首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
Spinal cord injury (SCI) leads to an alteration of energetic metabolism. As a consequence, glutamate, glutamine, aspartate and other important amino acids are altered after damage, leading to important disregulation of the neurochemical pathways. In the present study, we characterized the acute-phase changes in tissue concentration of amino acids involved in neurotransmitter and non-neurotransmitter actions after SCI by contusion in rats. Animals were submitted to either laminectomy or SCI by contusion and sacrificed at 2, 4, 8, and 12 h after lesion, for the analysis of tissue amino acids by HPLC. Results showed that both aspartate and glutamate contents diminished after SCI, while glutamine concentrations raised, however, the sum of molar concentrations of glutamate plus glutamine remained unchanged at all time points. GABA concentrations increased versus control group, while glycine remained unchanged. Finally, citrulline levels increased by effect of SCI, while taurine-increased only 4 h after lesion. Results indicate complex acute-phase changes in amino acids concentrations after SCI, reflecting the different damaging processes unchained after lesion.  相似文献   

2.
Abstract: A dramatic, time-dependent loss of l -glutamine was observed in mouse and rat hippocampal slices equilibrated in normal artificial CSF under static (no-flow) and super-fused (constant-flow) conditions. Concomitant with the decline in l -glutamine, there was a significant, but less pronounced, decrease in levels of the neurotransmitter amino acids, γ-aminobutyric acid, l -aspartate, and l -glutamate. The disappearance of l -glutamine was a result of diffusion from the tissue to the artificial CSF rather than chemical or biochemical transformation. The loss of amino acids from the hippocampal slices was prevented to different degrees by the addition of 0.5 m M exogenous l -glutamine to the artificial CSF. The levels of newly synthesized amino acids were also determined, because they may be more indicative of the neuronal activity than the total tissue levels of amino acids. The effects of perturbations in glutamine (length of the equilibration time and addition of exogenous. glutamine) on newly synthesized glutamate were more pronounced under 4-aminopyridine-stimulated than control (unstimulated) conditions. Therefore, a loss of l -glutamine from the hippocampal slices may have neurophysiological effects and warrants further investigation.  相似文献   

3.
Abstract: When astrocyte cultures are incubated with glutamate and ammonium, the clearance of these substrates followed by the formation and export of glutamine simulates the action of the "glutamine cycle" that is believed to function in the CNS. In the present study this process was found to increase the uptake of large neutral amino acids (LNAAs), namely, histidine, kynurenine, leucine, phenylalanine, and tryptophan, by two-to threefold in mouse cerebral astrocytes. The enhancement of kynurenine uptake was shown to depend on the formation of glutamine and to saturate at low levels of glutamine. LNAAs transiently lowered the glutamine content of astrocytes that were incubated with glutamate and ammonium, but they did not affect net export of glutamine to the solution at normal physiological pH. However, on adjustment of the pH of the solution to 7.8, which causes a large increase in glutamine content without affecting export, kynurenine now significantly increased net glutamine export. These findings relate to proposed mechanisms of cerebral dysfunction in hyperammonemia.  相似文献   

4.
Abstract: The glutamine cycle has been proposed as a pathway in which glutamine synthesized in glia provides substrate for synthesis of the neurotransmitters glutamate and GABA as they are lost from neurons. To test whether GABA may regulate this pathway, the effect of elevated GABA on the glial enzyme glutamine synthetase was examined in rat brain. Repeated subcutaneous injections of the antiepileptic GABA transaminase inhibitor γ-vinylGABA at a dose of 150 mg/kg per day for 21 days reduced glutamine synthetase activity by 36% in the cortex and 22% in the cerebellum. At 30 mg/kg per day, glutamine synthetase activity was reduced by 9.5% in the cortex but unchanged in the cerebellum. The reductions were brain specific because the skeletal muscle and liver enzymes were unaffected by γ-vinylGABA administration. Amino acid analysis of the cortex from γ-vinylGABA-treated rats demonstrated a 270% increase in GABA levels after 150 mg/kg but no change after 30 mg/kg. GABA levels and glutamine synthetase activity were inversely correlated. The 150 mg/kg dose significantly lowered cortical glutamine and glutamate levels. The decline in brain glutamine synthetase activity with chronic γ-vinylGABA administration developed gradually over time and may be due to the slow turnover of this enzyme in vivo.  相似文献   

5.
The concentration of extracellular excitatory amino acids in the striatum of conscious, unrestrained rats was measured using intracerebral microdialysis, during chemical stimulation of the striatum in intact and hemidecorticate animals. Chemical stimulation of the striatum with tityustoxin (0.1 microM) evoked a rise in dialysate concentration of glutamate (to 383% of basal) and aspartate (to 156% of basal), accompanied by a drop in glutamine (to 55% of basal). These changes showed significant attenuation after treatment with L-proline (1 mM) or 2-chloroadenosine (15 microM). Unilateral degeneration of the corticostriate pathway, produced by frontal hemidecortication, caused a reduction in both basal and stimulated levels of glutamate in the lesioned side, whereas no effect was observed in the intact side. Similarly, basal and stimulated levels of glutamine were unchanged in the intact side, but were increased in the lesioned side. These results provide in vivo evidence for glutamate and possibly aspartate being neurotransmitters in the corticostriate pathway. In addition they lend support to previous studies in vitro, which implicated glutamine as the principal precursor for neurotransmitter glutamate.  相似文献   

6.
Abstract: The tissue content and the interstitial fluid levels of glutamate, aspartate, GABA, glutamine, glycine, and serine were studied in amygdaloid-kindled rat brain. Interstitial levels were studied in vivo before and during stage 5 full limbic seizures using microdialysis. Slices of amygdala from kindled and sham-operated animals were used to study baseline and KCl-evoked release in vitro. The contents of these amino acids were measured in slices of amygdala, hippocampus, and cerebral cortex from kindled and sham-operated animals. Kindled brains showed two- to threefold higher levels of glutamate, aspartate, and GABA and 12-fold higher levels of glutamine than sham-operated controls. Correlating with this, interstitial fluid levels of glutamate were two- to threefold higher from kindled amygdala than from control both in vivo (microdialysis) and in vitro (superfusion). GABA levels in interstitial fluid from kindled amygdala were reduced by 67% compared with control amygdala.  相似文献   

7.
The influence of desmethylimipramine (DMI) on the release of endogenous gamma-aminobutyric acid (GABA) and some other amino acids from the rat thalamus was studied with a push-pull perfusion technique. Following HPLC the amino acids were fluorimetrically estimated. Added to the perfusion medium at a concentration of 10 mumol L-1, DMI caused a 5- to 10-fold increase in the release of GABA. Similar effects were found with imipramine, trimeprimine, haloperidol, and propranolol. The elevation of GABA release induced by DMI was Ca dependent. The release of aspartate and glutamate was also increased by DMI, but in contrast to K ions, DMI did not reduce the thalamic output of glutamine.  相似文献   

8.
Hyponatremia is a highly morbid condition, present in a wide range of human pathologies, that exposes patients to encephalopathic complication and the risk of permanent brain damage and death. Treating hyponatremia has proved to be difficult and still awaits safe management, avoiding the morbid sequelae of demyelinizing and necrotic lesions associated with the use of hypertonic solutions. During acute and chronic hyponatremia in vivo, the brain extrudes the excessive water by decreasing its content of electrolytes and organic osmolytes. At the cellular level, a similar response occurs upon cell swelling. Among the organic osmolytes involved in both responses, free amino acids play a prominent role because of the large intracellular pools often found in nerve cells. An overview of the changes in brain amino acid content during hyponatremia in vivo is presented and the contribution of these changes to the adaptive cell responses involved in volume regulation discussed. Additionally, new data are provided concerning changes in amino acid levels in different regions of the central nervous system after chronic hyponatremia. Results favor the role of taurine, glutamine, glutamate, and aspartate as the main amino acid osmolytes involved in the brain adaptive response to hyponatremia in vivo. Deeper knowledge of the adaptive overall and cellular brain mechanisms activated during hyponatremia would lead to the design of safer therapies for the hyponatremic patient.  相似文献   

9.
The concentrations of endogenous amino acids and choline in the extracellular fluid of human cerebral gliomas have been measured, for the first time, by in vivo microdialysis. Glioblastoma growth was associated with increased concentrations of choline, GABA, isoleucine, leucine, lysine, phenylalanine, taurine, tyrosine, and valine. There was no difference between grade III and grade IV tumors in the concentrations of phenylalanine, isoleucine, tyrosine, valine, and lysine, whereas the concentrations of choline, aspartate, taurine, GABA, leucine, and glutamate were significantly different in the two tumor-grade subgroups. In contrast to the other compounds, the concentration of glutamate was decreased in glioma. The parenchyma adjacent to the tumor showed significant changes only in the extracellular concentration of glutamate, isoleucine, and valine. The concentrations of choline and the amino acids, glutamate, leucine, taurine, and tyrosine showed significant positive correlations with the degree of cell proliferation. Epilepsy, which is relatively common in subjects with gliomas, was shown to be a significant confounding variable when the extracellular concentrations of aspartate, glutamate and GABA were considered.  相似文献   

10.
IGF2 is an autocrine ligand for the beta cell IGF1R receptor and GLP-1 increases the activity of this autocrine loop by enhancing IGF1R expression, a mechanism that mediates the trophic effects of GLP-1 on beta cell mass and function. Here, we investigated the regulation of IGF2 biosynthesis and secretion. We showed that glutamine rapidly and strongly induced IGF2 mRNA translation using reporter constructs transduced in MIN6 cells and primary islet cells. This was followed by rapid secretion of IGF2 via the regulated pathway, as revealed by the presence of mature IGF2 in insulin granule fractions and by inhibition of secretion by nimodipine and diazoxide. When maximally stimulated by glutamine, the amount of secreted IGF2 rapidly exceeded its initial intracellular pool and tolbutamide, and high K+ increased IGF2 secretion only marginally. This indicates that the intracellular pool of IGF2 is small and that sustained secretion requires de novo synthesis. The stimulatory effect of glutamine necessitates its metabolism but not mTOR activation. Finally, exposure of insulinomas or beta cells to glutamine induced Akt phosphorylation, an effect that was dependent on IGF2 secretion, and reduced cytokine-induced apoptosis. Thus, glutamine controls the activity of the beta cell IGF2/IGF1R autocrine loop by increasing the biosynthesis and secretion of IGF2. This autocrine loop can thus integrate changes in feeding and metabolic state to adapt beta cell mass and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号