首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用离轴积分腔输出光谱技术测定华北低丘山区栓皮栎人工林冠层上缘(11 m)和下部(6 m)大气CO2浓度和δ13C值,在小时尺度上分析冠层CO2浓度和δ13C变化及其影响因素.结果表明: 冠层CO2浓度呈先高后低再升高的日变化趋势,而δ13C值没有明显一致的日变化规律.白天大气不稳定状态出现的频率为70.2%,在光合作用和林内湍流的共同作用下,栓皮栎冠层下部CO2浓度高于冠层上缘约1.70 μmol·mol-1,而δ13C值低于冠层上缘约0.81‰.晚上大气稳定状态出现的频率为76.2%,湍流弱,冠层叶片呼出的CO2不易流动,导致冠层下部CO2浓度高于上缘约1.24 μmol·mol-113C值低于冠层上缘约0.58‰.白天和晚上冠层上下缘的CO2浓度差值与δ13C差值均呈显著的相关关系.逐步回归分析表明,白天太阳辐射和相对湿度是影响冠层CO2浓度和δ13C值差异的主要环境因子,晚上温度显著影响冠层下部与上缘δ13C值的变化,这些环境因子通过增强或减弱光合和呼吸作用来影响冠层大气中CO2浓度和δ13C值的变化.  相似文献   

2.
 本文采样分析了承德市油松年轮中δ13C值自工业革命以来的变化,用以揭示我国北方大气CO2浓度的变化规律。结果表明:承德市油松年轮中的δ13C值自1810年以来平均下降了0.839‰,下降范围0.682‰~1.120‰,指示了大气CO2浓度逐渐升高的特点。δ13C值与历史时期全球大气CO2浓度之间存在显著相关关系(r= –0.5609,P<0.01)。应用树木年轮δ13C值与大气CO2浓度之间的关系式,推测出我国北方大气CO2浓度从工业革命以前的约278.4μmol·mol-1上升到目前的340μmol·mol-1。从而为我国的全球变化研究提供了CO2浓度历史变迁方面的证据。  相似文献   

3.
从实验测得的林内外Ci/Ca差值出发,据已有定量方程,对树木年轮δ^13C含量的幼龄效应进行了定量化探讨,得出林内外植物Ci/Ca的差别将平均造成林内植物δ^13C低于林外植物δ^13C约5.2‰,并由此指出林外比林内植物光合羧化酶RuP2对CO2中^13C和^12C的分部效应b必然要高2‰-4‰,才能补偿由Ci/Ca和δa的差别所造成的林内外树木δ^13C的差值,因此在研究中不应简单地将b作为常数对待。这一结论对于定量地研究和应用树木年轮δ^13C进行环境CO2和δa重建具有重要意义。  相似文献   

4.
稻麦轮作FACE系统平台Ⅰ.系统结构与控制   总被引:37,自引:9,他引:28  
在稻麦轮作水稻田建立FACE系统(Free-Air CO2 Enrichment),即CO2浓度的控制和监测系统平台.利用计算机网络系统对平台的CO2浓度进行监测控制,根据大气中的CO2浓度、风向、风速,作物冠层高度的CO2浓度及昼夜等因素的变化调节CO2气体的释放速度及方向,实现FACE圈的CO2浓度高于周围大气CO2浓度200μmol·mol-1.试验表明,影响控制精度的主要因素有风速、作物和土壤呼吸作用和扩散层高度.经过控制方程参数调整,在白天,控制精度达到80%的时间占总时间的白天达到83%,夜晚为68%.FACE圈内的CO2分布基本均匀.平均CO2设置浓度白天为557mol·mol-1,晚上为608mol·mol-1.圈内CO2浓度分布基本上沿放气管对称分布,由边沿向中心逐步降低.2001年水稻生长季节平均控制精度(TAR)达到白天1.03和晚间1.09.  相似文献   

5.
稻麦轮作FACE系统平台I.系统结构与控制   总被引:49,自引:4,他引:45  
在稻麦轮作水稻田建立FACE系统 (Free AirCO2 Enrichment) ,即CO2 浓度的控制和监测系统平台 .利用计算机网络系统对平台的CO2 浓度进行监测控制 ,根据大气中的CO2 浓度、风向、风速 ,作物冠层高度的CO2 浓度及昼夜等因素的变化调节CO2 气体的释放速度及方向 ,实现FACE圈的CO2 浓度高于周围大气CO2 浓度 2 0 0 μmol·mol-1.试验表明 ,影响控制精度的主要因素有风速、作物和土壤呼吸作用和扩散层高度 .经过控制方程参数调整 ,在白天 ,控制精度达到 80 %的时间占总时间的白天达到 83% ,夜晚为6 8% .FACE圈内的CO2 分布基本均匀 .平均CO2 设置浓度白天为 5 5 7mol·mol-1,晚上为 6 0 8mol·mol-1.圈内CO2 浓度分布基本上沿放气管对称分布 ,由边沿向中心逐步降低 .2 0 0 1年水稻生长季节平均控制精度 (TAR)达到白天 1.0 3和晚间 1.0 9.  相似文献   

6.
化石燃料的大量使用和森林的过度砍伐,引起大气中CO2浓度的大幅度增加,同时由于Suess效应,大气CO2中的δ13C在不断地下降。植物中δ13C的变化是大气CO2浓度和同位素比值变化的敏感指示器。文中利用树木年轮δ13C序列和植物碳同位素分馏模型,尝试恢复了新疆阿勒泰地区近440年来大气δ13C的变化。结果表明,1850年之前,从树木年轮δ13C序列恢复的大气δ13C相对恒定在-6.60‰(R2=0.052),而1850年之后,该大气δ13C明显降低(R2=0.65),平均约为-7.04‰,平均年降低0.0084‰。这一结果高于从冰芯气泡所恢复的大气δ13C,1850年~1981年冰芯大气δ13C平均年降低约0.00657‰这可能与从树木年轮δ13C序列恢复的大气δ13C有更高的分辨率及树木生长点大气δ13C不同于全球大气δ13C值有关。  相似文献   

7.
本研究采用离轴积分腔输出光谱技术对北京山区侧柏人工林进行了大气CO2浓度及其δ13C值的原位观测,在半小时尺度上对比了林内不同高度处大气CO2浓度及其δ13C值的差异,并探究其对气象因子的响应.结果表明: 林内CO2浓度自日出后经历先降低后升高的变化趋势,最低值出现在16:00—16:30,浓度为352.5 μmol·mol-1,最大值出现在5:00左右,达到402.0 μmol·mol-1,其δ13C值变化趋势微弱且较为复杂,呈现出近地层先降低后升高、林冠层先升高后降低的趋势;研究日期内,林内CO2浓度随高度的升高而降低,林内0、2、5、8、12.5和18 m处的日均值为386.5、369.9、368.2、367.8、367.9和367.9 μmol·mol-113C值呈现出随高度升高而升高的趋势,林内0、2、5、8、12.5和18 m处的日均值为-16.0‰、-13.7‰、-13.5‰、-13.5‰、-13.1‰和-13.3‰;逐步回归分析表明,温度和湿度是影响林内大气CO2浓度及δ13C值的主要因子,饱和蒸汽压差(VPD)可以影响林内CO2浓度变化,风速可以影响林冠层CO2浓度变化,而土壤含水率、电导率和地面净辐射则是影响近地层CO2浓度及δ13C值的环境因子.这些环境因子通过增强或减弱生态系统内光合作用和呼吸作用来影响林内CO2浓度及其δ13C值的变化.  相似文献   

8.
CO2浓度升高和施氮条件下小麦根际呼吸对土壤呼吸的贡献   总被引:4,自引:0,他引:4  
Kou TJ  Xu XF  Zhu JG  Xie ZB  Guo DY  Miao YF 《应用生态学报》2011,22(10):2533-2538
依托FACE技术平台,采用稳定13C同位素技术,通过将小麦(C3作物)种植于长期单作玉米(C4作物)的土壤上,研究了大气CO2浓度升高和不同氮肥水平对土壤排放CO2的δ13C值及根际呼吸的影响.结果表明:种植小麦后土壤排放CO2的δ13C值随作物生长逐渐降低,CO2浓度升高200 μmol·mol-1显著降低了孕穗、抽穗期(施氮量为250 kg·hm-2,HN)与拔节、孕穗期(施氮量为150 kg·hm-2,LN)土壤排放CO2的δ13C值,显著提高了孕穗、抽穗期的根际呼吸比例.拔节至成熟期,根际呼吸占土壤呼吸的比例在高CO2浓度下为24%~48% (HN)和21% ~48% (LN),在正常CO2浓度下为20% ~36% (HN)和19%~32%(LN).不同CO2浓度下土壤排放CO2的δ13C值和根际呼吸对氮肥增加的响应不同,CO2浓度与氮肥用量在拔节期对根际呼吸的交互效应显著.  相似文献   

9.
严昌荣  韩兴国  陈灵芝  沈做奎 《生态学报》2002,22(12):2163-2166
利用质谱分析仪对暖温带地区落叶阔叶林优势种稳定碳同位素的分析发现不同树种叶片的稳定碳同位素比率差别较大 ,大多数优势种叶片δ13C值在 -2 4.75 1‰± 0 .85 4‰~ -2 8.1 1 3‰± 1 .5 1 9‰之间。叶片的δ13C值可以分为 3个等级 , 级 ,叶片的 δ13C≥ -2 5 .5‰ , 级 ,叶片的 δ13C值在 -2 5 .5‰~ -2 7.5‰之间 , 级 ,叶片的 δ13C≤ -2 7.5‰ ,由于δ13C值在一定程度上能够反映植物的生理生态特性 ,这表明所研究的植物在生理生态特性方面也可以分为 3个类型。同时 ,由于植物的不同器官具有不同的生理生态特性 ,导致器官对 13C具有不同的分馏特性 ,也导致器官之间的δ13C值产生差异 ,分析结果显示树干、根和小枝的δ13C值一般要较叶片的δ13C值高 ,但不同树种又各具特点。生境的差异是影响稳定碳同位素比率的另一个重要原因 ,良好生境条件下生长的植物的δ13C值一般较生长在干旱瘠薄生境下的低。  相似文献   

10.
采取人工控制实验,探讨了6种C3、C4草本植物在昼/夜温度指标为20/12℃!36/28℃的范围内植物碳同位素组成(δ13C)及其对温度变化的响应,并结合植物比叶面积(SLA)、胞间CO2浓度(ci)与环境CO2浓度(ca)的比值、碳同化率(净光合速率Pn/胞间CO2浓度ci)等光合生长指标对植物δ13C的影响进行了分析。结果表明:所有C3、C4植物样品的δ13C值分别变化在-28.3‰!-32.1‰和-14.4‰!-17.6‰之间;在C3植物中,油菜δ13C值分布范围最集中,位于-31.1‰!-32.1‰之间;C4植物中,谷子δ13C值分布范围最窄。在控制的温度范围内,3种C3植物的平均δ13C值随温度升高而显著变低,而C4植物δ13C平均值与温度呈先增大后减小的抛物型关系,但线性回归结果未达到显著水平(P0.05)。单个植物种的δ13C值对温度的响应不同,茄子、高粱的δ13C值与温度呈线性负相关,其它4种植物与温度均呈二次抛物线关系,这可能与不同植物种具有不同的光合最适温度以及植物δ13C分馏对温度变化的敏感程度不同有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号