首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have carried out a large-scale, semi-automated whole-mount in situ hybridization screen of 8369 cDNA clones in Xenopus laevis embryos. We confirm that differential gene expression is prevalent during embryogenesis since 24% of the clones are expressed non-ubiquitously and 8% are organ or cell type specific marker genes. Sequence analysis and clustering yielded 723 unique genes displaying a differential expression pattern. Of these, 18% were already described in Xenopus, 47% have homologs and 35% are lacking significant sequence similarity in databases. Many of them encode known developmental regulators. We classified 363 of the 723 genes for which a Gene Ontology annotation for molecular function could be attributed and found 'DNA binding' and 'enzyme' the most represented terms. The most common protein domains encoded in these embryonic, differentially expressed genes are the homeobox and RNA Recognition Motif (RRM). Fifty-nine putative orthologs of human disease genes, and 254 organ or cell specific marker genes were identified. Markers were found for nasal placode and archenteron roof, organs for which a specific marker was previously unavailable. Markers were also found for novel subdomains of various other organs. The tissues for which most markers were found are muscle and epidermis. Expression of cell cycle regulators fell in two classes, containing proliferation-promoting and anti-proliferative genes, respectively. We identified 66 new members of the BMP4, chromatin, endoplasmic reticulum, and karyopherin synexpression groups, thus providing a first glimpse of their probable cellular roles. Cluster analysis of tissues to measure tissue relatedness yielded some unorthodox affinities besides expectable lineage relationships. In conclusion, this study represents an atlas of gene expression patterns, which reveals embryonic regionalization, provides novel marker genes, and makes predictions about the functional role of unknown genes.  相似文献   

2.
3.
The goal of this study was to identify the genes coding for β-N-acetylhexosaminidases in the Mediterranean fruit fly (medfly) Ceratitis capitata, one of the most destructive agricultural pests, belonging to the Tephritidae family, order Diptera. Two dimeric β-N-acetylhexosaminidases, HEXA and HEXB, have been recently identified on Drosophila sperm. These enzymes are involved in egg binding through interactions with complementary carbohydrates on the surface of the egg shell. Three genes, Hexosaminidase 1 (Hexo1), Hexosaminidase 2 (Hexo2) and fused lobes (fdl), encode for HEXA and HEXB subunits. The availability of C. capitata EST libraries derived from embryos and adult heads allowed us to identify three sequences homologous to the D. melanogaster Hexo1, Hexo2 and fdl genes. Here, we report the expression profile analysis of CcHexo1, CcHexo2 and Ccfdld in several tissues, organs and stages. Ccfdl expression was highest in heads of both sexes and in whole adult females. In the testis and ovary the three genes showed distinct spatial and temporal expression patterns. All the mRNAs were detectable in early stages of spermatogenesis; CcHexo2 and Ccfdl were also expressed in early elongating spermatid cysts. All three genes are expressed in the ovarian nurse cells. CcHexo1 and Ccfdl are stage specific, since they have been observed in stages 12 and 13 during oocyte growth, when programmed cell death occurs in nurse cells. The expression pattern of the three genes in medfly gonads suggests that, as their Drosophila counterparts, they may encode for proteins involved in gametogenesis and fertilization.  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
Cluster analysis has proven to be a valuable statistical method for analyzing whole genome expression data. Although clustering methods have great utility, they do represent a lower level statistical analysis that is not directly tied to a specific model. To extend such methods and to allow for more sophisticated lines of inference, we use cluster analysis in conjunction with a specific model of gene expression dynamics. This model provides phenomenological dynamic parameters on both linear and non-linear responses of the system. This analysis determines the parameters of two different transition matrices (linear and nonlinear) that describe the influence of one gene expression level on another. Using yeast cell cycle microarray data as test set, we calculated the transition matrices and used these dynamic parameters as a metric for cluster analysis. Hierarchical cluster analysis of this transition matrix reveals how a set of genes influence the expression of other genes activated during different cell cycle phases. Most strikingly, genes in different stages of cell cycle preferentially activate or inactivate genes in other stages of cell cycle, and this relationship can be readily visualized in a two-way clustering image. The observation is prior to any knowledge of the chronological characteristics of the cell cycle process. This method shows the utility of using model parameters as a metric in cluster analysis.  相似文献   

12.
We performed mRNA expression profiling of mouse primary hippocampal neurones undergoing differentiation in vitro. We show that 2314 genes significantly changed expression during neuronal differentiation. The temporal resolution of our experiment (six time points) permits us to distinguish between gene expression patterns characteristic for the axonal and for the dendritic stages of neurite outgrowth. Cluster analysis reveals that, in the process of in vitro neuronal differentiation, a high level of expression of genes involved in the synthesis of DNA and proteins precedes the up regulation of genes involved in protein transport, energy generation and synaptic functions. We report in detail changes in gene expression for genes involved in the synaptic vesicle cycle. Data for other genes can be accessed at our website. We directly compare expression of 475 genes in the differentiating neurones and the developing mouse hippocampus. We demonstrate that the program of gene expression is accelerated in vitro as compared to the situation in vivo. When this factor is accounted for, the gene expression profiles in vitro and in vivo become very similar (median gene-wise correlation 0.787). Apparently once the cells have taken a neuronal fate, the further program of gene expression is largely independent of histological or anatomical context. Our results also demonstrate that a comparison across the two experimental platforms (cDNA microarrays and oligonucleotide chips) and across different biological paradigms is feasible.  相似文献   

13.
14.
DNase I was used as a probe to detect conformational changes of the H4 histone gene of Physarum polycephalum during the cell cycle. The degradation of histone genes was followed by gel electrophoresis and hybridization with a probe for the H4 histone gene. It was found that even during mitosis when chromatin is condensed into chromosomes, the histone genes are preferentially degraded by DNase I. The histone genes retain a characteristic structure which is recognized by DNase I during all stages of the cell cycle and thus independently of the biosynthesis of histones.  相似文献   

15.
DNA microarray has been widely used to examine gene expression profile of different human tumors. The information generated from microarray analysis usually represents the overall range of cancer-associated abnormality associated with gene regulation. In order to identify key regulatory genes involved in carcinogenesis of human cancer, hypothesis driven data mining of the microarray data plus experimental validation becomes a critical approach in the post-genome era. Here, we present an integrative genomic analysis of published microarray data and homolog gene database. Over 20,000 genes were examined to reveal 16 genes specific to vertebrates, cell cycle G2/M regulated, and overexpressed in human HCC. Using Affymetrix microarray analysis, we found that all 16 genes were up-regulated in human HCC. Among these 16 genes, we experimentally validated the up-regulation of receptor for hyaluronan-mediated motility (RHAMM) in different cell model systems. We first confirmed elevation of RHAMM in the G2/M phase of synchronized HeLa cells. We also found that RHAMM had an elevated level of expression in all the HCC samples we examined and it was induced during the G2/M phase of regenerating mouse hepatocytes after partial hepatectomy. Thus, the expression of RHAMM appears to be tightly regulated during mammalian cell cycle G2/M progression. The ectopic overexpression of RHAMM in 293T cells resulted in the accumulation of cells at G2/M phase. RHAMM-induced mitotic arrest of cells was predominantly in the prophase. Taken together, using an integrated functional genomic approach, we have uncovered a set of genes that may play specific roles in cell cycle progression and in HCC development. To elucidate the function of these genes in cell cycle regulation may shed light on the control mechanism of human HCC in the future.  相似文献   

16.
Recent whole-genome studies and in-depth expressed sequence tag (EST) analyses have identified most of the developmentally relevant genes in the urochordate, Ciona intestinalis. In this study, we made use of a large-scale oligo-DNA microarray to further investigate and identify genes with specific or correlated expression profiles, and we report global gene expression profiles for about 66% of all the C. intestinalis genes that are expressed during its life cycle. We succeeded in categorizing the data set into 5 large clusters and 49 sub-clusters based on the expression profile of each gene. This revealed the higher order of gene expression profiles during the developmental and aging stages. Furthermore, a combined analysis of microarray data with the EST database revealed the gene groups that were expressed at a specific stage or in a specific organ of the adult. This study provides insights into the complex structure of ascidian gene expression, identifies co-expressed gene groups and marker genes and makes predictions for the biological roles of many uncharacterized genes. This large-scale oligo-DNA microarray for C. intestinalis should facilitate the understanding of global gene expression and gene networks during the development and aging of a basal chordate.  相似文献   

17.
A variety of TGF-beta-related ligands regulate the left-right asymmetry of vertebrates but the involvement of TGF-betas in left-right specification has not been reported. We assessed whether TGF-beta signaling is involved in the left-right specification of Xenopus post-gastrula embryos by microinjecting Xenopus TGF-beta5 protein into the left or right flank of neurula-tailbud embryos. Injection on the right side of neurulae caused left-right reversal of the internal organs in 93% of the embryos, while injection on the left side caused less than 5% left-right reversal. Expression of Xenopus nodal related-1 (Xnr-1 ), Xenopus antivin and Xenopus Pitx2, which are normally expressed on the left, was unaltered by the left-side injection. In contrast, right-side injection into neurulae induced the expression of these genes predominantly on the right side. Right-side injection into tailbud embryos caused bilateral expression of these handed genes. Time course analysis of asymmetric gene expression revealed that Xnr-1 could be induced by TGF-beta5 at late neurula stage, while antivin and Pitx2 could be induced by TGF-beta5 at the latertail bud stage. Injection of the antisense morpholino oligonucleotide against Xenopus TGF-beta5 into the left dorsal blastomere inhibited the normal left-handed expression of Xnr-1 and Pitx2, and caused the organ reversal in the injected embryos. These results suggest that normal left-right balance of endogenous TGF-beta5 signaling in the neurula embryo may be needed to determine the laterality of the asymmetric genes and to generate the correct left-right axis.  相似文献   

18.
We report the cloning and expression analysis of a mouse gene encoding a novel transmembrane protein. Expression of Sef is similar to that of Fgf8 and Spry2 during early embryogenesis, being prominent in the forebrain, mid-hindbrain boundary, branchial arches, somites, limb bud and tailbud of mouse embryos. These expression profiles indicate that Fgf8, Spry2 and Sef belong to a synexpression group and suggest that these genes may functionally interact during embryonic development. From E12.5 onwards, partially distinct patterns of expression of these genes are observed in the neuroepithelium, sense organs and endodermal-derived organs, that are known sites of expression of other Fgfs.  相似文献   

19.
Early metazoan development consists of cleavage stages characterized by rapid cell cycles that successively divide the fertilized egg. The cell cycle oscillator pauses when the ratio of DNA and cytoplasm (N/C) reaches a threshold characteristic for the species. This pause requires maternal factors as well as zygotic expression of as yet unknown genes. Here we isolate the zygotic gene frühstart of Drosophila and show that it is involved in pausing the cleavage cell cycle. frs is expressed immediately after the last cleavage division. It plays a role in generating a uniform pause and it can inhibit cleavage divisions when precociously expressed. Furthermore, the expression of frs is delayed in haploid embryos and requires activity of the maternal checkpoint gene grapes. We propose that zygotic frs expression is involved in linking the N/C and the pause of cleavage cycle.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号