首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The characterization of ecosystem functioning is significant for different purposes such as biodiversity conservation and ecosystem services. A key aspect of ecosystem functioning is carbon gains, since it represents the energy available for upper trophic levels. In this sense, remote-sensing methods have allowed the study of ecosystem dynamics and spatial distribution at different spatial and temporal scales. The objectives were to describe the regional patterns of ecosystem functional diversity and to establish the importance of interannual variability in the definition of Ecosystem Functional Types (EFTs) in the Argentina Pampas. EFTs were obtained from carbon gains using a set of seven functional attributes and their interannual variations, which were retrieved from 14-year NDVI time-series. An ISODATA technique was applied to all the analyzed variables, and the clusters that best separate in the n-dimensional space were selected using discriminant analysis. The Argentina Pampas shows a high heterogeneity in the spatial patterns of ecosystem functional attributes. The annual integral of NDVI (i-NDVI, a linear estimator of net primary productivity), a complex of ecosystem functional attributes that describe the interannual variability, and the annual relative range of NDVI (RREL, ecosystem seasonality) had the highest relevance to distinguish nine EFTs in the study area. This study shows a novel approach for mapping ecosystem functioning, which reveals the importance of interannual variations. This methodology includes the effects of climate variability on ecosystem dynamics, thus enhancing our understanding of ecosystem functional diversity. The results obtained represent a baseline scenario to evaluate the effects of both land use change and climate variability on ecosystem functioning from a temporal perspective.  相似文献   

2.
Meta-ecosystems: a theoretical framework for a spatial ecosystem ecology   总被引:4,自引:0,他引:4  
This contribution proposes the meta‐ecosystem concept as a natural extension of the metapopulation and metacommunity concepts. A meta‐ecosystem is defined as a set of ecosystems connected by spatial flows of energy, materials and organisms across ecosystem boundaries. This concept provides a powerful theoretical tool to understand the emergent properties that arise from spatial coupling of local ecosystems, such as global source–sink constraints, diversity–productivity patterns, stabilization of ecosystem processes and indirect interactions at landscape or regional scales. The meta‐ecosystem perspective thereby has the potential to integrate the perspectives of community and landscape ecology, to provide novel fundamental insights into the dynamics and functioning of ecosystems from local to global scales, and to increase our ability to predict the consequences of land‐use changes on biodiversity and the provision of ecosystem services to human societies.  相似文献   

3.
Land‐cover and climate change are two main drivers of changes in species ranges. Yet, the majority of studies investigating the impacts of global change on biodiversity focus on one global change driver and usually use simulations to project biodiversity responses to future conditions. We conduct an empirical test of the relative and combined effects of land‐cover and climate change on species occurrence changes. Specifically, we examine whether observed local colonization and extinctions of North American birds between 1981–1985 and 2001–2005 are correlated with land‐cover and climate change and whether bird life history and ecological traits explain interspecific variation in observed occurrence changes. We fit logistic regression models to test the impact of physical land‐cover change, changes in net primary productivity, winter precipitation, mean summer temperature, and mean winter temperature on the probability of Ontario breeding bird local colonization and extinction. Models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local colonization for 30%, 27%, and 29% of species, respectively. Conversely, models with climate change, land‐cover change, and the combination of these two drivers were the top ranked models of local extinction for 61%, 7%, and 9% of species, respectively. The quantitative impacts of land‐cover and climate change variables also vary among bird species. We then fit linear regression models to test whether the variation in regional colonization and extinction rate could be explained by mean body mass, migratory strategy, and habitat preference of birds. Overall, species traits were weakly correlated with heterogeneity in species occurrence changes. We provide empirical evidence showing that land‐cover change, climate change, and the combination of multiple global change drivers can differentially explain observed species local colonization and extinction.  相似文献   

4.
It has been suggested that biogeographic historical legacies in plant diversity may influence ecosystem functioning. This is expected because of known diversity effects on ecosystem functions, and impacts of historical events such as past climatic changes on plant diversity. However, empirical evidence for a link between biogeographic history and present‐day ecosystem functioning is still limited. Here, we explored the relationships between Late‐Quaternary climate instability, species‐pool size, local species and functional diversity, and the net primary productivity (NPP) of Northern Hemisphere forests using structural equation modelling. Our study confirms that past climate instability has negative effects on plant functional diversity and through that on NPP, after controlling for present‐day climate, soil conditions, stand biomass and age. We conclude that global models of terrestrial plant productivity need to consider the biogeographical context to improve predictions of plant productivity and feedbacks with the climate system.  相似文献   

5.
Productivity, habitat heterogeneity and environmental similarity are of the most widely accepted hypotheses to explain spatial patterns of species richness and species composition similarity. Environmental factors may exhibit seasonal changes affecting species distributions. We explored possible changes in spatial patterns of bird species richness and species composition similarity. Feeding habits are likely to have a major influence in bird–environment associations and, given that food availability shows seasonal changes in temperate climates, we expect those associations to differ by trophic group (insectivores or granivores). We surveyed birds and estimated environmental variables along line‐transects covering an E‐W gradient of annual precipitation in the Pampas of Argentina during the autumn and the spring. We examined responses of bird species richness to spatial changes in habitat productivity and heterogeneity using regression analyses, and explored potential differences between seasons of those responses. Furthermore, we used Mantel tests to examine the relationship between species composition similarity and both the environmental similarity between sites and the geographic distance between sites, also assessing differences between seasons in those relationships. Richness of insectivorous birds was directly related to primary productivity in both seasons, whereas richness of seed‐eaters showed a positive association with habitat heterogeneity during the spring. Species composition similarity between assemblages was correlated with both productivity similarity and geographic proximity during the autumn and the spring, except for insectivore assemblages. Diversity within main trophic groups seemed to reflect differences in their spatial patterns as a response to changes between seasons in the spatial patterns of food resources. Our findings suggest that considering different seasons and functional groups in the analyses of diversity spatial pattern could contribute to better understand the determinants of biological diversity in temperate climates.  相似文献   

6.
Climate change projections anticipate increased frequency and intensity of drought stress, but grassland responses to severe droughts and their potential to recover are poorly understood. In many grasslands, high land‐use intensity has enhanced productivity and promoted resource‐acquisitive species at the expense of resource‐conservative ones. Such changes in plant functional composition could affect the resistance to drought and the recovery after drought of grassland ecosystems with consequences for feed productivity resilience and environmental stewardship. In a 12‐site precipitation exclusion experiment in upland grassland ecosystems across Switzerland, we imposed severe edaphic drought in plots under rainout shelters and compared them with plots under ambient conditions. We used soil water potentials to scale drought stress across sites. Impacts of precipitation exclusion and drought legacy effects were examined along a gradient of land‐use intensity to determine how grasslands resisted to, and recovered after drought. In the year of precipitation exclusion, aboveground net primary productivity (ANPP) in plots under rainout shelters was ?15% to ?56% lower than in control plots. Drought effects on ANPP increased with drought severity, specified as duration of topsoil water potential ψ < ?100 kPa, irrespective of land‐use intensity. In the year after drought, ANPP had completely recovered, but total species diversity had declined by ?10%. Perennial species showed elevated mortality, but species richness of annuals showed a small increase due to enhanced recruitment. In general, the more resource‐acquisitive grasses increased at the expense of the deeper‐rooted forbs after drought, suggesting that community reorganization was driven by competition rather than plant mortality. The negative effects of precipitation exclusion on forbs increased with land‐use intensity. Our study suggests a synergistic impact of land‐use intensification and climate change on grassland vegetation composition, and implies that biomass recovery after drought may occur at the expense of biodiversity maintenance.  相似文献   

7.
Vegetation is a key driver of ecosystem functioning (e.g. productivity and stability) and of the maintenance of biodiversity (e.g. creating habitats for other species groups). While vegetation sensitivity to climate change has been widely investigated, its spatio‐temporally response to the dual effects of land management and climate change has been ignored at landscape scale. Here we use a dynamic vegetation model called FATE‐HD, which describes the dominant vegetation dynamics and associated functional diversity, in order to anticipate vegetation response to climate and land‐use changes in both short and long‐term perspectives. Using three contrasted management scenarios for the Ecrins National Park (French Alps) developed in collaboration with the park managers, and one regional climate change scenario, we tracked the dynamics of vegetation structure (forest expansion) and functional diversity over 100 yr of climate change and a further 400 additional years of stabilization. As expected, we observed a slow upward shift in forest cover distribution, which appears to be severely impacted by pasture management (i.e. maintenance or abandonment). The time lag before observing changes in vegetation cover was the result of demographic and seed dispersal processes. However, plant diversity response to environmental changes was rapid. After land abandonment, local diversity increased and spatial turnover was reduced, whereas local diversity decreased following land use intensification. Interestingly, in the long term, as both climate and management scenarios interacted, the regional diversity declined. Our innovative spatio‐temporally explicit framework demonstrates that the vegetation may have contrasting responses to changes in the short and the long term. Moreover, climate and land‐abandonment interact extensively leading to a decrease in both regional diversity and turnover in the long term. Based on our simulations we therefore suggest a continuing moderate intensity pasturing to maintain high levels of plant diversity in this system.  相似文献   

8.
Earth is experiencing multiple global changes that will, together, determine the fate of many species. Yet, how biological communities respond to concurrent stressors at local‐to‐regional scales remains largely unknown. In particular, understanding how local habitat conversion interacts with regional climate change to shape patterns in β‐diversity—differences among sites in their species compositions—is critical to forecast communities in the Anthropocene. Here, we study patterns in bird β‐diversity across land‐use and precipitation gradients in Costa Rica. We mapped forest cover, modeled regional precipitation, and collected data on bird community composition, vegetation structure, and tree diversity across 120 sites on 20 farms to answer three questions. First, do bird communities respond more strongly to changes in land use or climate in northwest Costa Rica? Second, does habitat conversion eliminate β‐diversity across climate gradients? Third, does regional climate control how communities respond to habitat conversion and, if so, how? After correcting for imperfect detection, we found that local land‐use determined community shifts along the climate gradient. In forests, bird communities were distinct between sites that differed in vegetation structure or precipitation. In agriculture, however, vegetation structure was more uniform, contributing to 7%–11% less bird turnover than in forests. In addition, bird responses to agriculture and climate were linked: agricultural communities across the precipitation gradient shared more species with dry than wet forest communities. These findings suggest that habitat conversion and anticipated climate drying will act together to exacerbate biotic homogenization.  相似文献   

9.
There is increasing evidence that mixed‐species forests can provide multiple ecosystem services at a higher level than their monospecific counterparts. However, most studies concerning tree diversity and ecosystem functioning relationships use data from forest inventories (under noncontrolled conditions) or from very young plantation experiments. Here, we investigated temporal dynamics of diversity–productivity relationships and diversity–stability relationships in the oldest tropical tree diversity experiment. Sardinilla was established in Panama in 2001, with 22 plots that form a gradient in native tree species richness of one‐, two‐, three‐ and five‐species communities. Using annual data describing tree diameters and heights, we calculated basal area increment as the proxy of tree productivity. We combined tree neighbourhood‐ and community‐level analyses and tested the effects of both species diversity and structural diversity on productivity and its temporal stability. General patterns were consistent across both scales indicating that tree–tree interactions in neighbourhoods drive observed diversity effects. From 2006 to 2016, mean overyielding (higher productivity in mixtures than in monocultures) was 25%–30% in two‐ and three‐species mixtures and 50% in five‐species stands. Tree neighbourhood diversity enhanced community productivity but the effect of species diversity was stronger and increased over time, whereas the effect of structural diversity declined. Temporal stability of community productivity increased with species diversity via two principle mechanisms: asynchronous responses of species to environmental variability and overyielding. Overyielding in mixtures was highest during a strong El Niño‐related drought. Overall, positive diversity–productivity and diversity–stability relationships predominated, with the highest productivity and stability at the highest levels of diversity. These results provide new insights into mixing effects in diverse, tropical plantations and highlight the importance of analyses of temporal dynamics for our understanding of the complex relationships between diversity, productivity and stability. Under climate change, mixed‐species forests may provide both high levels and high stability of production.  相似文献   

10.
Spatial species-richness gradients across scales: a meta-analysis   总被引:2,自引:0,他引:2  
Aim We surveyed the empirical literature to determine how well six diversity hypotheses account for spatial patterns in species richness across varying scales of grain and extent. Location Worldwide. Methods We identified 393 analyses (‘cases’) in 297 publications meeting our criteria. These criteria included the requirement that more than one diversity hypothesis was tested for its relationship with species richness. We grouped variables representing the hypotheses into the following ‘correlate types’: climate/productivity, environmental heterogeneity, edaphics/nutrients, area, biotic interactions and dispersal/history (colonization limitation or other historical or evolutionary effect). For each case we determined the ‘primary’ variable: the one most strongly correlated with taxon richness. We defined ‘primacy’ as the proportion of cases in which each correlate type was represented by the primary variable, relative to the number of times it was studied. We tested for differences in both primacy and mean coefficient of determination of the primary variable between the hypotheses and between categories of five grouping variables: grain, extent, taxon (animal vs. plant), habitat medium (land vs. water) and insularity (insular vs. connected). Results Climate/productivity had the highest overall primacy, and environmental heterogeneity and dispersal/history had the lowest. Primacy of climate/productivity was much higher in large‐grain and large‐extent studies than at smaller scales. It was also higher on land than in water, and much higher in connected systems than in insular ones. For other hypotheses, differences were less pronounced. Throughout, studies on plants and animals showed similar patterns. Coefficients of determination of the primary variables differed little between hypotheses and across the grouping variables, the strongest effects being low means in the smallest grain class and for edaphics/nutrients variables, and a higher mean for water than for land in connected systems but vice versa in insular systems. We highlight areas of data deficiency. Main conclusions Our results support the notion that climate and productivity play an important role in determining species richness at large scales, particularly for non‐insular, terrestrial habitats. At smaller extents and grain sizes, the primacy of the different types of correlates appears to differ little from null expectation. In our analysis, dispersal/history is rarely the best correlate of species richness, but this may reflect the difficulty of incorporating historical factors into regression models, and the collinearity between past and current climates. Our findings are consistent with the view that climate determines the capacity for species richness. However, its influence is less evident at smaller spatial scales, probably because (1) studies small in extent tend to sample little climatic range, and (2) at large grains some other influences on richness tend to vary mainly within the sampling unit.  相似文献   

11.
Aim To test six hypotheses that could explain or mediate the positive correlation between human population density (HPD) and bird species richness while controlling for biased sampling effort. These hypotheses were labelled as follows: productivity (net primary productivity, NPP); inherent heterogeneity (diversity of vegetation types); anthropogenic heterogeneity (diversity of land uses); conservation policy (proportion of conservation land); increased productivity (human‐induced productivity increases); and the reduced‐slope hypothesis (which predicts that humans have a negative impact on species numbers across the full range of variation in HPD). Location Australia. Methods All data were collected at a spatial resolution of 1° across mainland Australia. Bird species richness was from 2007 atlas data and random subsampling was used to account for biased sampling effort. HPD was from the 2006 census. All other data were from government produced geographic information system layers. The most important biotic or abiotic factors influencing patterns in both species richness and HPD were assessed using simultaneous autoregressive models and an information theoretic approach. Results NPP appeared to be one of the main factors driving spatial congruence between bird species richness and HPD. Inherent habitat heterogeneity was weakly related to richness and HPD, although an interaction between heterogeneity and NPP indicated that the former may be an important determinant of species richness in low‐productivity regions. There was little evidence that anthropogenic landscape heterogeneity or human‐induced changes in productivity influenced the relationship between species richness and HPD, but conservation policy appeared to act as an important mediating factor and species richness was positively related to the proportion of conservation land only in regions of high HPD. Main conclusions The spatial congruence between bird species richness and HPD occurs because both respond positively to productivity and, in certain circumstances, habitat heterogeneity. Our results suggest that conservation policy could mediate this relationship, but further research is required to determine the importance of conservation reserves in supporting species in regions densely populated by humans.  相似文献   

12.
Understanding the mechanisms underlying ecosystem resilience – why some systems have an irreversible response to disturbances while others recover – is critical for conserving biodiversity and ecosystem function in the face of global change. Despite the widespread acceptance of a positive relationship between biodiversity and resilience, empirical evidence for this relationship remains fairly limited in scope and localized in scale. Assessing resilience at the large landscape and regional scales most relevant to land management and conservation practices has been limited by the ability to measure both diversity and resilience over large spatial scales. Here, we combined tools used in large‐scale studies of biodiversity (remote sensing and trait databases) with theoretical advances developed from small‐scale experiments to ask whether the functional diversity within a range of woodland and forest ecosystems influences the recovery of productivity after wildfires across the four‐corner region of the United States. We additionally asked how environmental variation (topography, macroclimate) across this geographic region influences such resilience, either directly or indirectly via changes in functional diversity. Using path analysis, we found that functional diversity in regeneration traits (fire tolerance, fire resistance, resprout ability) was a stronger predictor of the recovery of productivity after wildfire than the functional diversity of seed mass or species richness. Moreover, slope, elevation, and aspect either directly or indirectly influenced the recovery of productivity, likely via their effect on microclimate, while macroclimate had no direct or indirect effects. Our study provides some of the first direct empirical evidence for functional diversity increasing resilience at large spatial scales. Our approach highlights the power of combining theory based on local‐scale studies with tools used in studies at large spatial scales and trait databases to understand pressing environmental issues.  相似文献   

13.
亚洲中部干旱区地处欧亚大陆腹地, 干旱少雨, 生态环境十分脆弱, 研究该地区大气与地表之间的能量和物质交换对干旱区水资源利用和生态环境保护具有重要意义。该文分析了亚洲中部干旱区荒漠与草地生态系统能量、水汽和CO2通量的日变化及季节变化特征, 探究了水汽和CO2通量对主要环境因子的响应。通过分析亚洲中部干旱区3个站点的涡度相关资料发现: 亚洲中部干旱区荒漠和草地生态系统在生长季(4-10月)能量、水汽通量、净CO2通量和总初级生产力的日变化呈“单峰型”, 而荒漠生态系统呼吸日变化相对稳定; 草地生态系统白天的潜热通量占净辐射通量的比例明显高于荒漠生态系统; 草地生态系统在5-8月呈现较强的碳汇, 而荒漠生态系统表现为弱碳汇。亚洲中部干旱区草地和荒漠生态系统水汽通量和总初级生产力对降水、净辐射通量或光合有效辐射、饱和水汽压差、气温均表现出明显的敏感性。  相似文献   

14.
Shifts in nitrogen (N) mineralization and nitrification rates due to global changes can influence nutrient availability, which can affect terrestrial productivity and climate change feedbacks. While many single‐factor studies have examined the effects of environmental changes on N mineralization and nitrification, few have examined these effects in a multifactor context or recorded how these effects vary seasonally. In an old‐field ecosystem in Massachusetts, USA, we investigated the combined effects of four levels of warming (up to 4 °C) and three levels of precipitation (drought, ambient, and wet) on net N mineralization, net nitrification, and potential nitrification. We also examined the treatment effects on the temperature sensitivity of net N mineralization and net nitrification and on the ratio of C mineralization to net N mineralization. During winter, freeze–thaw events, snow depth, and soil freezing depth explained little of the variation in net nitrification and N mineralization rates among treatments. During two years of treatments, warming and altered precipitation rarely influenced the rates of N cycling, and there was no evidence of a seasonal pattern in the responses. In contrast, warming and drought dramatically decreased the apparent Q10 of net N mineralization and net nitrification, and the warming‐induced decrease in apparent Q10 was more pronounced in ambient and wet treatments than the drought treatment. The ratio of C mineralization to net N mineralization varied over time and was sensitive to the interactive effects of warming and altered precipitation. Although many studies have found that warming tends to accelerate N cycling, our results suggest that warming can have little to no effect on N cycling in some ecosystems. Thus, ecosystem models that assume that warming will consistently increase N mineralization rates and inputs of plant‐available N may overestimate the increase in terrestrial productivity and the magnitude of an important negative feedback to climate change.  相似文献   

15.
Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta‐analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change experiments. Additionally, policy and land management decisions related to global change scenarios should consider how ANPP and BNPP responses may differ, and that ecosystem responses to extreme events might not be predicted from relationships found under moderate environmental changes.  相似文献   

16.
Recent studies have shown an increasing trend in hydroclimatic disturbances like droughts, which are anticipated to become more frequent and intense under global warming and climate change. Droughts adversely affect the vegetation growth and crop yield, which enhances the risks to food security for a country like India with over 1.2 billion people to feed. Here, we compared the response of terrestrial net primary productivity (NPP) to hydroclimatic disturbances in India at different scales (i.e., at river basins, land covers, and climate types) to examine the ecosystems’ resilience to such adverse conditions. The ecosystem water use efficiency (WUEe: NPP/Evapotranspiration) is an effective indicator of ecosystem productivity, linking carbon (C) and water cycles. We found a significant difference (p < .05) in WUEe across India at different scales. The ecosystem resilience analysis indicated that most of the river basins were not resilient enough to hydroclimatic disturbances. Drastic reduction in WUEe under dry conditions was observed for some basins, which highlighted the cross‐biome incapability to withstand such conditions. The ecosystem resilience at land cover and climate type scale did not completely relate to the basin‐scale ecosystem resilience, which indicated that ecosystem resilience at basin scale is controlled by some other ecohydrological processes. Our results facilitate the identification of the most sensitive regions in the country for ecosystem management and climate policy making, and highlight the need for taking sufficient adaptation measures to ensure sustainability of ecosystems.  相似文献   

17.
Numerous studies indicate that environmental changes during the late Quaternary have elicited long‐term disequilibria between species diversity and environment. Despite its importance for ecosystem functioning, the importance of historical environmental conditions as determinants of FD (functional diversity) remains largely unstudied. We quantified the geographic distributions of plant FD (richness and dispersion) across Europe using distribution and functional trait information for 2702 plant species. We then compared the importance of historical and contemporary factors to determine the relevance of past conditions as predictors of current plant FD in Europe. For this, we compared the strength of the relationships between FD with temperature and precipitation stability since the LGM (Last Glacial Maximum), accessibility to LGM refugia, and contemporary environmental conditions (climate, productivity, soil, topography, and land use). Functional richness and dispersion exhibited geographic patterns with strong associations to the environmental history of the region. The effect size of accessibility to LGM refugia and climate stability since the LGM was comparable to that of the contemporary predictors. Both functional richness and dispersion increased with temperature stability since the LGM and accessibility to LGM refugia. Functional richness' geographic pattern was primarily associated with accessibility to LGM refugia growing degree‐days, land use heterogeneity, diversity of soil types, and absolute minimum winter temperature. Functional dispersion's geographic pattern was primarily associated with accessibility to LGM refugia growing degree‐days and absolute minimum winter temperature. The high explained variance and model support of historical predictors are consistent with the idea that long‐term variability in environmental conditions supplements contemporary factors in shaping FD patterns at continental scales. Given the importance of FD for ecosystem functioning, future climate change may elicit not just short‐term shifts in ecosystem functioning, but also long‐term functional disequilibria.  相似文献   

18.
Recent studies have expanded research on biodiversity by investigating whether the effects of diversity on ecosystem functioning hinge on the presence of symbiotic microorganisms. Cool‐season grasses commonly harbour endophytic fungi that can enhance plant resistance to herbivory, drought and competition. We address whether these endosymbionts modify relationships between diversity and two ecosystem properties: productivity and invasibility. We develop a graphical model that predicts endophyte infection of a grass host will weaken correlations between diversity and ecosystem properties. We then use a long‐term field experiment to test this prediction by manipulating symbiosis in tall fescue grass (Festuca arundinacea), a common and invasive species in the US. As predicted, endophyte infection reduced the strength of correlations between diversity and both primary productivity and the invasiveness of tall fescue. By altering relationships between diversity and ecosystem functioning, endophytic fungi may contribute more to the dynamics of communities than previously supposed.  相似文献   

19.
Drought affects more people than any other natural disaster but there is little understanding of how ecosystems react to droughts. This study jointly analyzed spatio‐temporal changes of drought patterns with vegetation phenology and productivity changes between 1999 and 2010 in major European bioclimatic zones. The Standardized Precipitation and Evapotranspiration Index (SPEI) was used as drought indicator whereas changes in growing season length and vegetation productivity were assessed using remote sensing time‐series of Normalized Difference Vegetation Index (NDVI). Drought spatio‐temporal variability was analyzed using a Principal Component Analysis, leading to the identification of four major drought events between 1999 and 2010 in Europe. Correspondence Analysis showed that at the continental scale the productivity and phenology reacted differently to the identified drought events depending on ecosystem and land cover. Northern and Mediterranean ecosystems proved to be more resilient to droughts in terms of vegetation phenology and productivity developments. Western Atlantic regions and Eastern Europe showed strong agglomerations of decreased productivity and shorter vegetation growing season length, indicating that these ecosystems did not buffer the effects of drought well. In a climate change perspective, increase in drought frequency or intensity may result in larger impacts over these ecosystems, thus management and adaptation strategies should be strengthened in these areas of concerns.  相似文献   

20.
Recent prolonged droughts and catastrophic wildfires in the western United States have raised concerns about the potential for forest mortality to impact forest structure, forest ecosystem services, and the economic vitality of communities in the coming decades. We used the Community Land Model (CLM) to determine forest vulnerability to mortality from drought and fire by the year 2049. We modified CLM to represent 13 major forest types in the western United States and ran simulations at a 4‐km grid resolution, driven with climate projections from two general circulation models under one emissions scenario (RCP 8.5). We developed metrics of vulnerability to short‐term extreme and prolonged drought based on annual allocation to stem growth and net primary productivity. We calculated fire vulnerability based on changes in simulated future area burned relative to historical area burned. Simulated historical drought vulnerability was medium to high in areas with observations of recent drought‐related mortality. Comparisons of observed and simulated historical area burned indicate simulated future fire vulnerability could be underestimated by 3% in the Sierra Nevada and overestimated by 3% in the Rocky Mountains. Projections show that water‐limited forests in the Rocky Mountains, Southwest, and Great Basin regions will be the most vulnerable to future drought‐related mortality, and vulnerability to future fire will be highest in the Sierra Nevada and portions of the Rocky Mountains. High carbon‐density forests in the Pacific coast and western Cascades regions are projected to be the least vulnerable to either drought or fire. Importantly, differences in climate projections lead to only 1% of the domain with conflicting low and high vulnerability to fire and no area with conflicting drought vulnerability. Our drought vulnerability metrics could be incorporated as probabilistic mortality rates in earth system models, enabling more robust estimates of the feedbacks between the land and atmosphere over the 21st century.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号