首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a messenger that regulates calcium release from intracellular acidic stores. Recent studies have identified two-pore channels (TPCs) as endolysosomal channels that are regulated by NAADP; however, the nature of the NAADP receptor binding site is unknown. To further study NAADP binding sites, we have synthesized and characterized [(32)P-5-azido]nicotinic acid adenine dinucleotide phosphate ([(32)P-5N(3)]NAADP) as a photoaffinity probe. Photolysis of sea urchin egg homogenates preincubated with [(32)P-5N(3)]NAADP resulted in specific labeling of 45-, 40-, and 30-kDa proteins, which was prevented by inclusion of nanomolar concentrations of unlabeled NAADP or 5N(3)-NAADP, but not by micromolar concentrations of structurally related nucleotides such as NAD, nicotinic acid adenine dinucleotide, nicotinamide mononucleotide, nicotinic acid, or nicotinamide. [(32)P-5N(3)]NAADP binding was saturable and displayed high affinity (K(d) ~10 nM) in both binding and photolabeling experiments. [(32)P-5N(3)]NAADP photolabeling was irreversible in a high K(+) buffer, a hallmark feature of NAADP binding in the egg system. The proteins photolabeled by [(32)P-5N(3)]NAADP have molecular masses smaller than the sea urchin TPCs, and antibodies to TPCs do not detect any immunoreactivity that comigrates with either the 45-kDa or the 40-kDa photolabeled proteins. Interestingly, antibodies to TPC1 and TPC3 were able to immunoprecipitate a small fraction of the 45- and 40-kDa photolabeled proteins, suggesting that these proteins associate with TPCs. These data suggest that high affinity NAADP binding sites are distinct from TPCs.  相似文献   

2.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a ubiquitous messenger proposed to stimulate Ca(2+) release from acidic organelles via two-pore channels (TPCs). It has been difficult to resolve this trigger event from its amplification via endoplasmic reticulum Ca(2+) stores, fuelling speculation that archetypal intracellular Ca(2+) channels are the primary targets of NAADP. Here, we redirect TPC2 from lysosomes to the plasma membrane and show that NAADP evokes Ca(2+) influx independent of ryanodine receptors and that it activates a Ca(2+)-permeable channel whose conductance is reduced by mutation of a residue within a putative pore. We therefore uncouple TPC2 from amplification pathways and prove that it is a pore-forming subunit of an NAADP-gated Ca(2+) channel.  相似文献   

3.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a molecule capable of initiating the release of intracellular Ca2+ required for many essential cellular processes. Recent evidence links two-pore channels (TPCs) with NAADP-induced release of Ca2+ from lysosome-like acidic organelles; however, there has been no direct demonstration that TPCs can act as NAADP-sensitive Ca2+ release channels. Controversial evidence also proposes ryanodine receptors as the primary target of NAADP. We show that TPC2, the major lysosomal targeted isoform, is a cation channel with selectivity for Ca2+ that will enable it to act as a Ca2+ release channel in the cellular environment. NAADP opens TPC2 channels in a concentration-dependent manner, binding to high affinity activation and low affinity inhibition sites. At the core of this process is the luminal environment of the channel. The sensitivity of TPC2 to NAADP is steeply dependent on the luminal [Ca2+] allowing extremely low levels of NAADP to open the channel. In parallel, luminal pH controls NAADP affinity for TPC2 by switching from reversible activation of TPC2 at low pH to irreversible activation at neutral pH. Further evidence earmarking TPCs as the likely pathway for NAADP-induced intracellular Ca2+ release is obtained from the use of Ned-19, the selective blocker of cellular NAADP-induced Ca2+ release. Ned-19 antagonizes NAADP-activation of TPC2 in a non-competitive manner at 1 μm but potentiates NAADP activation at nanomolar concentrations. This single-channel study provides a long awaited molecular basis for the peculiar mechanistic features of NAADP signaling and a framework for understanding how NAADP can mediate key physiological events.  相似文献   

4.
Two-pore channels (TPCs) localize to the endolysosomal system and have recently emerged as targets for the Ca(2+)-mobilizing messenger, nicotinic acid adenine dinucleotide phosphate (NAADP). However, their membrane topology is unknown. Using fluorescence protease protection assays, we show that human TPC1 and TPC2 possess cytosolic N and C termini and therefore an even number of transmembrane regions. Fluorophores placed at position 225 or 347 in TPC1, or 339 in TPC2 were also cytosolic, whereas a fluorophore at position 628 in TPC1 was luminal. These data together with sequence similarity to voltage-gated Ca(2+) and Na(+) channels, and unbiased in silico predictions are consistent with a topology in which two homologous domains are present, each comprising 6 transmembrane regions and a re-entrant pore loop. Immunocytochemical analysis of selectively permeabilized cells using antipeptide antibodies confirmed that the C-terminal tails of recombinant TPCs are cytosolic and that residues 240-254 of TPC2 prior to putative pore 1 are luminal. Both TPC1 and TPC2 are N-glycosylated with residues 599, 611, and 616 contributing to glycosylation of TPC1. This confirms the luminal position of these residues, which immediately precede the putative pore loop of the second domain. Mutation of all three glycosylation sites in TPC1 enhances NAADP-evoked cytosolic Ca(2+) signals. Our data establish essential features of the topology of two-pore channels.  相似文献   

5.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent second messenger that mobilizes Ca(2+) from the acidic endolysosomes by activation of the two-pore channels TPC1 and TPC2. The channel properties of human TPC1 have not been studied before, and its cellular function is not known. In the present study, we characterized TPC1 incorporated into lipid bilayers. The native and recombinant TPC1 channels are activated by NAADP. TPC1 activity requires acidic luminal pH and high luminal Ca(2+). With Ba(2+) as the permeable ion, luminal Ca(2+) activates TPC1 with an apparent K(m) of 180 μm. TPC1 operates in two tightly coupled conductance states of 47 ± 8 and 200 ± 9 picosiemens. Importantly, opening of the large conductance markedly increases the small conductance mean open time. Changes in membrane potential from 0 to -60 mV increased linearly both the small and the large conductances and NP(o), indicating that TPC1 is regulated by voltage. Intriguingly, the apparent affinity for activation of TPC1 by its ligand NAADP is not constant. Rather, hyperpolarization increases the apparent affinity of TPC1 for NAADP by 10 nm/mV. The concerted regulation of TPC1 activity by luminal Ca(2+) and by membrane potential thus provides a potential mechanism to explain NAADP-induced Ca(2+) oscillations. These findings reveal unique properties of TPC1 to explain its role in Ca(2+) oscillations and cell function.  相似文献   

6.
NAADP is a potent second messenger that mobilizes Ca(2+) from acidic organelles such as endosomes and lysosomes. The molecular basis for Ca(2+) release by NAADP, however, is uncertain. TRP mucolipins (TRPMLs) and two-pore channels (TPCs) are Ca(2+)-permeable ion channels present within the endolysosomal system. Both have been proposed as targets for NAADP. In the present study, we probed possible physical and functional association of these ion channels. Exogenously expressed TRPML1 showed near complete colocalization with TPC2 and partial colocalization with TPC1. TRPML3 overlap with TPC2 was more modest. TRPML1 and to some extent TRPML3 co-immunoprecipitated with TPC2 but less so with TPC1. Current recording, however, showed that TPC1 and TPC2 did not affect the activity of wild-type TRPML1 or constitutively active TRPML1(V432P). N-terminally truncated TPC2 (TPC2delN), which is targeted to the plasma membrane, also failed to affect TRPML1 and TRPML1(V432P) channel function or TRPML1(V432P)-mediated Ca(2+) influx. Whereas overexpression of TPCs enhanced NAADP-mediated Ca(2+) signals, overexpression of TRPML1 did not, and the dominant negative TRPML1(D471K) was without affect on endogenous NAADP-mediated Ca(2+) signals. Furthermore, the single channel properties of NAADP-activated TPC2delN were not affected by TRPML1. Finally, NAADP-evoked Ca(2+) oscillations in pancreatic acinar cells were identical in wild-type and TRPML1(-/-) cells. We conclude that although TRPML1 and TPCs are present in the same complex, they function as two independent organellar ion channels and that TPCs, not TRPMLs, are the targets for NAADP.  相似文献   

7.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent Ca(2+)-mobilizing messenger that in many cells releases Ca(2+) from the endolysosomal system. Recent studies have shown that NAADP-induced Ca(2+) mobilization is mediated by the two-pore channels (TPCs). Whether NAADP acts as a messenger in astrocytes is unclear, and downstream functional consequences have yet to be defined. Here, we show that intracellular delivery of NAADP evokes Ca(2+) signals from acidic organelles in rat astrocytes and that these signals are potentiated upon overexpression of TPCs. We also show that NAADP increases acidic vesicular organelle formation and levels of the autophagic markers, LC3II and beclin-1. NAADP-mediated increases in LC3II levels were reduced in cells expressing a dominant-negative TPC2 construct. Our data provide evidence that NAADP-evoked Ca(2+) signals mediated by TPCs regulate autophagy.  相似文献   

8.
The mechanism by which cyclic adenosine diphosphate ribose (cADPR) and nicotinic acid adenine dinucleotide phosphate (NAADP) mobilize intracellular Ca(2+) stores remains controversial. It is open to question whether cADPR regulates ryanodine receptors (RyRs) directly, as originally proposed, or indirectly by promoting Ca(2+) uptake into the sarco/endoplasmic reticulum by sarco/endoplasmic reticulum Ca(2+)-ATPases. Conversely, although we have proposed that NAADP mobilizes endolysosomal Ca(2+) stores by activating two-pore domain channels (TPCs), others suggest that NAADP directly activates RyRs. We therefore assessed Ca(2+) signals evoked by intracellular dialysis from a patch pipette of cADPR and NAADP into HEK293 cells that stably overexpress either TPC1, TPC2, RyR1, or RyR3. No change in intracellular Ca(2+) concentration was triggered by cADPR in either wild-type HEK293 cells (which are devoid of RyRs) or in cells that stably overexpress TPC1 and TPC2, respectively. By contrast, a marked Ca(2+) transient was triggered by cADPR in HEK293 cells that stably expressed RyR1 and RyR3. The Ca(2+) transient was abolished following depletion of endoplasmic reticulum stores by thapsigargin and block of RyRs by dantrolene but not following depletion of acidic Ca(2+) stores by bafilomycin. By contrast, NAADP failed to evoke a Ca(2+) transient in HEK293 cells that expressed RyR1 or RyR3, but it induced robust Ca(2+) transients in cells that stably overexpressed TPC1 or TPC2 and in a manner that was blocked following depletion of acidic stores by bafilomycin. We conclude that cADPR triggers Ca(2+) release by activating RyRs but not TPCs, whereas NAADP activates TPCs but not RyRs.  相似文献   

9.
Two-pore channels form homo- and heterodimers   总被引:1,自引:0,他引:1  
Two-pore channels (TPCs) have been recently identified as NAADP-regulated Ca(2+) release channels, which are localized on the endolysosomal system. TPCs have a 12-transmembrane domain (TMD) structure and are evolutionary intermediates between the 24-TMD α-subunits of Na(+) or Ca(2+) channels and the transient receptor potential channel superfamily, which have six TMDs in a single subunit and form tetramers with 24 TMDs as active channels. Based on this relationship, it is predicted that TPCs dimerize to form functional channels, but the dimerization of human TPCs has so far not been studied. Using co-immunoprecipitation studies and a mass spectroscopic analysis of the immunocomplex, we show the presence of homo- and heteromeric complexes for human TPC1 and TPC2. Despite their largely distinct localization, we identified a discrete number of endosomes that coexpressed TPC1 and TPC2. Homo- and heteromerization were confirmed by a FRET study, showing that both proteins interacted in a rotational (N- to C-terminal/head-to-tail) symmetry. This is the first report describing the presence of homomultimeric TPC1 channels and the first study showing that TPCs are capable of forming heteromers.  相似文献   

10.
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a potent and widespread calcium-mobilizing messenger, the properties of which have been most extensively described in sea urchin eggs. The molecular basis for calcium release by NAADP, however, is not clear and subject to controversy. Recent studies have provided evidence that members of the two-pore channel (TPC) family in mammals are the long sought after target channels for NAADP. Here, we show that the TPC3 gene, which has yet to be functionally characterized, is present throughout the deuterostome lineage but is a pseudogene in humans and other primates. We report the molecular cloning of the complete ancestral TPC gene family from the sea urchin and demonstrate that all three isoforms localize to acidic organelles to mediate NAADP-dependent calcium release. Our data highlight the functional divergence of this novel gene family during deuterostome evolution and provide further evidence that NAADP mediates calcium release from acidic stores through activation of TPCs.  相似文献   

11.
NAADP receptors     
Of the established Ca(2+) mobilizing messengers, NAADP is arguably the most tantalizing. It is the most potent, often efficacious at low nanomolar concentrations. Recent studies have identified a new class of calcium release channel, the two-pore channels (TPCs), as the likely targets for NAADP. These channels are endolysosomal in localization where they mediate local Ca(2+) release, and have highlighted a new role of acidic organelles as targets for messenger-evoked Ca(2+) mobilization. Three distinct roles of TPCs have been identified. The first is to effect local Ca(2+) release that may play a role in endolysosomal function including vesicular fusion and trafficking. The second is to trigger global calcium release by recruiting Ca(2+)-induced Ca(2+) release (CICR) channels at lysosomal-ER junctions. The third is to regulate plasma membrane excitability by the targeting of Ca(2+) release from appropriately positioned subplasma membrane stores to regulate plasma membrane Ca(2+)-activated channels. In this review, I discuss the role of NAADP-mediated Ca(2+) release from endolysosomal stores as a widespread trigger for intracellular calcium signaling mechanisms, and how studies of TPCs are beginning to enhance our understanding of the central role of lysosomes in Ca(2+) signaling.  相似文献   

12.
Recent studies into the mechanisms of action of the Ca(2+)-mobilizing messenger NAADP (nicotinic acid-adenine dinucleotide phosphate) have demonstrated that a novel family of intracellular Ca(2+)-release channels termed TPCs (two-pore channels) are components of the NAADP receptor. TPCs appear to be exclusively localized to the endolysosomal system. These findings confirm previous pharmacological and biochemical studies suggesting that NAADP targets acidic Ca(2+) stores rather than the endoplasmic reticulum, the major site of action of the other two principal Ca(2+)-mobilizing messengers, InsP(3) and cADPR (cADP-ribose). Studies of the messenger roles of NAADP and the function of TPCs highlight the novel role of lysosomes and other organelles of the endocytic pathway as messenger-regulated Ca(2+) stores which also affects the regulation of the endolysosomal system.  相似文献   

13.
NAADP (nicotinic acid-adenine dinucleotide phosphate) is a potent Ca2+-mobilizing messenger implicated in many Ca2+-dependent cellular processes. It is highly unusual in that it appears to trigger Ca2+ release from acidic organelles such as lysosomes. These signals are often amplified by archetypal Ca2+ channels located in the endoplasmic reticulum. Recent studies have converged on the TPCs (two-pore channels) which localize to the endolysosomal system as the likely primary targets through which NAADP mediates its effects. 'Chatter' between TPCs and endoplasmic reticulum Ca2+ channels is disrupted when TPCs are directed away from the endolysosomal system. This suggests that intracellular Ca2+ release channels may be closely apposed, possibly at specific membrane contact sites between acidic organelles and the endoplasmic reticulum.  相似文献   

14.
15.
More potent, but less known than IP3 that liberates Ca2+ from the ER, NAADP releases Ca2+ from acidic stores. The notion that TPC channels mediate this Ca2+ release was questioned recently by studies suggesting that TPCs are rather PI(3,5)P2‐activated Na+ channels. Ruas et al (2015) now partially reconcile these views by showing that TPCs significantly conduct both cations and confirm their activation by both NAADP and PI(3,5)P2. They attribute the failure of others to observe TPC‐dependent NAADP‐induced Ca2+ release in vivo to inadequate mouse models that retain partial TPC function.  相似文献   

16.
Alongside the well-studied inositol 1,4,5 trisphosphate and ryanodine receptors, evidence is gathering that a new intracellular release mechanism, gated by the pyridine nucleotide nicotinic acid adenine dinucleotide phosphate (NAADP), is present in numerous organisms, ranging from plant to mammalian cells (reviewed in [1]). Most cells have been shown to express at least two Ca(2+)-release mechanisms controlled by different messengers, and this can lead to redundancy, convergence, or divergence of responses. One exception appears to be muscle and heart contractile tissues. Here, it is thought that the dominant intracellular channel is the ryanodine receptor, while IP(3) receptors are poorly expressed and their role appears to be negligible. We now report that NAADP receptors are functional and abundant in cardiac microsomes. NAADP binds specifically and with high affinity (130 pM and 4 nM) to two sites on cardiac microsomes and releases Ca(2+) with an apparent EC(50) of 323 +/- 14 nM. Furthermore, binding experiments show that this receptor displays both positive and negative cooperativity, a peculiarity unique among intracellular Ca(2+) channels. Therefore, we show that the heart possesses multiple mechanisms to increase the complexity of Ca(2+) signaling and that NAADP may be integral in the functioning of this organ.  相似文献   

17.
Autophagy is an evolutionarily conserved lysosomal degradation pathway, yet the underlying mechanisms remain poorly understood. Nicotinic acid adenine dinucleotide phosphate (NAADP), one of the most potent Ca2+ mobilizing messengers, elicits Ca2+ release from lysosomes via the two pore channel 2 (TPC2) in many cell types. Here we found that overexpression of TPC2 in HeLa or mouse embryonic stem cells inhibited autophagosomal-lysosomal fusion, thereby resulting in the accumulation of autophagosomes. Treatment of TPC2 expressing cells with a cell permeant-NAADP agonist, NAADP-AM, further induced autophagosome accumulation. On the other hand, TPC2 knockdown or treatment of cells with Ned-19, a NAADP antagonist, markedly decreased the accumulation of autophagosomes. TPC2-induced accumulation of autophagosomes was also markedly blocked by ATG5 knockdown. Interestingly, inhibiting mTOR activity failed to increase TPC2-induced autophagosome accumulation. Instead, we found that overexpression of TPC2 alkalinized lysosomal pH, and lysosomal re-acidification abolished TPC2-induced autophagosome accumulation. In addition, TPC2 overexpression had no effect on general endosomal-lysosomal degradation but prevented the recruitment of Rab-7 to autophagosomes. Taken together, our data demonstrate that TPC2/NAADP/Ca2+ signaling alkalinizes lysosomal pH to specifically inhibit the later stage of basal autophagy progression.  相似文献   

18.
钙离子(Ca2+)在细胞各项生理活动中发挥着重要作用. 胞浆游离Ca2+浓度([Ca2+]i)的变化与细胞功能、信号转导及细胞损伤和凋亡都有密切联系.研究证实,烟酸腺嘌呤二核苷磷酸(nicotinic acid adenine dinucleotide phosphate, NAADP)是一种有效的胞内Ca2+释放活化剂,但具体作用机制尚不明确.有研究表明,双孔通道家族(two pore channels,TPCs)可能与此有关.本文对TPCs的结构与功能及其生理病理等相关性的研究进展作一综述,从而为进一步研究TPCs生理功能提供依据.  相似文献   

19.
Two-pore channels (TPCs) are two-domain members of the voltage-gated ion channel superfamily that localize to acidic organelles. Their mechanism of activation (ligands such as NAADP/PI(3,5)P2 versus voltage) and ion selectivity (Ca2+ versus Na+) is debated. Here we report that a cluster of arginine residues in the first domain required for selective voltage-gating of TPC1 map not to the voltage-sensing fourth transmembrane region (S4) but to a cytosolic downstream region (S4-S5 linker). These residues are conserved between TPC isoforms suggesting a generic role in TPC activation. Accordingly, mutation of residues in TPC1 but not the analogous region in the second domain prevents Ca2+ release by NAADP in intact cells. Our data affirm the role of TPCs in NAADP-mediated Ca2+ signalling and unite differing models of channel activation through identification of common domain-specific residues.  相似文献   

20.
Intracellular Ca(2+) is able to control numerous cellular responses through complex spatiotemporal organization. Ca(2+) waves mediated by inositol trisphosphate or ryanodine receptors propagate by Ca(2+)-induced Ca(2+) release and therefore do not have an absolute requirement for a gradient in either inositol trisphosphate or cyclic ADP-ribose, respectively. In contrast, we report that although Ca(2+) increases induced by nicotinic acid adenine dinucleotide phosphate (NAADP) are amplified by Ca(2+)-induced Ca(2+) release locally, Ca(2+) waves mediated by NAADP have an absolute requirement for an NAADP gradient. If NAADP is increased such that its concentration is spatially uniform in one region of an egg, the Ca(2+) increase occurs simultaneously throughout this area, and only where there is diffusion out of this area to establish an NAADP gradient is there a Ca(2+) wave. A local increase in NAADP results in a Ca(2+) increase that spreads by NAADP diffusion. NAADP diffusion is restricted at low but not high concentrations of NAADP, indicating that NAADP diffusion is strongly influenced by binding to immobile and saturable sites, probably the NAADP receptor itself. Thus, the range of action of NAADP can be tuned by its concentration from that of a local messenger, like Ca(2+), to that of a global messenger, like IP(3) or cyclic ADP-ribose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号