首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
? Below-ground microbial communities influence plant diversity, plant productivity, and plant community composition. Given these strong ecological effects, are interactions with below-ground microbes also important for understanding natural selection on plant traits? ? Here, we manipulated below-ground microbial communities and the soil moisture environment on replicated populations of Brassica rapa to examine how microbial community structure influences selection on plant traits and mediates plant responses to abiotic environmental stress. ? In soils with experimentally simplified microbial communities, plants were smaller, had reduced chlorophyll content, produced fewer flowers, and were less fecund when compared with plant populations grown in association with more complex soil microbial communities. Selection on plant growth and phenological traits also was stronger when plants were grown in simplified, less diverse soil microbial communities, and these effects typically were consistent across soil moisture treatments. ? Our results suggest that microbial community structure affects patterns of natural selection on plant traits. Thus, the below-ground microbial community can influence evolutionary processes, just as recent studies have demonstrated that microbial diversity can influence plant community and ecosystem processes.  相似文献   

2.
Plant phenology is known to depend on many different environmental variables, but soil microbial communities have rarely been acknowledged as possible drivers of flowering time. Here, we tested separately the effects of four naturally occurring soil microbiomes and their constituent soil chemistries on flowering phenology and reproductive fitness of Boechera stricta, a wild relative of Arabidopsis. Flowering time was sensitive to both microbes and the abiotic properties of different soils; varying soil microbiota also altered patterns of selection on flowering time. Thus, soil microbes potentially contribute to phenotypic plasticity of flowering time and to differential selection observed between habitats. We also describe a method to dissect the microbiome into single axes of variation that can help identify candidate organisms whose abundance in soil correlates with flowering time. This approach is broadly applicable to search for microbial community members that alter biological characteristics of interest.  相似文献   

3.
Evolution can occur on ecological time-scales, affecting community and ecosystem processes. However, the importance of evolutionary change relative to ecological processes remains largely unknown. Here, we analyse data from a long-term experiment in which we allowed plant populations to evolve for three generations in dry or wet soils and used a reciprocal transplant to compare the ecological effect of drought and the effect of plant evolutionary responses to drought on soil microbial communities and nutrient availability. Plants that evolved under drought tended to support higher bacterial and fungal richness, and increased fungal : bacterial ratios in the soil. Overall, the magnitudes of ecological and evolutionary effects on microbial communities were similar; however, the strength and direction of these effects depended on the context in which they were measured. For example, plants that evolved in dry environments increased bacterial abundance in dry contemporary environments, but decreased bacterial abundance in wet contemporary environments. Our results suggest that interactions between recent evolutionary history and ecological context affect both the direction and magnitude of plant effects on soil microbes. Consequently, an eco-evolutionary perspective is required to fully understand plant–microbe interactions.  相似文献   

4.
Many factors can affect the assembly of communities, ranging from species pools to habitat effects to interspecific interactions. In microbial communities, the predominant focus has been on the well-touted ability of microbes to disperse and the environment acting as a selective filter to determine which species are present. In this study, we investigated the role of biotic interactions (e.g., competition, facilitation) in fungal endophyte community assembly by examining endophyte species co-occurrences within communities using null models. We used recombinant inbred lines (genotypes) of maize (Zea mays) to examine community assembly at multiple habitat levels, at the individual plant and host genotype levels. Both culture-dependent and culture-independent approaches were used to assess endophyte communities. Communities were analyzed using the complete fungal operational taxonomic unit (OTU) dataset or only the dominant (most abundant) OTUs in order to ascertain whether species co-occurrences were different for dominant members compared to when all members were included. In the culture-dependent approach, we found that for both datasets, OTUs co-occurred on maize genotypes more frequently than expected under the null model of random species co-occurrences. In the culture-independent approach, we found that OTUs negatively co-occurred at the individual plant level but were not significantly different from random at the genotype level for either the dominant or complete datasets. Our results showed that interspecific interactions can affect endophyte community assembly, but the effects can be complex and depend on host habitat level. To our knowledge, this is the first study to examine endophyte community assembly in the same host species at multiple habitat levels. Understanding the processes and mechanisms that shape microbial communities will provide important insights into microbial community structure and the maintenance of microbial biodiversity.  相似文献   

5.
季节性干旱驱动亚热带森林的碳积累 本研究旨在表明处于南亚热带的鼎湖山生物圈保护区的干旱频率和强度正在增加,并说明季节性干旱对亚热带森林碳积累的影响。这是为了应对全球气候变化导致的干旱加剧所带来的威胁开展的一项研究。我们使干旱指数(标准化降水指数、标准降水蒸散发指数、降水距平百分率及自校准帕尔默干旱指数)准确确定干旱期和降水量增加期。此后,将2003至2014年(12年)监测采集的实测涡动通量和土壤含水量数据在干旱期和湿润期之间进行比较,以确定干旱对生态系统碳积累的影响。在本研究所选择的12年期间,干旱的发生时间约占比20%,最强干旱事件和严重程度发生于2012至2013年。研究期间的年平均降水量和气温分别为1404.57 ± 43.2 mm和22.65 ± 0.1 °C,与30年记录(1990–2020)相比较,年降水量减少量可达523 mm,而气温则增加了2.55 °C。与全球针对大多数森林生态系统研究所发表的数据呈相反趋势,处于中国南亚热带区域的鼎湖山生物圈保护区在60%的干旱期内所监测的森林生态系统记录到显著的碳积累趋势,说明季节性干旱驱动了森林的碳积累。  相似文献   

6.
Measuring selection acting on microbial populations in natural or even seminatural environments is challenging because many microbial populations experience variable selection. The majority of rhizobial bacteria are found in the soil. However, they also live symbiotically inside nodules of legume hosts and each nodule can release thousands of daughter cells back into the soil. We tested how past selection (i.e., legacies) by two plant genotypes and by the soil alone affected selection and genetic diversity within a population of 101 strains of Ensifer meliloti. We also identified allelic variants most strongly associated with soil‐ and host‐dependent fitness. In addition to imposing direct selection on rhizobia populations, soil and host environments had lasting effects across host generations. Host presence and genotype during the legacy period explained 22% and 12% of the variance in the strain composition of nodule communities in the second cohort, respectively. Although strains with high host fitness in the legacy cohort tended to be enriched in the second cohort, the diversity of the strain community was greater when the second cohort was preceded by host rather than soil legacies. Our results indicate the potential importance of soil selection driving the evolution of these plant‐associated microbes.  相似文献   

7.
Bonkowski M  Roy J 《Oecologia》2005,143(2):232-240
A gradient of microbial diversity in soil was established by inoculating pasteurized soil with microbial populations of different complexity, which were obtained by a combination of soil fumigation and filtering techniques. Four different soil diversity treatments were planted with six different grass species either in monoculture or in polyculture to test how changes of general microbial functions, such as catabolic diversity and nutrient recycling efficiency would affect the performance of the plant communities. Relatively harsh soil treatments were necessary to elicit visible effects on major soil processes such as decomposition and nitrogen cycling due to the high redundancy and resilience of soil microbial communities. The strongest effects of soil diversity manipulations on plant growth occurred in polycultures where interspecific competition between plants was high. In polycultures, soil diversity reduction led to a gradual, linear decline in biomass production of one subordinate grass species (Bromus hordeaceus), which was compensated by increased growth of two intermediate competitors (Aegilops geniculata, B. madritensis). This negative covariance in growth of competing grass species smoothed the effects of soil diversity manipulations at the plant community level. As a result, total shoot biomass production remained constant. Apparently the effects of soil diversity manipulations were buffered because functional redundancy at both, the microbial and the plant community level complemented each other. The results further suggests that small trade-offs in plant fitness due to general functional shifts at the microbial level can be significant for the outcome of competition in plant communities and thus diversity at much larger scales.  相似文献   

8.
Fire alters the structure and composition of above‐ and belowground communities with concurrent shifts in phylogenetic diversity. The inspection of postfire trends in the diversity of ecological communities incorporating phylogenetic information allows to better understand the mechanisms driving fire resilience. While fire reduces plant phylogenetic diversity based on the recruitment of evolutionarily related species with postfire seed persistence, it increases that of soil microbes by limiting soil resources and changing the dominance of competing microbes. Thus, during postfire community reassembly, plant and soil microbes might experience opposing temporal trends in their phylogenetic diversity that are linked through changes in the soil conditions. We tested this hypothesis by investigating the postfire evolution of plant and soil microbial (fungi, bacteria and archaea) communities across three 20‐year chronosequences. Plant phylogenetic diversity increased with time since fire as pioneer seeders facilitate the establishment of distantly related late‐successional shrubs. The postfire increase in plant phylogenetic diversity fostered plant productivity, eventually recovering soil organic matter. These shifts over time in the soil conditions explained the postfire restoration of fungal and bacterial phylogenetic diversity, which decreased to prefire levels, suggesting that evolutionarily related taxa with high relative fitness recover their competitive superiority during community reassembly. The resilience to fire of phylogenetic diversity across biological domains helps preserve the evolutionary history stored in our ecosystems.  相似文献   

9.
Plants often compete with closely related individuals due to limited dispersal, leading to two commonly invoked predictions on competitive outcomes. Kin selection, from evolutionary theory, predicts that competition between relatives will likely be weaker. The niche partitioning hypothesis, from ecological theory, predicts that competition between close relatives will likely be stronger. We tested for evidence consistent with either of these predictions by growing an annual legume in kin and nonkin groups in the greenhouse. We grew plant groups in treatments of symbiotic nitrogen fixing bacteria differing in strain identity and composition to determine if differences in the microbial environment can facilitate or obscure plant competition patterns consistent with kin selection or niche partitioning. Nonkin groups had lower fitness than expected, based on fitness estimates of the same genotypes grown among kin. Higher fitness among kin groups was observed in mixtures of N‐fixing bacteria strains compared to single inoculations of bacteria strains present in the soil, which increased fitness differences between kin and nonkin groups. Lower fitness in nonkin groups was likely caused by increased competitive asymmetry in nonkin groups due to genetic differences in plant size combined with saturating relationships with plant size and fitness‐ i.e. Jensen's inequality. Our study suggests that microbial soil symbionts alter competitive dynamics among kin and nonkin. Our study also suggests that kin groups can have higher fitness, as predicted by kin selection theory, through a commonly heritable trait (plant size), without requiring kin recognition mechanisms.  相似文献   

10.
Adaptive diversification is a process intrinsically tied to species interactions. Yet, the influence of most types of interspecific interactions on adaptive evolutionary diversification remains poorly understood. In particular, the role of mutualistic interactions in shaping adaptive radiations has been largely unexplored, despite the ubiquity of mutualisms and increasing evidence of their ecological and evolutionary importance. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification, using herbivorous insects and their microbial mutualists as exemplars. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. In this perspective, we examine microbial mutualist mediation of ecological opportunity and ecologically based divergent natural selection for their insect hosts. We also explore the conditions and mechanisms by which microbial mutualists may either facilitate or impede adaptive evolutionary diversification. These include effects on the availability of novel host plants or adaptive zones, modifying host-associated fitness trade-offs during host shifts, creating or reducing enemy-free space, and, overall, shaping the evolution of ecological (host plant) specialization. Although the conceptual framework presented here is built on phytophagous insect–microbe mutualisms, many of the processes and predictions are broadly applicable to other mutualisms in which host ecology is altered by mutualistic interactions.  相似文献   

11.
Adaptive diversification is a process intrinsically tied to species interactions. Yet, the influence of most types of interspecific interactions on adaptive evolutionary diversification remains poorly understood. In particular, the role of mutualistic interactions in shaping adaptive radiations has been largely unexplored, despite the ubiquity of mutualisms and increasing evidence of their ecological and evolutionary importance. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification, using herbivorous insects and their microbial mutualists as exemplars. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. In this perspective, we examine microbial mutualist mediation of ecological opportunity and ecologically based divergent natural selection for their insect hosts. We also explore the conditions and mechanisms by which microbial mutualists may either facilitate or impede adaptive evolutionary diversification. These include effects on the availability of novel host plants or adaptive zones, modifying host-associated fitness trade-offs during host shifts, creating or reducing enemy-free space, and, overall, shaping the evolution of ecological (host plant) specialization. Although the conceptual framework presented here is built on phytophagous insect-microbe mutualisms, many of the processes and predictions are broadly applicable to other mutualisms in which host ecology is altered by mutualistic interactions.  相似文献   

12.
Microbial communities will experience novel climates in the future. Dispersal is now recognized as a driver of microbial diversity and function, but our understanding of how dispersal influences responses to novel climates is limited. We experimentally tested how the exclusion of aerially dispersed fungi and bacteria altered the compositional and functional response of soil microbial communities to drought. We manipulated dispersal and drought by collecting aerially deposited microbes after precipitation events and subjecting soil mesocosms to either filter-sterilized rain (no dispersal) or unfiltered rain (dispersal) and to either drought (25% ambient) or ambient rainfall for 6 months. We characterized community composition by sequencing 16S and ITS rRNA regions and function using community-level physiological profiles. Treatments without dispersal had lower soil microbial biomass and metabolic diversity but higher bacterial and fungal species richness. Dispersal also altered soil community response to drought; drought had a stronger effect on bacterial (but not fungal) community composition, and induced greater functional loss, when dispersal was present. Surprisingly, neither immigrants nor drought-tolerant taxa had higher abundance in dispersal treatments. We show experimentally that natural aerial dispersal rate alters soil microbial responses to disturbance. Changes in dispersal rates should be considered when predicting microbial responses to climate change.  相似文献   

13.
Plant genotypes can have important community‐ and ecosystem‐level effects. However, whether the extended phenotypes of plants feed back to influence the fitness of causal genotypes through soil processes remains unknown. We investigated whether aspen genotypes create distinct soil microbial communities that could potentially affect plant fitness. Using naturally occurring aspen stands in an old‐field system, we set up reciprocal litter transplants among ten genetically distinct aspen clones and tracked decomposition and changes in belowground nutrients and microbial communities for three years. We found that belowground microbial communities became adapted to process specific genotypes of aspen litter to the extent allowable by environment and litter chemistry. Belowground processes were driven by a combination of little quality and prior exposure to specific genotypes of litter. In general, litter from aspen genotypes native to the soil community decomposed more rapidly than did litter from foreign aspen genotypes (i.e. a home‐field advantage existed). While home‐field advantages have been documented to occur among litters of different species, we show that intraspecific variation can elicit similar, albeit weak, effects within a single species. Because rapid decomposition and nutrient cycling is likely to benefit fast‐growing, early‐successional species such as aspen, genotype‐mediated selection for soil microbial communities may feed back to positively affect plant fitness. In addition, belowground communities exhibited significant shifts in response to leaf litter inputs. When exposed to foreign litter, microbial communities changed to become more similar to the microbial community beneath the foreign litter's origin, indicating that belowground microbial communities are predictable given the genotype of the aboveground aspen clone.  相似文献   

14.
Interactions between plants and soil microbes can strongly influence plant diversity and community dynamics. Soil microbes may promote plant diversity by driving negative frequency‐dependent plant population dynamics, or may favor species exclusion by providing one species an average fitness advantage over others. However, past empirical research has focused overwhelmingly on the consequences of frequency‐dependent feedbacks for plant species coexistence and has generally neglected the consequences of microbially mediated average fitness differences. Here we use theory to develop metrics that quantify microbially mediated plant fitness differences, and show that accounting for these effects can profoundly change our understanding of how microbes influence plant diversity. We show that soil microbes can generate fitness differences that favour plant species exclusion when they disproportionately harm (or favour) one plant species over another, but these fitness differences may also favor coexistence if they trade off with competition for other resources or generate intransitive dominance hierarchies among plants. We also show how the metrics we present can quantify microbially mediated fitness differences in empirical studies, and explore how microbial control over coexistence varies along productivity gradients. In all, our analysis provides a more complete theoretical foundation for understanding how plant–microbe interactions influence plant diversity.  相似文献   

15.
Drought duration and intensity are expected to increase with global climate change. How changes in water availability and temperature affect the combined plant–soil–microorganism response remains uncertain. We excavated soil monoliths from a beech (Fagus sylvatica L.) forest, thus keeping the understory plant–microbe communities intact, imposed an extreme climate event, consisting of drought and/or a single heat‐pulse event, and followed microbial community dynamics over a time period of 28 days. During the treatment, we labeled the canopy with 13CO2 with the goal of (i) determining the strength of plant–microbe carbon linkages under control, drought, heat and heat–drought treatments and (ii) characterizing microbial groups that are tightly linked to the plant–soil carbon continuum based on 13C‐labeled PLFAs. Additionally, we used 16S rRNA sequencing of bacteria from the Ah horizon to determine the short‐term changes in the active microbial community. The treatments did not sever within‐plant transport over the experiment, and carbon sinks belowground were still active. Based on the relative distribution of labeled carbon to roots and microbial PLFAs, we determined that soil microbes appear to have a stronger carbon sink strength during environmental stress. High‐throughput sequencing of the 16S rRNA revealed multiple trajectories in microbial community shifts within the different treatments. Heat in combination with drought had a clear negative effect on microbial diversity and resulted in a distinct shift in the microbial community structure that also corresponded to the lowest level of label found in the PLFAs. Hence, the strongest changes in microbial abundances occurred in the heat–drought treatment where plants were most severely affected. Our study suggests that many of the shifts in the microbial communities that we might expect from extreme environmental stress will result from the plant–soil–microbial dynamics rather than from direct effects of drought and heat on soil microbes alone.  相似文献   

16.
Theory predicts that intraspecific competition should be stronger than interspecific competition for any pair of stably coexisting species, yet previous literature reviews found little support for this pattern. We screened over 5400 publications and identified 39 studies that quantified phenomenological intraspecific and interspecific interactions in terrestrial plant communities. Of the 67% of species pairs in which both intra‐ and interspecific effects were negative (competitive), intraspecific competition was, on average, four to five‐fold stronger than interspecific competition. Of the remaining pairs, 93% featured intraspecific competition and interspecific facilitation, a situation that stabilises coexistence. The difference between intra‐ and interspecific effects tended to be larger in observational than experimental data sets, in field than greenhouse studies, and in studies that quantified population growth over the full life cycle rather than single fitness components. Our results imply that processes promoting stable coexistence at local scales are common and consequential across terrestrial plant communities.  相似文献   

17.
Biodiversity decline is a major concern for ecosystem functioning. Recent research efforts have been mostly focused on terrestrial plants, while, despite their importance in both natural and artificial ecosystems, little is known about soil microbial communities. This work aims at investigating the effects of fungal species richness on soil invasion by non resident microbes. Synthetic fungal communities with a species diversity ranging from 1 to 8 were assembled in laboratory microcosms and used in three factorial experiments to assess the effect of diversity on soil fungistasis, microbial invasion of soil amended with plant litter and of plant rhizosphere. The capability of different microbes to colonize environments characterized by different resident microbial communities was measured. The number of microbial species in the microcosms positively affected soil fungistasis that was also induced more rapidly in presence of synthetic communities with more species. Moreover, the increase of resident fungal diversity dramatically reduced the invasibility of both soil and plant rhizosphere. We found lower variability of soil fungistasis and invasibility in microcosms with higher species richness of microbial communities. Our study pointed out the existence of negative relationships between fungal diversity and soil invasibility by non resident microbes. Therefore, the loss of microbial species may adversely affect ecosystem functionality under specific environmental conditions.  相似文献   

18.
Plant–soil feedback (PSF) is widely recognised as a driver of plant community composition, but understanding of its response to drought remains in its infancy. Here, we provide a conceptual framework for the role of drought in PSF, considering plant traits, drought severity, and historical precipitation over ecological and evolutionary timescales. Comparing experimental studies where plants and microbes do or do not share a drought history (through co-sourcing or conditioning), we hypothesise that plants and microbes with a shared drought history experience more positive PSF under subsequent drought. To reflect real-world responses to drought, future studies need to explicitly include plant–microbial co-occurrence and potential co-adaptation and consider the precipitation history experienced by both plants and microbes.  相似文献   

19.
Fitness traits that determine the reproductive ability of individuals and the persistence of populations are affected by drought stress. Medicago truncatula that commonly encounters drought stress in its natural area, and for which large natural diversity and genetic tools are available, is a suitable species to investigate genetic determinism of fitness traits under stress. In a common garden, three successive cycles of short drought stress were applied after flowering, during the reproductive stage that is the most susceptible to drought for that species. Ten genotypes derived from natural populations and a mapping population were used to investigate the genetic determinism of vegetative and reproductive traits as components of fitness. A large genetic variation was observed and transgressive genotypes (more resistant or more susceptible than the parental genotypes) were found in the mapping population. Fitness traits were reduced by 5–74% in drought condition compared to well-watered condition. The most affected characters were total pod number per plant and total pod weight per plant. A total of 49 QTL, explaining between 6 and 38% of phenotypic variation for vegetative and reproductive fitness traits, were detected on all chromosomes except chromosome 6. A major QTL for flowering date (R 2 of 19 and 38%) that co-located with QTL for reproductive fitness traits were found on chromosome 7. In this study, no major QTL specific to drought-stressed or well-watered conditions were detected. We, thus, showed that QTL explaining fitness traits were numerous with small effects, in accordance with the genetic determinism of a complex trait.  相似文献   

20.
Invasive plant species can alter belowground microbial communities. Simultaneously, the composition of soil microbial communities and the abundance of key microbes can influence invasive plant success. Such reciprocal effects may cause plant–microbe interactions to change rapidly during the course of biological invasions in ways that either inhibit or promote invasive species growth. Here we use a space-for-time substitution to illustrate how effects of soil microbial communities on the exotic legume Vicia villosa vary across uninvaded sites, recently invaded sites, and sites invaded by V. villosa for over a decade. We find that soil microorganisms from invaded areas increase V. villosa growth compared to sterilized soil or live soils collected from uninvaded sites, likely because mutualistic nitrogen-fixing rhizobia are not abundant in uninvaded areas. Notably, the benefits resulting from inoculation with live soils were higher for soils from recently invaded sites compared to older invasions, potentially indicating that over longer time scales, soil microbial communities change in ways that may reduce the success of exotic species. These findings suggest that short-term changes to soil microbial communities following invasion may facilitate exotic legume growth likely because of increases in the abundance of mutualistic rhizobia, but also indicate that longer term changes to soil microbial communities may reduce the growth benefits belowground microbial communities provide to exotic species. Our results highlight the changing nature of plant–microbe interactions during biological invasions and illustrate how altered biotic interactions could contribute to both the initial success and subsequent naturalization of invasive legume species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号