoparmelia caperata and both species of Hypogymnia). The biggest content of the biliprotein pigments at red and blue lights was observed. The concentration of C-phycocyanin increased at red light, whereas C-phycoerythrin at green light.  相似文献   

3.
There is a particularly high interest to derive carotenoids such as β-carotene and lutein from higher plants and algae for the global market. It is well known that β-carotene can be overproduced in the green microalga Dunaliella salina in response to stressful light conditions. However, little is known about the effects of light quality on carotenoid metabolism, e.g., narrow spectrum red light. In this study, we present UPLC-UV-MS data from D. salina consistent with the pathway proposed for carotenoid metabolism in the green microalga Chlamydomonas reinhardtii. We have studied the effect of red light-emitting diode (LED) lighting on growth rate and biomass yield and identified the optimal photon flux for D. salina growth. We found that the major carotenoids changed in parallel to the chlorophyll b content and that red light photon stress alone at high level was not capable of upregulating carotenoid accumulation presumably due to serious photodamage. We have found that combining red LED (75 %) with blue LED (25 %) allowed growth at a higher total photon flux. Additional blue light instead of red light led to increased β-carotene and lutein accumulation, and the application of long-term iterative stress (adaptive laboratory evolution) yielded strains of D. salina with increased accumulation of carotenoids under combined blue and red light.  相似文献   

4.
Ley AC  Butler WL 《Plant physiology》1980,65(4):714-722
Cells of Porphyridium cruentum were grown in different colors of light which would be absorbed primarily by chlorophyll (Chl) (red and blue light) or by the phycobilisomes (green or two intensities of cool-white fluorescent light), and samples of these cells were frozen to −196 C for measurements of absorption and fluorescence emission spectra. Cells grown in the high intensity white light had least of all of the photosynthetic pigments, a higher ratio of carotenoid/Chl, but essentially the same ratio of phycobilin to Chl as cells grown in the low intensity white light. The ratio of photosystem II (PSII) to photosystem I (PSI) pigments was affected by light quality; the ratios of phycobilin to Chl and of short wavelength (PSII) Chl to long wavelength (PSI) Chl were both greater in the cells grown in red or blue light.  相似文献   

5.
Comparative isoenergetic action spectra of net photosynthesis for intact, current year foliage of five tree species were determined from 400 to 710 nm by CO2 exchange analysis. The blue (400 to 500 nm) peak of net photosynthetic activity for the green broadleaves of red alder (Alnus rubra Bong.) was reduced to a plateau for the green needle-leaves of Douglas-fir (Pseudotsuga menziesii [Mirb.] Franco) and Sitka spruce (Picea sitchensis [Bong.] Carr.), a shoulder for the blue-green needles of Colorado spruce (Picea pungens Engelm.), and a reduced shoulder for the blue-white needles of Blue spruce (Picea pungens var. hoospii). These differences were attributable neither to a differential blue light stimulation of photorespiration nor to a differential presence of a nonplastid screening pigment. The conifers all had similar carotenoid-chlorophyll ratios, with approximately 50% more carotenoid relative to chlorophyll as compared to red alder. Blue light absorption and low efficiency of energy transfer by the carotenoids probably accounts for the low net photosynthetic activity of the green conifers in blue light as compared to red alder. Leaf form per se (broad versus needle) had no distinguishable influence on these results.  相似文献   

6.
Several studies have described that cyanobacteria use blue light less efficiently for photosynthesis than most eukaryotic phototrophs, but comprehensive studies of this phenomenon are lacking. Here, we study the effect of blue (450 nm), orange (625 nm), and red (660 nm) light on growth of the model cyanobacterium Synechocystis sp. PCC 6803, the green alga Chlorella sorokiniana and other cyanobacteria containing phycocyanin or phycoerythrin. Our results demonstrate that specific growth rates of the cyanobacteria were similar in orange and red light, but much lower in blue light. Conversely, specific growth rates of the green alga C. sorokiniana were similar in blue and red light, but lower in orange light. Oxygen production rates of Synechocystis sp. PCC 6803 were five-fold lower in blue than in orange and red light at low light intensities but approached the same saturation level in all three colors at high light intensities. Measurements of 77 K fluorescence emission demonstrated a lower ratio of photosystem I to photosystem II (PSI:PSII ratio) and relatively more phycobilisomes associated with PSII (state 1) in blue light than in orange and red light. These results support the hypothesis that blue light, which is not absorbed by phycobilisomes, creates an imbalance between the two photosystems of cyanobacteria with an energy excess at PSI and a deficiency at the PSII-side of the photosynthetic electron transfer chain. Our results help to explain why phycobilisome-containing cyanobacteria use blue light less efficiently than species with chlorophyll-based light-harvesting antennae such as Prochlorococcus, green algae and terrestrial plants.  相似文献   

7.
Many cyanobacteria are highly adaptable to light quality, and many species undergo a complex life cycle. In this study we show that adaptive changes in the photosynthetic apparatus of cyanobacteria are not only caused by environmental, but also by developmental factors. Spectral confocal laser scanning microscopy (CLSM) was used to analyse in vivo the fluorescence spectra of the photosynthetic pigments chlorophyll a (Chl a), allophycocyanin (APC), phycocyanin (PC) and phycoerythrin (PE) of two Nostoc punctiforme strains. Changes in pigment fluorescence emission occurred in different developmental stages. Strain 1:1-26 showed an emission maximum at 674 nm in motile hormogonia stages, whereas vegetative stages showed maxima at 658 and 575 nm. These changes were not caused by chromatic adaptation. In contrast, the second strain (1:1-26lg) showed distinct fluorescence spectra, pigment localization and clear chromatic adaptation in red light. When these properties are known, both strains can be easily distinguished by the spectral CLSM method, which also allows the localization of the pigments within single cells. To calculate the contribution of individual phycobiliproteins to the observed changes, fluorescence spectra were analysed by spectral unmixing. This allowed the mathematical estimation of fluorescence shares for the individual phycobiliproteins in different developmental stages and both before and after chromatic adaptation. It is concluded that care should be taken when characterizing cyanobacteria by differences in pigment fluorescence, because these differences are influenced not only by chromatic adaptation, but also developmental stages. Spectral CLSM offers a powerful method to study the phycobiliprotein composition in vivo.  相似文献   

8.
To understand how light quality influences plant photosynthesis, we investigated chloroplastic ultrastructure, chlorophyll fluorescence and photosynthetic parameters, Rubisco and chlorophyll content and photosynthesis-related genes expression in cucumber seedlings exposed to different light qualities: white, red, blue, yellow and green lights with the same photosynthetic photon flux density of 100 μmol m?2 s?1. The results revealed that plant growth, CO2 assimilation rate and chlorophyll content were significantly reduced in the seedlings grown under red, blue, yellow and green lights as compared with those grown under white light, but each monochromatic light played its special role in regulating plant morphogenesis and photosynthesis. Seedling leaves were thickened and slightly curled; Rubisco biosynthesis, expression of the rca, rbcS and rbcL, the maximal photochemical efficiency of PSII (Fv/Fm) and quantum yield of PSII electron transport (ФPSII) were all increased in seedlings grown under blue light as compared with those grown under white light. Furthermore, the photosynthetic rate of seedlings grown under blue light was significantly increased, and leaf number and chlorophyll content of seedlings grown under red light were increased as compared with those exposed to other monochromatic lights. On the contrary, the seedlings grown under yellow and green lights were dwarf with the new leaves etiolated. Moreover, photosynthesis, Rubisco biosynthesis and relative gene expression were greatly decreased in seedlings grown under yellow and green light, but chloroplast structural features were less influenced. Interestingly, the Fv/Fm, ФPSII value and chlorophyll content of the seedlings grown under green light were much higher than those grown under yellow light.  相似文献   

9.
The fluence rate dependence of the photobleaching in the cyanobacterium Anabaena variabilis was studied under physiological conditions. According to the in-vivo absorption spectra measured every day during the 5 d exposition the phycobiliproteins are more sensitive to high fluence rates than chlorophyll a. The carotenoids are least sensitive, so that a relative, but not an absolute increase in the carotenoid content occurred. At very high fluence rates exceeding about 50 Wm-2 white light the organisms were photokilled after 5 d of irradiation. Measurements of the nitrate concentrations during the experiments have shown that nitrate was not the limiting factor in these experiments. Analysis of the photobleaching kinetics at 13.5 Wm-2 white light revealed that after about 8 d the contents of all the pigments studied have reached a new, constant level. After exposure of the photobleached cyanobacteria to low irradiances repigmentation occurred. Thus, photobleaching is a light adaptation process and not simply a photodamage phenomenon. Studying the wavelength dependence of photobleaching at a constant photon fluence rate of 4·10-8 mol cm-2 s-1 we found that the photobleaching of both phycobiliproteins and chlorophyll a was exclusively caused by wavelengths absorbed by the phycobiliproteins, mainly phycoerythrocaynin, and red light absorbed by short wavelength chlorophyll. Wavelengths <520 nm were ineffective.  相似文献   

10.
To investigate how light quality influences tomato (Solanum lycopersicum L) seedlings, we examined changes in plant growth, chloroplast ultrastructure, photosynthetic parameters and some photosynthesis-related genes expression levels. For this, tomato plants were grown under different light qualities with the same photosynthetic photon flux density: red (R), blue (B), yellow (Y), green (G) and white (W) lights. Our results revealed that, compared with plants grown under W light, the growth of plants grown under monochromatic lights was inhibited with the growth reduction being more significant in the plants grown under Y and G lights. However, the monochromatic lights had their own effects on the growth and photosynthetic function of tomato seedlings. The plant height was reduced under blue light, but expression of rbcS, rbcL, psbA, psbB genes was up-regulated, and the ΦPSII and electron transport rate (ETR) values were enhanced. More starch grains were accumulated in chloroplasts. The root elongation, net photosynthetic rate (Pn), NPQ and rbcS and psbA genes expression were promoted under red light. Yellow light- and green light-illuminated plants grew badly with their lower Rubisco content and Pn value observed, and less starch grains accumulated in chloroplast. However, less influence was noted of light quality on chloroplast structure. Compared with yellow light, the values of ΦPSII, ETR, qP and NPQ of plants exposed to green light were significantly increased, suggesting that green light was beneficial to both the development of photosynthetic apparatus to some extent.  相似文献   

11.
Abstract: A suitable light quantity and quality is essential for optimal photosynthetic metabolism. Using combinations of three lamp types, the impact of the quality of artificial light conditions on the photosynthetic apparatus of leaves developed in growth chambers was analysed. The VIALOX‐Planta lamps are quite poor outside the green to orange (520 ‐ 620 nm) wavelength range, while the HQI‐BT lamps present a more uniform spectral intensity between 425 and 650 nm (blue to red). The halogen lamps are particularly rich in the red and far red range of the electromagnetic spectra. The lamps also differ in the red: far red ratio, which were 3.07 (VIALOX), 2.06 (HQI‐BT) and 1.12 (halogen). Clear positive effects were detected in most of the photosynthetic parameters in relation to light quality, both at stomatal and mesophyll levels. Despite some species‐dependent sensitivity to blue and red/far red wavelengths, observed among the studied parameters, the best photosynthetic performances of the test plants (Packyrhizus ahipa and Piatã, a hybrid of Coffea dewevrei×Coffea arabica) were obtained almost always with the reinforcement of blue (HQI‐BT lamps), red and far red (halogen lamps) wavelengths and with a red: far red ratio closer to that observed in nature. This suggests the involvement of more than one photoreceptor family in photosynthetic performance. Under such light conditions, increases in net photosynthesis and stomatal conductance were observed and, despite the moderate effects on photosynthetic capacity, strong effects were observed in the capture and transfer of light energy in the antennae pigments, photochemical efficiency of photosystem II and electron transport. This was related to the striking quantitative and qualitative impacts observed on total chlorophylls and carotenoids, which reached, in some cases, increases of 100 and 200 %, respectively. Among carotenoids, increases as high as 9‐fold for α‐carotene were observed (P. ahipa), with chlorophyll (a/b), total (chlorophyll/carotenoid) and carotene (α/β) ratios also strongly affected. This would have affected the structure and stability of photosynthetic membranes which, in turn, affected photosynthetic‐related processes (e.g., antennae pigments, photosystem II and electron transport efficiencies). This was particularly clear in the HQI + halogen treatment. The results unequivocally show that light quality could remain a clear limiting factor for leaf/plant development under artificial light conditions, which could be overcome using more than one lamp type, with complementary emission spectra.  相似文献   

12.
The aim of this study was to evaluate the effects of different light quality of light emitting diode (LED) on the growth, concentration of chlorophyll and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.). Seedlings of the cultivar Te Ai Qing were cultured for 28 days under 6 treatments: red light (R), blue light (B), green light (G), yellow light (Y), red plus blue light (RB) and dysprosium lamp (CK). Lighting experiments were performed under controlled conditions (photon flux density 150 μmol m?2 s?1; 12 h photoperiod; 18–20 °C). The fresh and dry mass were the greatest under RB, which were significantly higher than other light treatments. The fresh mass under RB was almost twice higher compared to other light treatments. Plant height was highest under R treatment and was lowest under B. RB treatment also lowered the plant height significantly. The highest soluble sugar concentration was observed under B. The soluble protein concentration was the greatest under RB. The R treatment was adverse to pigment accumulation. The concentration of photosynthetic pigments and chlorophyll biosynthesis precursors were higher under RB. The RB treatment was beneficial to pigment accumulation.  相似文献   

13.
We report here a comparative analysis of the effect of blue (450 nm), red (660 nm), and white light (400–700 nm) on the protein profile of cyanobacteria Synechococcus sp. PCC 7942. In vivo labeling of cells with [35S] methionine and their subsequent analysis by two-dimensional gel electrophoresis (2-DGE) showed that eight polypeptides were unique to dark adapted cells, ten were blue light specific, and four were specifically induced in red light. The results show that Synechococcus sp. respond to various light treatments rapidly and synthesize new polypeptides in dark and blue/red light. Received: 12 October 1999 / Accepted: 16 November 1999  相似文献   

14.
Di  Qinghua  Li  Jing  Du  Yufen  Wei  Min  Shi  Qinghua  Li  Yan  Yang  Fengjuan 《Journal of Plant Growth Regulation》2021,40(4):1477-1492

The photosynthesis, photomorphogenesis, and photoperiod processes in plants are regulated according to light intensity and quality. The aim of this study was to investigate the effects of different light qualities on eggplant seedlings and determine the best light quality for growth. The seedlings of eggplant cultivar ‘Jingqiejingang’ were grown under light-emitting diodes (LEDs): white (W, the control), red (R), blue (B), and different ratios of B/R lights (B/R = 1/1, B/R = 1/3, B/R = 1/6, B/R = 1/9). The growth parameters, leaf morphology, photosynthetic performance, chlorophyll fluorescence, and the carbon and nitrogen metabolism in the leaves of eggplant seedlings under different LED light treatments were studied. The results showed that the plant height, leaf development, and photosynthetic characteristics were inhibited by red light but elevated by blue light compared with the control. Conversely, the contents of chlorophyll a, chlorophyll b, and carotenoids were all increased by red light, while decreased by blue light significantly. In addition, the contents of carbohydrates and the activities of nitrogen assimilation enzymes were not or little changed by the monochromatic blue and red light. The combined light of red and blue were more beneficial for growth than the monochromatic light, especially B/R = 1/3 light. Under B/R = 1/3 light, the parameter values of plant growth, leaf development, photosynthetic pigments and characteristics, and carbon and nitrogen metabolism were all maximum. Taken together, combined application lights of red and blue are good practice for the cultivation of eggplant seedlings, and LED B/R = 1/3 light was optimum.

  相似文献   

15.
Halite deposits from the hyperarid zone of the Atacama Desert reveal the presence of endolithic microbial colonization dominated by cyanobacteria associated with heterotrophic bacteria and archaea. Using the λ-scan confocal laser scanning microscopy (CLSM) option, this study examines the autofluorescence emission spectra produced by single cyanobacterial cells found inside halite rocks and by their photosynthetic pigments. Photosynthetic pigments could be identified according to the shapes of the emission spectra and wavelengths of fluorescence peaks. According to their fluorescence fingerprints, three groups of cyanobacterial cells were identified within this natural extreme microhabitat: (i) cells producing a single fluorescence peak corresponding to the emission range of phycobiliproteins and chlorophyll a, (ii) cells producing two fluorescence peaks within the red and green signal ranges, and (iii) cells emitting only low-intensity fluorescence within the nonspecific green fluorescence signal range. Photosynthetic pigment fingerprints emerged as indicators of the preservation state or viability of the cells. These observations were supported by a cell plasma membrane integrity test based on Sytox Green DNA staining and by transmission electron microscopy ultrastructural observations of cyanobacterial cells.  相似文献   

16.
桉树叶片光合色素含量高光谱估算模型   总被引:13,自引:1,他引:12  
色素在植物的生理生态过程中非常重要,利用高光谱数据,揭示光谱反射率上特征波段与光合色素含量间的关系将有助于理解光合色素光谱反射特征的规律,同时为利用高光谱遥感技术快速无损监测植物叶片光合色素提供了技术支持.利用野外采集的桉树叶片样本,在实验室内测定了叶片的高光谱反射率及对应的叶绿素、类胡萝卜素含量.利用光谱分析技术和统计学方法对光谱数据进行处理分析,提取了光谱特征参量,并建立叶绿素、类胡萝卜素含量与光谱特征参量间的估算模型.通过精度检验,研究结果表明以(SDr-SDb)/(SDr+SDb)为变量建立的指数模型估算效果最佳.  相似文献   

17.
18.
The ultrafast caroteonid to chlorophyll a energy transfer dynamics of the isolated fucoxanthin-chlorophyll proteins FCPa and FCPb from the diatom Cyclotella meneghiniana was investigated in a comprehensive study using transient absorption in the visible and near infrared spectral region as well as static fluorescence spectroscopy. The altered oligomerization state of both antenna systems results in a more efficient energy transfer for FCPa, which is also reflected in the different chlorophyll a fluorescence quantum yields. We therefore assume an increased quenching in the higher oligomers of FCPb. The influence of the carotenoid composition was investigated using FCPa and FCPb samples grown under different light conditions and excitation wavelengths at the blue (500 nm) and red (550 nm) wings of the carotenoid absorption. The different light conditions yield in altered amounts of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Since no significant dynamic changes are observed for high light and low light samples, the contribution of the xanthophyll cycle pigments to the energy transfer is most likely negligible. On the contrary, the observed dynamics change drastically for the different excitation wavelengths. The analyses of the decay associated spectra of FCPb suggest an altered energy transfer pathway. For FCPa even an additional time constant was found after excitation at 500 nm. It is assigned to the intrinsic lifetime of either the xanthophyll cycle carotenoids or more probable the blue absorbing fucoxanthins. Based on our studies we propose a detailed model explaining the different excitation energy transfer pathways in FCPa.  相似文献   

19.
Photosynthetic microbial fuel cells (PMFCs) are devices that convert chemical energy into the form of electricity through the catalytic activity of photosynthetic microorganisms. Power densities produced by the photosynthetic microalgae are greatly dependant on light sources and light intensities because these two factors can affect the chlorophyll formation, photosynthesis processes and stomata opening in the microalgae cells. In the present study, Chlamydomonas reinhardtii transformation F5 was used as biocatalyst in photo microbial fuel cells (PMFCs) and were illuminated with monochromatic blue and red LED lights at various light intensities (100, 300, 600 and 900 lx), respectively. The kinetic analysis was successfully employed to describe the intracellular and extracellular electron transfer mechanism of the cells. The results demonstrate that the performance of PMFCs increased in terms of maximum power density and exchange current density (io) with the tendency of decreasing in internal resistance (Rint) and over potential (η) values as increasing monochromatic blue and red LED light intensities. However the PMFCs performed better under red LED light as compared to operating under blue LED light. The maximum power density can reach 12.947 mW m−2, which could be a potential micro-power supply.  相似文献   

20.
We isolated a 38 kDa ssDNA-binding protein from the unicellular cyanobacterium Synechococcus sp. strain PCC 6301 and determined its N-terminal amino acid sequence. A genomic clone encoding the 38 kDa protein was isolated by using a degenerate oligonucleotide probe based on the amino acid sequence. The nucleotide sequence and predicted amino acid sequence revealed that the 38 kDa protein is 306 amino acids long and homologous to the nuclear-encoded 370 amino acid chloroplast ribosomal protein CS1 of spinach (48% identity), therefore identifying it as ribosomal protein (r-protein) S1. Cyanobacterial and chloroplast S1 proteins differ in size from Escherichia coli r-protein S1 (557 amino acids). This provides an additional evidence that cyanobacteria are closely related to chloroplasts. The Synechococcus gene rps1 encoding S1 is located 1.1 kb downstream from psbB, which encodes the photosystem 11 P680 chlorophyll a apoprotein. An open reading frame encoding a potential protein of 168 amino acids is present between psbB and rps1 and its deduced amino acid sequence is similar to that of E. coli hypothetical 17.2 kDa protein. Northern blot analysis showed that rps1 is transcribed as a monocistronic mRNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号