首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
John F. Pilger 《Zoomorphology》1982,100(2):143-156
Summary An ultrastructural study of the tentacles of Themiste lageniformis (Sipuncula) was conducted as part of a larger study of head metamorphosis in the species.The oral surface of the tentacles is constructed of a multiciliated, pseudostratified, columnar epithelium while the aboral surface is an unciliated, cuboidal epithelium. Intraepidermal mucous cells lie near the junction of the oral and aboral regions. The basal portion of the epidermal cells is embedded in a thick, collagenous extracellular matrix which contains outer circular muscles, inner longitudinal muscles, the main tentacular nerve and its branches. Three tentacular canals are present and are lined by peritoneum. Hemerythrocytes and coelomocytes flow through the lumen of the canals in a regular pattern.Justification for the designation of the tentacular canals as coelomic rather than vascular is discussed.  相似文献   

2.
The tentacles of the pterobranch Cephalodiscus, a hemisessile ciliary feeder, originate from the lateral aspects of the arms and are covered by an innervated epithelium, the majority of its cells bearing microvilli. Each side of a tentacle has two rows of ciliated cells and additional glandular cells. The coelomic spaces in the tentacles are lined by cross-striated myoepithelial cells, allowing rapid movements of the tentacles. One, possibly two, blood vessels accompany the coelomic canal. On their outer sides the arms are covered by a simple ciliated epithelium with intra-epithelial nerve fibres; the inner side is covered by vacuolar cells. On both sides different types of exocrine cells occur. The collar canals of the mesocoel are of complicated structure. Ventrally their epithelium is pseudostratified and ciliated; dorsally it is lower and forms a fold with specialized cross-striated myoepithelial cells of the coelomic lining. Arms, tentacles, associated coelomic spaces and the collar canal of the mesocoel are considered to be functionally interrelated. It is assumed that rapid regulation of the pore width is possible and even necessary when the tentacular apparatus is retracted, which presumably leads to an increase of hydrostatic pressure in the coelom.  相似文献   

3.
Summary The fine structure of the tentacles of the articulate brachiopod Terebratalia transversa has been studied by light and electron microscopy. The epidermis consists of a simple epithelium that is ciliated in frontal and paired latero-frontal or latero-abfrontal longitudinal tracts. Bundles of unsheathed nerve fibers extend longitudinally between the bases of the frontal epidermal cells and appear to end on the connective tissue cylinder; no myoneural junctions were found. The acellular connective tissue cylinder in each tentacle is composed of orthogonal arrays of collagen fibrils embedded in an amorphous matrix. Baffles of parallel crimped collagen fibrils traverse the connective tissue cylinder in regions where it buckles during flexion of the tentacle.The tentacular peritoneum consists of four cell types: 1) common peritoneal cells that line the lateral walls of the coelomic canal, 2) striated and 3) smooth myoepithelial cells that extend along the frontal and abfrontal sides of the coelomic canal, and 4) squamous smooth myoepithelial cells that comprise the tentacular blood channel.Experimental manipulations of a tentacle indicate that its movements are effected by the interaction of the tentacular contractile apparatus and the resilience of the supportive connective tissue cylinder. The frontal contractile bundle is composed of a central group of striated fibers and two lateral groups of smooth fibers which function to flex the tentacle and to hold it down, respectively. The small abfrontal group of smooth myoepithelial cells effects the re-extension of the tentacle, in conjunction with the passive resiliency of the connective tissue cylinder and the concomitant relaxation of the frontal contractile bundle.The authors wish to express their appreciation to Professor Robert L. Fernald for his advice and encouragement throughout the course of this study. Some of the work was conducted at the Friday Harbor Laboratories of the University of Washington. The authors are indebted to the Director, Professor A.O.D. Willows, for use of the facilities. Part of this study was supported by NIH Developmental Biology Training Grant No. 5-T01-HD00266 and NSF grant BMS 7507689  相似文献   

4.
Free-floating coelomocytes in the tentacular coelomic cavity of the sipunculan Thysanocardia nigra Ikeda, 1904, were studied using light interference contrast microscopy and scanning and transmission electron microscopy. The following coelomocyte types were distinguished: hemerythrocytes, amoebocytes, and two morphological types of granular cells. No clusters of specialized cells that had been reported to occur in the trunk coelom of Th. nigra were found in the tentacular coelom. The corresponding types of coelomocytes from the tentacular and trunk coelomic cavities were shown to differ in size. These two coeloms are completely separated in sipunculans.  相似文献   

5.
The development and arrangement of the tentacular apparatus of Thysanocardia nigra (Ikeda, 1904) and Themiste pyroides (Chamberlin, 1920) are described and illustrated using scanning electron microscopy. In T. nigra, the tentacular apparatus is composed of two crowns: the nuchal arc enclosing the nuchal organ and a crown of numerous oral tentacles arranged in U-shaped festoons. In early juveniles, two dorsal horn-like protrusions develop into the first, or primary, pair of tentacles of the nuchal arc. The second pair of tentacles of the nuchal arc develops dorsolaterally on the bases of the primary tentacles. Two ventrolateral lobes of the oral disk grow and become subdivided by the longitudinal ciliary groove into anlages of one set of dorsal and one set of ventral tentacles, thus forming a first oral festoon. Later, a pair of dorsolateral lobes develop between the first festoons and the nuchal arc to form a second pair of oral festoons. The third and following pairs of oral festoons develop in the dorsolateral growth zones lateral to the borders of the nuchal arc, where they meet the oral crown. The growing festoons extend down the oral disk and run alongside the head. A new oral tentacle appears directly at/on the base of the previous tentacle, thus giving rise to a typical sympodium with an alternating arrangement of tentacles. In T. pyroides, a second pair of tentacles develops from two ciliary lobes that are ventrolateral outgrowths of the circumoral ciliary field around the terminal mouth opening. The third pair of tentacles appears from the dorsolateral lobes at the base of primary tentacles, between the first two pairs of tentacles. These six tentacles determine the position of six main stems of the tentacular apparatus designated the first tentacles in the corresponding stems. The second tentacle in every stem appears as a ventrolateral outgrowth at the base of the first tentacle. The third and following tentacles in the stem are developed between the two previous tentacles according to a sympodial pattern. In both species, the distinct sympodial pattern in the arrangement of tentacles in the tentacular apparatus is well evidenced by the outlines of the ciliary oral grooves. The branched stems of T. pyroides may be homologized structurally and functionally to the oral festoons of T. nigra. J. Morphol. (c) 2006 Wiley-Liss, Inc.  相似文献   

6.
Borisenko, I. and Ereskovsky, A.V. 2011. Tentacular apparatus ultrastructure in the larva of Bolinopsis infundibulum (Lobata: Ctenophora). —Acta Zoologica (Stockholm) 00 : 1–10. Most ctenophores have a tentacular apparatus, which plays some role in their feeding. Tentacle structure has been described in adults of only three ctenophore species, but the larval tentacles have remained completely unstudied. We made a light and electron microscopic study of the tentacular apparatus in the larvae of Bolinopsis infundibulum from the White Sea. The tentacular apparatus of B. infundibulum larvae consists of the tentacle proper and the tentacle root. The former contains terminally differentiated cells, while the latter contains stem cells and cells undergoing differentiation. The core of the tentacle is formed by myocytes, and its epidermis contains colloblasts (hunting cells), wall cells, degenerating cask cells, refractive vesicles, and ciliated sensory cells. Stem cells, colloblasts, and cask cells at various stages of differentiation and putative myocytes progenitors were revealed in the tentacle root. Two different populations of the stem cells in the tentacle root give rise to epidermal (colloblasts and cask cells) and mesogleal (myocytes) cell lines. Nervous elements, glandular cells, and basal lamina were not found. Step‐by‐step differentiation of colloblasts and cask cells is described.  相似文献   

7.
Nautiloidea is the oldest group within the cephalopoda, and modern Nautilus differs much in its outer morphology from all other recent species; its external shell and pinhole camera eye are the most prominent distinguishing characters. A further unique feature of Nautilus within the cephalopods is the lack of suckers or hooks on the tentacles. Instead, the animals use adhesive structures present on the digital tentacles. Earlier studies focused on the general tentacle morphology and put little attention on the adhesive gland system. Our results show that the epithelial parts on the oral adhesive ridge contain three secretory cell types (columnar, goblet, and cell type 1) that differ in shape and granule size. In the non-adhesive aboral epithelium, two glandular cell types (cell types 2 and 3) are present; these were not mentioned in any earlier study and differ from the cells in the adhesive area. The secretory material of all glandular cell types consists mainly of neutral mucopolysaccharide units, whereas one cell type in the non-adhesive epithelium also reacts positive for acidic mucopolysaccharides. The present data indicate that the glue in Nautilus consists mainly of neutral mucopolysaccharides. The glue seems to be a viscous carbohydrate gel, as known from another cephalopod species. De-attachment is apparently effectuated mechanically, i.e., by muscle contraction of the adhesive ridges and tentacle retraction.  相似文献   

8.
The microscopic anatomy and ultrastructure of nephridium have been studied in the sipunculan Thysanocardia nigra Ikeda, 1904 (Sipuncula, Sipunculidea) from the Sea of Japan using histological and electron microscopic techniques (SEM and TEM). This paper describes ultrastructural features of nephridial epithelium, muscle grid, and coelomic epithelium on the surface of the nephridium, the area of the ciliary funnel, and the tongue. Several types of cells were distinguished in the excretory tube of the nephridium: (1) a columnar epithelium of the excretory bunches; (2) a cubical or flattened epithelium of flask-shaped infoldings; and (3) granulocytes that migrate from the coelom to the extracellular matrix of the nephridial wall. The system of podocytes and multiciliary cells were described in the nephridial coelothelium. Two types of secretion of nephridial epithelium have been discovered: a merocrine secretion of columnar cells and an apocrine secretion of cells of the flask-shaped infoldings. Using ultrastructural data, two zones of filtration through the wall of excretory tube have been found, namely (1) the tips of flask-shaped infoldings (via the extracellular matrix and microvillary canals between the epithelial cells) and (2) areas between the flask-shaped infoldings (via the contacts of podocytes, extracellular matrix, and the basal labyrinth of the columnar cells). Unlike previously studied representatives of the genus Phascolosoma, no coelomic epithelium is present on the tips of the flask-shaped infoldings in Th. nigra. This data on the anatomy and histology allow us to conclude that the funnel only works like a gonoduct.  相似文献   

9.
10.
Summary Tentacle structure, movement and feeding of the commensal suctorian Choanophrya infundibulifera have been examined by light, scanning and transmission electron microscopy. The tentacles possess a flattened tip and rounded shaft externally, with a neck and root region internally. There is a microtubule canal consisting of 150 ring microtubules within which are 20–35 curved lamellae each containing about 20 microtubules. Novel structural features include pairs of short oblique arranged microtubules at the tip, and a collar of epiplasm in the neck region. No haptocysts are found in Choanophrya but the tentacle cytoplasm contains two types of inclusions named solenocysts and spherical vesicles. These features are discussed in relation to the processes of tentacle movement and feeding. The rapid longitudinal movements of the tentacles are described and compared to those of other suctorians and possible mechanisms are suggested. Ingestion in Choanophrya is described and several theories involving tentacle microtubules in the feeding process are examined.This investigation was supported by the J.S. Dunkerley Fellowship in Protozoology, awarded by the University of Manchester.  相似文献   

11.
The complete regeneration of a new oral-disc and tentacles has been observed and described for Aiptasia diaphana. These structures are regenerated quite rapidly: seven to ten days at 20°C. At three days post-amputation, the new primary, secondary, and tertiary tentacle buds begin to develop in direct association with the underlying primary, secondary, and tertiary septae (respectively) of the column, suggesting that the latter organize the form of the regenerating oral-disc. Two days after amputation, the zooxanthellae of the presumptive oral disc arrange themselves into a ring which quite precisely delimits the area from which the tentacle buds will form. In spite of its suggestive proximity, this accumulation of algae plays no role in the induction of tentacle buds as was shown by studying regeneration in anemones which essentially lacked large quantities of these symbiotic algae. Cuts perpendicular to the longitudinal axis of the column result in an equal rate of tentacular regeneration around the entire circumference of the presumptive oral disc. Oblique amputations foster an asynchronous regeneration: the tentacle buds of the distal-most area of the severed column are larger and regenerate much sooner than those of the proximal region. Similar results were obtained by studying anemones which were cut perpendicular to their longitudinal axes at different levels along the column. The data suggest that an oral-aboral gradient exists concerning the time required for the initiation of tentacle budding and the rate of tentacle regeneration.  相似文献   

12.
Summary Glyoxylic-acid-induced fluorescence of catecholamines and antibodies against serotonin and FMRFamide were used to study the distribution of putative neurotransmitters in the actinotroch larva ofPhoronis muelleri Selys-Longchamps, 1903. Catecholamines occur in the neuropile of the apical ganglion, in the longitudinal median epistome nerves, in the epistome marginal nerves, and in the nerve along the bases of the tentacles. The tentacles have laterofrontal and latero-abfrontal bundles of processes that form two minor nerves along the lateral ciliary band of the tentacles, and a medio-frontal bundle of processes. Monopolar cells are located on the ventro-lateral part of the mesosome. Processes are located along the posterior ciliary band and as a reticulum in the epidermis. Serotonin-like immunoreactive cells and processes are located in the apical ganglion, in the longitudinal median epistome nerves, and as a dorsal and ventral pair of bundles along the tentacle bases. Processes from the latter extend into the tentacles as the medioabfrontal processes. The latero-abfrontal processes form a minor nerve along the ciliary band. The dorsal bundles forms the major nerve ring along the tentacles and processes extend from it to the metasome. Processes are located along the posterior ciliary band. FMRFamide-like immunoreactive cells and processes are found in the apical ganglion, in the longitudinal median epistome nerves and as a pair of lateral epistome processes projecting towards the ring of tentacles. In the tentacles, a pair of latero-frontal processes are found; these form a minor nerve along the ciliary band. A band of cells can be seen along the tentacle ring.  相似文献   

13.
 The tentacular apparatus of Coeloplana bannworthi consists of a pair of tentacles which bear, on their ventral side, numerous tentilla. Each tentacle extends from and retracts into a tentacular sheath. Tentacles and tentilla are made up of an axial core covered by an epidermis. The epidermis includes six cell types: covering cells, two types of gland cells (mucous cells and granular gland cells), two types of sensory cells (ciliated cells and hoplocytes), and collocytes, this last cell type being exclusively found in the tentilla. The core is made up of a fibrillar matrix, the mesoglea, which is crossed by nerve processes and two kinds of smooth muscle cells. Regular muscle cells are present in both the tentacles and tentilla while giant muscle cells occur exclusively in the tentilla. The retraction of the tentacular apparatus is an active phenomenon due to the contraction of both types of muscle cells. The extension is a passive phenomenon that occurs when the muscle cells relax. Tentacles and tentilla first extend slightly due to the rebound elasticity of the mesogleal fibers and then drag forces exerted by the water column enable the tentacular apparatus to lengthen totally. Once the tentacles and tentilla are extended, gland cells, sensory cells, and collocytes are exposed to the water column. Any swimming planktonic organism may stimulate the sensory cilia which initiates tentillum movements. Pegs of hoplocytes can then more easily contact the prey which results in a slight elevation of the nearby collocytes, the last being responsible for gluing the prey to the tentilla. Accepted: 1 April 1997  相似文献   

14.
Summary Diffuse and synaptic nerve nets are present in the coenenchymal mesoglea and ectoderm of Muricea and Lophogorgia colonies. The nerve nets extend into the polyp column and tentacles maintaining a subectodermalmesogleal position. The density of nerve elements is low in comparison with similar nerve nets found in pennatulids.In the column of the polyp anthocodium, and throughout the oral disk region, neurons cross the mesoglea and enter the polyp endoderm. These neurons presumably connect with the endodermal nerve net which innervates the septal musculature. The trans-mesogleal neurons probably represent the connection between colonial and polyp nervous systems.In the tentacles, longitudinal ectodermal musculature is present with an overlying nerve plexus. These muscles and nerves, as well as tentacular sensory cells, are well represented in the oral side of the tentacles only.Presumed sensory cells form ciliary cone complexes in which one cell possesses an apical cilium. The other cells as well as the centrally located nematocyte contribute microvilli to the cone. The basal portion of the sensory cells is drawn into one or more neurite-like processes which enter the ectodermal nerve plexus. Similar processes form synapses with longitudinal muscle cells and nematocytes. The sensory cells of the ciliary cones presumably include chemoreceptors which can activate or modify nematocyst discharge, local muscle twitches, and tentacle bending.This work was supported by Office of Naval Research Contract N00014-75-C-0242, NSF Grant BMS 74-23242 and General Research Funds of the University of California, Santa Barbara. We wish to thank Dr. Steven K. Fisher for the use of facilities in his lab. This paper is part of a thesis to be submitted by R.A.S. to the Department of Biological Sciences, University of California, Santa Barbara in partial fulfillment of the requirements for the Ph. D.  相似文献   

15.
Ectoprocts, phoronids and brachiopods are often dealt with underthe heading Tentaculata or Lophophorata, sometimes with entoproctsdiscussed in the same chapter, for example in Ruppert and Barnes(1994). The Lophophorata is purported to be held together bythe presence of a "lophophore," a mesosomal tentacle crown withan upstream-collecting ciliary band. However, the mesosomaltentacle crown of pterobranchs has upstream-collecting ciliarybands with monociliate cells, similar to those of phoronidsand brachiopods, although its ontogeny is not well documented.On the contrary, the ectoproct tentacle crown carries a ciliarysieving system with multiciliate cells and the body does notshow archimery, neither during ontogeny nor during budding,so the tentacles cannot be characterized as mesosomal. The entoproctshave tentacles without coelomic canals and with a downstream-collectingciliary system like that of trochophore larvae and adult rotifersand serpulid and sabellid annelids. Planktotrophic phoronidand brachiopod larvae develop tentacles at an early stage, buttheir ciliary system resembles those of echinoderm and enteropneustlarvae. Ectoproct larvae are generally non-feeding, but theplanktotrophic cyphonautes larvae of certain gymnolaemates havea ciliary band resembling that of the adult tentacles. The entoproctshave typical trochophore larvae and many feed with downstream-collectingciliary bands. Phoronids and brachiopods are thus morphologicallyon the deuterostome line, probably as the sister group of the"Neorenalia" or Deuterostomia sensu stricto. The entoproctsare clearly spiralians, although their more precise positionhas not been determined. The position of the ectoprocts is uncertain,but nothing in their morphology indicates deuterostome affinities."Lophophorata" is thus a polyphyletic assemblage and the wordshould disappear from the zoological vocabulary, just as "Vermes"disappeared many years ago.  相似文献   

16.
Summary The haemal and coelomic circulatory systems in arms and pinnules of a stalkless crinoid are described by transmission electron microscopy, and the coelomic topography is revealed by scanning electron microscopy of corrosion casts and peritoneal surfaces. In addition, the route of the coelomic circulation in the living crinoid is shown by injection of carmine particles, and sites of peritoneal phagocytosis are demonstrated by injection of latex beads. The most important morphological findings are: the controversial hyponeural circulation is haemal and not coelomic; peritoneal ciliation is general and not limited to the cells of the ciliated pits; and occur smooth muscle cells occur below the peritoneum. Carmine particles injected into the central body coelom rapidly travel outward toward the arm and pinnule tips via the aboral canals; the particles return to the central body via the subtentacular canals. Latex beads injected intracoelomically are taken up by peritoneal cells throughout the subtentacular, genital and aboral canals. The possible functions of the haemal and coelomic circulatory systems of crinoids are discussed.  相似文献   

17.
Among other characteristics a trimeric coelomic compartmentation consisting of an anterior protocoel, followed by a mesocoel and a posterior metacoel is traditionally believed to substantiate the sister-group relationship between Lophophorata and Deuterostomia, together forming the Radialia. As molecular data cannot support this hypothesis a reanalysis of the coelomic cavities in Phoronida is undertaken, because corresponding coelomic compartmentation is widely accepted to support the Radialia hypothesis. A coelomic cavity can be recognized on the ultrastructural level because its lining is a true epithelium with polarized cells interconnected by apical adherens junctions. This study reveals that neither in larval nor adult Phoronis muelleri (Phoronida) an anterior cavity with such a lining is present. What on the light microscopic level leads to the impression of a cavity inside the larval episphere, actually is an enlarged subepidermal extracellular matrix with an amorphous, presumably gel-like filling, into which several muscle cells are embedded. Larvae, thus, possess only one coelomic cavity, the large trunk coelom of the larva which is adopted in the adult organization. The second coelomic cavity of adult P. muelleri, the lophophore coelom, develops as a double-layer of epithelialized mesodermal cells at the base of the adult tentacle buds and becomes fluid filled during metamorphosis. Like the larval episphere, larval tentacles and most parts of the blastocoel are filled by an amorphous matrix. Reanalysis of the literature and comparison with Brachiopoda and Bryozoa allows the hypothesis that a protocoel is lacking in all Lophophorata, and that merely two unpaired coelomic cavities, one tentacle and one trunk coelom, can be assumed for the ground pattern of this taxon. These results do not provide further evidence for the Radialia hypothesis, but also do not contradict it. Accepted: 28 August 2000  相似文献   

18.
Four types of blood capillaries of the phoronid Phoronopsis harmeri are described. These are capillaries of the tentacles, of the body, of the stomach plexus, and of the vasoperitoneal tissue. The wall of capillary consists of cells of the coelomic lining, a layer of extracellular matrix, and separate endothelial cells. Myoepithelial coelomic cells of tentacle capillaries contain cross-striated fibers. In capillaries of the body and the stomach plexus, the myofilaments are smooth. In the cells of the wall of vasoperitoneal tissue capillaries, myofilaments are lacking. The cells of the vessel wall of the tentacles, the body, and the vasoperitoneal tissue bear a single cilium. The cells of capillaries of the stomach plexus lack a cilium. The ultrastructure of erythrocytes and amebocytes is described. In the cytoplasm of erythrocytes, there is a basal body. It is assumed that erythrocytes originated from the ciliary cells of the wall of the blood vessels.  相似文献   

19.
Fine structural study indicates that the neuromuscular system of stage I polyps of Aurelia aurita is exclusively ectodermal. The three major muscle fields are the radial muscles of the oral disc, the longitudinal muscles of the tentacles, and the muscle cords of the septae and the column; the muscle fields are in physical continuity at the peristomial pits and share a common innervation and type of myofibril. The myofibril is striated in the tentacle base, in the outer oral disc, and in the upper part of the muscle cord; it grades into a smooth muscle toward the tentacle tip, the mouth, and the lower part of the cord. There is a fourth field of longitudinal smooth muscle in the pharynx. The nervous system consists of an epithelial sensory cell in the tentacle and a single type of neuron found in the subepithelial layer of the tentacle, oral disc, and muscle cord. The lack of gap junctions suggests that there is no nonnervous conduction system. The subepithelial layer also contains three types of fibers and a type of soma which cannot be characterized as neuronal. The soma is identified as the “neurosecretory cell” described in Chrysaora. The absence of neuromuscular elements in the column and stolon distinguishes the Aurelia aurita collected from Washington, USA, from English polyps previously described.  相似文献   

20.
Summary The specialized adhesive exumbrellar tentacles of the limnomedusa Vallentinia gabriella were examined by light microscopy and scanning and transmission electron microscopy. The adhesive region first differentiates some distance from the tentacle tip. As differentiation proceeds the distal part is reduced and the adhesive region comes to lie at the tentacle tip. The adhesive epithelium consists of flagellated and non-flagellated glandular cells, a few nematocytes, and a nerve plexus. The glandular cells are characterized by electron-dense granules and bundles of microtubules. The microtubules, being anchored to the mesoglea, are oriented parallel to the longitudinal axis of the cell and extend up to the cell apex. It can be assumed that the microtubules are involved in the transport of secretory granules to the cell apex. Bundles of neurites run adjacent to the mesoglea between the basal processes of the glandular cells. The neurites form interneural synapses and synapses with glandular cells. It is suggested that detachment of the specialized adhesive tentacles is under nervous control.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号