首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 232 毫秒
1.
Concurrent measurements of leaf gas exchange and on-line 13C discrimination were used to evaluate the CO2 conductance to diffusion from the stomatal cavity to the sites of carboxylation within the chloroplast (internal conductance; gi). When photon irradiance was varied it appeared that gi and/or the discrimination accompanying carboxylation also varied. Despite this problem, gi, was estimated for leaves of peach (Prunus persica), grapefruit (Citrus paradisi), lemon (C. limon) and macadamia (Macadamia integrifolia) at saturating photon irradiance. Estimates for leaves of C. paradisi, C. limon and M. integrifolia were considerably lower than those previously reported for well-nourished herbaceous plants and ranged from 1.1 to2.2μmol CO2 m?2 s?1 Pa?1, whilst P. persica had a mean value of 3.5 μmol CO2 m?2 s?1 Pa?1. At an ambient CO2 partial pressure of 33Pa, estimates of chloroplastic partial pressure of CO2 (Cc) using measurements of CO2 assimilation rate (A) and calculated values of gi, and of partial pressure of CO2 in the stomatal cavity (Cst) were as low as 11.2 Pa for C. limon and as high as 17.8Pa for peach. In vivo maximum rubisco activities (Vmax) were also determined from estimates of Cc. This calculation showed that for a given leaf nitrogen concentration (area basis) C. paradisi and C. limon leaves had a lower Vmax than P. persica, with C. paradisi and C. limon estimated to have only 10% of leaf nitrogen present as rubisco. Therefore, low CO2 assimilation rates despite high leaf nitrogen concentrations in leaves of the evergreen species examined were explained not only by a low Cc but also by a relatively low proportion of leaf nitrogen being used for photosynthesis. We also show that simple one-dimensional equations describing the relationship between leaf internal conductance from stomatal cavities to the sites of carboxylation and carbon isotope discrimination (Δ) can lead to errors in the estimate of gi. Potential effects of heterogeneity in stomatal aperture on carbon isotope discrimination may be particularly important and may lead to a dependence of gi upon CO2 assimilation rate. It is shown that for any concurrent measurement of A and Δ, the estimate of Cc is an overestimate of the correct photosynthetic capacity-weighted value, but this error is probably less than 1.0 Pa.  相似文献   

2.
The relative importance that biomechanical and biochemical leaf traits have on photosynthetic capacity would depend on a complex interaction of internal architecture and physiological differences. Changes in photosynthetic capacity on a leaf area basis and anatomical properties during leaf development were studied in a deciduous tree, Prunus persica, and an evergreen shrub, Olea europaea. Photosynthetic capacity increased as leaves approached full expansion. Internal CO2 transfer conductance (g i) correlated with photosynthetic capacity, although, differences between species were only partially explained through structural and anatomical traits of leaves. Expanding leaves preserved a close functional balance in the allocation of resources of photosynthetic component processes. Stomata developed more rapidly in olive than in peach. Mesophyll thickness doubled from initial through final stages of development when it was twice as thick in olive as in peach. The surface area of mesophyll cells exposed to intercellular air spaces per unit leaf area tended to decrease with increasing leaf expansion, whereas, the fraction of mesophyll volume occupied by the intercellular air spaces increased strongly. In the sclerophyllous olive, structural protection of mesophyll cells had priority over efficiency of photochemical mechanisms with respect to the broad-leaved peach. The photosynthetic capacity of these woody plants during leaf development relied greatly on mesophyll properties, more than on leaf mass per area ratio (LMA) or nitrogen (N) allocation. Age-dependent changes in diffusion conductance and photosynthetic capacity affected photosynthetic relationships of peach versus olive foliage, evergreen leaves maturing functionally and structurally a bit earlier than deciduous leaves in the course of adaptation for xeromorphy.  相似文献   

3.
A ) depend not only on photosynthetic biochemistry but also on mesophyll structure. Because resistance to CO2 diffusion from the substomatal cavity to the stroma is substantial, it is likely that mesophyll structure affects A through affecting diffusion of CO2 in the leaf. To evaluate effects of various aspects of mesophyll structure on photosynthesis, we constructed a one-dimensional model of CO2 diffusion in the leaf. When mesophyll thickness of the leaf is changed with the Rubisco content per unit leaf area kept constant, the maximum A occurs at an almost identical mesophyll thickness irrespective of the Rubisco contents per leaf area. On the other hand, with an increase in Rubisco content per leaf area, the mesophyll thickness that realizes a given photosynthetic gain per mesophyll thickness (or per leaf cost) increases. This probably explains the strong relationship between A and mesephyll thickness. In these simulations, an increase in mesophyll thickness simultaneously means an increase in the diffusional resistance in the intercellular spaces (R ias), an increase in the total surface area of chloroplasts facing the intercellular spaces per unit leaf area (S c ), and an increase in construction and maintenance cost of the leaf. Leaves can increase S c and decrease R ias also by decreasing cell size. Leaves with smaller cells are mechanically stronger. However, actual leaves do not have very small cells. This could be because actual leaves exhibiting considerable rates of leaf area expansion, adequate heat capacitance, high efficiency of N and/or P use, etc, are favoured. Relationships between leaf longevity and mesophyll structure are also discussed. Received 20 September 2000/ Accepted in revised form 4 January 2001  相似文献   

4.
Šantrůček  J.  Schreiber  L.  Macková  J.  Vráblová  M.  Květoň  J.  Macek  P.  Neuwirthová  J. 《Photosynthesis research》2019,141(1):33-51

We suggest a new technique for estimating the relative drawdown of CO2 concentration (c) in the intercellular air space (IAS) across hypostomatous leaves (expressed as the ratio cd/cb, where the indexes d and b denote the adaxial and abaxial edges, respectively, of IAS), based on the carbon isotope composition (δ13C) of leaf cuticular membranes (CMs), cuticular waxes (WXs) or epicuticular waxes (EWXs) isolated from opposite leaf sides. The relative drawdown in the intracellular liquid phase (i.e., the ratio cc/cbd, where cc and cbd stand for mean CO2 concentrations in chloroplasts and in the IAS), the fraction of intercellular resistance in the total mesophyll resistance (rIAS/rm), leaf thickness, and leaf mass per area (LMA) were also assessed. We show in a conceptual model that the upper (adaxial) side of a hypostomatous leaf should be enriched in 13C compared to the lower (abaxial) side. CM, WX, and/or EWX isolated from 40 hypostomatous C3 species were 13C depleted relative to bulk leaf tissue by 2.01–2.85‰. The difference in δ13C between the abaxial and adaxial leaf sides (δ13CAB ? 13CAD, Δb–d), ranged from ??2.22 to +?0.71‰ (??0.09 ± 0.54‰, mean ± SD) in CM and from ??7.95 to 0.89‰ (??1.17 ± 1.40‰) in WX. In contrast, two tested amphistomatous species showed no significant Δb–d difference in WX. Δb–d correlated negatively with LMA and leaf thickness of hypostomatous leaves, which indicates that the mesophyll air space imposes a non-negligible resistance to CO2 diffusion. δ13C of EWX and 30-C aldehyde in WX reveal a stronger CO2 drawdown than bulk WX or CM. Mean values of cd/cb and cc/cbd were 0.90 ± 0.12 and 0.66 ± 0.11, respectively, across 14 investigated species in which wax was isolated and analyzed. The diffusion resistance of IAS contributed 20 ± 14% to total mesophyll resistance and reflects species-specific and environmentally-induced differences in leaf functional anatomy.

  相似文献   

5.
Mesophyll conductance (gm) is one of the major determinants of photosynthetic rate, for which it has an impact on crop yield. However, the regulatory mechanisms behind the decline in gm of cotton (Gossypium. spp) by drought are unclear. An upland cotton (Gossypium hirsutum) genotype and a pima cotton (Gossypium barbadense) genotype were used to determine the gas exchange parameters, leaf anatomical structure as well as aquaporin and carbonic anhydrase gene expression under well‐watered and drought treatment conditions. In this study, the decrease of net photosynthetic rate (AN) under drought conditions was related to a decline in gm and in stomatal conductance (gs). gm and gs coordinate with each other to ensure optimum state of CO2 diffusion and achieve the balance of water and CO2 demand in the process of photosynthesis. Meanwhile, mesophyll limitations to photosynthesis are equally important to the stomatal limitations. Considering gm, its decline in cotton leaves under drought was mostly regulated by the chloroplast surface area exposed to leaf intercellular air spaces per leaf area (Sc/S) and might also be regulated by the expression of leaf CARBONIC ANHYDRASE (CA1). Meanwhile, cotton leaves can minimize the decrease in gm under drought by maintaining cell wall thickness (Tcw). Our results indicated that modification of chloroplasts might be a target trait in future attempts to improve cotton drought tolerance.  相似文献   

6.
Changes in net photosynthetic rate on a leaf area basis and anatomical properties during leaf development were studied in an evergreen broad‐leaved tree, Castanopsis sieboldii and an annual herb, Phaseolus vulgaris. In C. sieboldii, surface area of mesophyll cells facing the intercellular air spaces on a leaf area basis (Smes) was already considerable at the time of full leaf area expansion (FLE). However, surface area of chloroplasts facing the intercellular air spaces on a leaf area basis (Sc), and chlorophyll and Rubisco contents on a leaf area basis increased to attain their maximal values 15–40 d after FLE. In contrast, in P. vulgaris, chloroplast number on a leaf area basis, Sc and Smes at 10 d before FLE were two to three times greater than the steady‐state levels attained at around FLE. In C. sieboldii, the internal CO2 transfer conductance (gi) slightly increased for 10 d after FLE but then decreased toward the later stages. Limitation of photosynthesis by gi was only about 10% at FLE, but then increased to about 30% at around 40 d after FLE. The large limitation after FLE by gi was probably due to the decrease in CO2 concentration in the chloroplast caused by the increases in thickness of mesophyll cell walls and in Rubisco content per chloroplast surface area. These results clearly showed that: (1) in C. sieboldii, chloroplast development proceeded more slowly than mesophyll cell expansion and continued well after FLE, whereas in P. vulgaris these processes proceeded synchronously and were completed by FLE; (2) after FLE, photosynthesis in leaves of C. sieboldii was markedly limited by gi. From these results, it is suggested that, in the evergreen broad‐leaved trees, mechanical protection of mesophyll cells has priority over the efficient CO2 transfer and quick construction of the chloroplasts.  相似文献   

7.
The appearance of transverse sections of maize leaves indicates the existence of two airspace systems serving the mesophyll, one connected to the stomata of the upper epidermis and the other to the stomata of the lower surface, with few or no connections between the two. This study tests the hypothesis that the air-space systems of the upper and lower mesophyll are separated by a defined barrier of measurable conductance. A mathematical procedure, based on this hypothesis, is developed for the quantitative separation of the contributions made by the upper and lower halves of the mesophyll to carbon assimilation using gasexchange data. Serial paradermal sections and three-dimensional scanning-electron-microscope images confirmed the hypothesis that there were few connections between the two air-systems. Simultaneous measurements of nitrous-oxide diffusion across the leaf and of transpiration from the two surfaces showed that the internal conductance was about 15% of the maximum observed stomatal conductance. This demonstrates that the poor air-space connections, indicated by microscopy, represent a substantial barrier to gas diffusion. By measuring the CO2 and water-vapour fluxes from each surface independently, the intercellular CO2 concentration (c i) of each internal air-space system was determined and the flux between them calculated. This allowed correction of the apparent CO2 uptake at each surface to derive the true CO2 uptake by the mesophyll cells of the upper and lower halves of the leaf. This approach was used to analyse the contribution of the upper and lower mesophyll to CO2 uptake by the leaf as a whole in response to varying light levels incident on the upper leaf surface. This showed that the upper mesophyll was light-saturated by a photon flux of approx. 1000 mol·m-2·s-1 (i.e. about one-half of full sunlight). The lower mesophyll was not fully saturated by photon fluxes of nearly double full sunlight. At low photon fluxes the c i of the upper mesophyll was significantly less than that of the lower mesophyll, generating a significant upward flux of CO2. At light levels equivalent to full sunlight, and above, c i did not differ significantly between the two air space systems. The physiological importance of the separation of the air-space systems of the upper and lower mesophyll to gas exchange is discussed.Abbreviations and symbols A net leaf CO2 uptake rate - A upper app. and A lower app. net rates of CO2 uptake across the upper and lower surfaces - A upper and A lower derived net rates of CO2 uptake by the upper and lower mesophyll - A upward net flux of CO2 from the lower to upper mesophyll - c a, c a, upper and c a, lower the CO2 concentrations in the air around the leaf above the upper surface and below the lower surface - c N2O the concentration of N2O in the air around the leaf - c i, c i, upper and c i, lower the mesophyll intercellular CO2 concentration of the whole leaf, the upper mesophyll and the lower mesophyll - g i leaf internal conductance to CO2 - g s, g s, lower and g s, upper the stomatal conductance of the whole leaf, the lower surface and the upper surface - g the total conductance across the leaf - Q the photosynthetically active photon flux density  相似文献   

8.
We studied plants of five species with hypostomatous leaves, and six with amphistomatous leaves, to determine the extent to which gaseous diffusion of CO2 among the mesophyll cells limits photosynthetic carbon assimilation. In helox (air with nitrogen replaced by helium), the diffusivities of CO2 and water vapor are 2.3 times higher than in air. For fixed estimated CO2 pressure at the evaporating surfaces of the leaf (pi), assimilation rates in helox ranged up to 27% higher than in air for the hypostomatous leaves, and up to 7% higher in the amphistomatous ones. Thus, intercellular diffusion must be considered as one of the processes limiting photosynthesis, especially for hypostomatous leaves. A corollary is that CO2 pressure should not be treated as uniform through the mesophyll in many leaves. To analyze our helox data, we had to reformulate the usual gas-exchange equation used to estimate CO2 pressure at the evaporating surfaces of the leaf; the new equation is applicable to any gas mixture for which the diffusivities of CO2 and H2O are known. Finally, we describe a diffusion-biochemistry model for CO2 assimilation that demonstrates the plausibility of our experimental results.  相似文献   

9.
Leaves exposed to potassium (K) deficiency usually present decreased mesophyll conductance (gm) and photosynthesis (A). The relative contributions of leaf anatomical traits in determining gm have been quantified; however, anatomical variabilities related to low gm under K starvation remain imperfectly known. A one‐dimensional model was used to quantify anatomical controls of the entire CO2 diffusion pathway resistance within a leaf on two Brassica napus L. cultivars in response to K deficiency. Leaf photosynthesis of both cultivars was significantly decreased under K deficiency in parallel with down‐regulated gm. The mesophyll conductance limitation contributed to more than one‐half of A decline. The decreased internal air space in K‐starved leaves was associated with the increase of gas‐phase resistance. Potassium deficiency reduced liquid‐phase conductance by decreasing the exposed surface area of chloroplasts per unit leaf area (Sc/S), and enlarging the resistance of the cytoplasm that can be interpreted by the increasing distance of chloroplast from cell wall, and between adjacent chloroplasts. Additionally, the discrepancies of A between two cultivars were in part because of gm variations, ascribing to an altered Sc/S. These results emphasize the important role of K on the regulation of gm by enhancing Sc/S and reducing cytoplasm resistance.  相似文献   

10.
In a previous study, important acclimation to water stress was observed in the Ramellet tomato cultivar (TR) from the Balearic Islands, related to an increase in the water‐use efficiency through modifications in both stomatal (gs) and mesophyll conductances (gm). In the present work, the comparison of physiological and morphological traits between TR accessions grown with and without water stress confirmed that variability in the photosynthetic capacity was mostly explained by differences in the diffusion of CO2 through stomata and leaf mesophyll. Maximization of gm under both treatments was mainly achieved through adjustments in the mesophyll thickness and porosity and the surface area of chloroplasts exposed to intercellular airspace (Sc). In addition, the lower gm/Sc ratio for a given porosity in drought‐acclimated plants suggests that the decrease in gm was due to an increased cell wall thickness. Stomatal conductance was also affected by drought‐associated changes in the morphological properties of stomata, in an accession and treatment‐dependent manner. The results confirm the presence of advantageous physiological traits in the response to drought stress in Mediterranean accessions of tomato, and relate them to particular changes in the leaf anatomical properties, suggesting specific adaptive processes operating at the leaf anatomical level.  相似文献   

11.
A critical appraisal of a combined stomatal-photosynthesis model for C3 plants   总被引:13,自引:13,他引:0  
Gas-exchange measurements on Eucalyptus grandis leaves and data extracted from the literature were used to test a semi-empirical model of stomatal conductance for CO2 gSc=go+a1A/(cs-I) (1+Ds/Do)] where A is the assimilation rate; Ds and cs are the humidity deficit and the CO2 concentration at the leaf surface, respectively; g0 is the conductance as A → 0 when leaf irradiance → 0; and D0 and a1 are empirical coefficients. This model is a modified version of gsc=a1A hs/cs first proposed by Ball, Woodrow & Berry (1987, in Progress in Photosynthesis Research, Martinus Mijhoff, Publ., pp. 221–224), in which hs is relative humidity. Inclusion of the CO2 compensation point, τ, improved the behaviour of the model at low values of cs, while a hyperbolic function of Ds for humidity response correctly accounted for the observed hyperbolic and linear variation of gsc and ci/cs as a function of Ds, where Ci is the intercellular CO2 concentration. In contrast, use of relative humidity as the humidity variable led to predictions of a linear decrease in gsc and a hyperbolic variation in ci/cs as a function of Ds, contrary to data from E. grandis leaves. The revised model also successfully described the response of stomata to variations in A, Ds and cs for published responses of the leaves of several other species. Coupling of the revised stomatal model with a biochemical model for photosynthesis of C3 plants synthesizes many of the observed responses of leaves to light, humidity deficit, leaf temperature and CO2 concentration. Best results are obtained for well-watered plants.  相似文献   

12.
To establish the capacity of the leaf mesophyll plasmalemma of Phaseolus vulgaris L. to supply ascorbate (ASC) into the cell wall by simple diffusion, a method for calculating plasmalemma diffusional conductivity to ascorbic acid (AA) in intact leaves was evaluated. The core of the approach is that in the presence of a sink for ascorbate in the cell wall, cell wall total ascorbic acid concentration [TAA]cw (=[ASC]cw+[AA]cw) reaches zero at some positive whole‐leaf total ascorbic acid concentration [TAA]l. It is shown that [TAA]l at [TAA]cw=0 is proportional to the sink for ASC in the cell wall and the reciprocal of plasmalemma conductivity. The predicted proportional relationship between [TAA]cw and [TAA]l was confirmed by decreasing TAA levels in leaves through predarkening. Furthermore, increasing the sink intensity for ASC in the cell wall by the acute exposure of leaves to 450 nmol ozone mol?1 during re‐illumination, [TAA]cw reached zero at 2.7‐fold higher [TAA]l than without ozone, and the slope of the relationship increased twofold. Plasmalemma diffusional conductivities to AA of 2.9×10?6 and 1.8×10?6 m s?1, needed to maintain [TAA]cw at the observed level, were calculated from the increase in [TAA]l at [TAA]cw=0 and from the two different estimates of the sink for ASC. A value of 1.3×10?6 m s?1 was calculated on the basis of the oil‐water distribution coefficient for TAA. It is concluded that the demand for ASC in the mesophyll cell wall of the investigated leaves could be met by simple diffusion of AA through the plasmalemma. From the measured increase in the slope of the relationship [TAA]cw versus [TAA]l, an increase in the cell wall pH of 0.3 units was estimated under the influence of ozone.  相似文献   

13.
A detailed quantitative analysis of the three-dimensional organization of the mesophyll was performed, and mesophyll diffusion resistance to CO2 in the leaves of Chamaerion angustifolium formed under different irradiance was calculated using an original method of stereometric cellular packing. For each type of leaves (sun and shade), we determined structural components of gas exchange: the volume of mesophyll per unit leaf area (V mes), the volume of the intercellular space in the mesophyll (V is), the area of the total mesophyll surface (S), the area of the free mesophyll surface facing the intercellular spaces (S mes), and the ratios of the total and the free mesophyll surfaces to its volume (S/V and S mes/V). As compared with sun leaves, in the shade leaves of Ch. angustifolium, S and V mes decreased twofold, tissue density was reduced twofold, and the share of the intercellular space in the mesophyll rose from 49 to 72%. In shade, the diffusion resistance of the mesophyll increased by 1.8 times because of changes in the leaf structure. At the same time, the ratio S mes/V was found to increase by 1.4 times, which facilitated the diffusion of CO2. In the shade leaves of Ch. angustifolium, the diffusion resistance of the intercellular air spaces was reduced twofold as a result of an increase in their share in the leaf mesophyll and simplification of their geometry. Thus, the method of three-dimensional reconstruction of sun and shade leaves of Ch. angustifolium showed a comprehensive rearrangement of the mesophyll spatial organization in shade and revealed the structural mechanisms of changes in the resistance to CO2 diffusion within the leaf.  相似文献   

14.
Leaf age-dependent changes in structure, nitrogen content, internal mesophyll diffusion conductance (gm), the capacity for photosynthetic electron transport (Jmax) and the maximum carboxylase activity of Rubisco (Vcmax) were investigated in mature non-senescent leaves of Laurus nobilis L., Olea europea L. and Quercus ilex L. to test the hypothesis that the relative significance of biochemical and diffusion limitations of photosynthesis changes with leaf age. The leaf life-span was up to 3 years in L. nobilis and O. europea and 6 years in Q. ilex. Increases in leaf age resulted in enhanced leaf dry mass per unit area (MA), larger leaf dry to fresh mass ratio, and lower nitrogen contents per dry mass (NM) in all species, and lower nitrogen contents per area (NA) in L. nobilis and Q. ilex. Older leaves had lower gm, Jmax and Vcmax. Due to the age-dependent increase in MA, mass-based gm, Jmax and Vcmax declined more strongly (7- to 10-fold) with age than area-based (5- to 7-fold) characteristics. Diffusion conductance was positively associated with foliage photosynthetic potentials. However, this correlation was curvilinear, leading to lower ratio of chloroplastic to internal CO2 concentration (Cc/Ci) and larger drawdown of CO2 from leaf internal air space to chloroplasts (ΔC) in older leaves with lower gm. Overall the age-dependent decreases in photosynthetic potentials were associated with decreases in NM and in the fraction of N in photosynthetic proteins, whereas decreases in gm were associated with increases in MA and the fraction of cell walls. These age-dependent modifications altered the functional scaling of foliage photosynthetic potentials with MA, NM, and NA. The species primarily differed in the rate of age-dependent modifications in foliage structural and functional characteristics, but also in the degree of age-dependent changes in various variables. Stomatal openness was weakly associated with leaf age, but due to species differences in stomatal openness, the distribution of total diffusion limitation between stomata and mesophyll varied among species. These data collectively demonstrate that in Mediterranean evergreens, structural limitations of photosynthesis strongly interact with biochemical limitations. Age-dependent changes in gm and photosynthetic capacities do not occur in a co-ordinated manner in these species such that mesophyll diffusion constraints curb photosynthesis more in older than in younger leaves.  相似文献   

15.
Some evidence indicates that photosynthetic rate (A) and stomatal conductance (g) of leaves are correlated across diverse environments. The correlation between A and g has led to the postulation of a “messenger” from the mesophyll that directs stomatal behavior. Because A is a function of intercellular CO2 concentration (ci), which is in turn a function of g, such a correlation may be partially mediated by ci if g is to some degree an independent variable. Among individual sunlit leaves in a cotton (Gossypium hirsutum L.) canopy in the field, A was significantly correlated with g (r2 = 0.41, n = 63). The relative photosynthetic capacity of each leaf was calculated as a measure of mesophyll properties independent of ci. This approach revealed that, in the absence of ci effects, mesophyll photosynthetic capacity was unrelated to g (r2 = 0.06). When plants were grown in an atmosphere enriched to about 650 microliters per liter of CO2, however, photosynthetic capacity remained strongly correlated with g even though the procedure discounted any effect of variable ci. This “residual” correlation implies the existence of a messenger in CO2-enriched plants. Enriched CO2 also greatly increased stomatal response to abscisic acid (ABA) injected into intact leaves. The data provide no evidence for a messenger to coordinate g with A at ambient levels of CO2. In a CO2-enriched atmosphere, though, ABA may function as such a messenger because the sensitivity of the system to ABA is enhanced.  相似文献   

16.
Anatomy and some physiological characteristics of the leaves in Polygonum cuspidatum Sieb. et Zucc., a dioecious clonal herb, were compared between two populations, one from a lowland in Shizuoka City (10 m above sea level), and another from a highland on Mt. Fuji (2500 m above sea level). Leaf mass per area (LMA) of the highland plants was about twice that of the lowland plants. The greater leaf thickness, thicker mesophyll cell walls and higher mesophyll cell density in the highland leaves contributed to the larger LMA. Although mesophyll area exposed to intercellular airspaces was greater in the highland leaves than in the lowland leaves by 30%, the surface area of chloroplasts facing intercellular airspaces was similar between these leaves. CO2 transfer conductance inside the leaf (gi) of the highland leaves (0·75 μmol m?2 s?1 Pa?1) is the lowest recorded for herbaceous plants and was only 40% of that in the lowland leaves. On the other hand, the difference in stomatal conductance was small. δ13C values in the leaf dry matter were greater in the highland leaves by 4‰. These data and the estimation of CO2 partial pressures in the intercellular air spaces and in the chloroplast suggested that the greater dry matter δ13C in the highland leaves, indicative of lower long‐term ratio of the chloroplast stroma to the ambient CO2 partial pressures, would be mainly attributed to their lower gi.  相似文献   

17.
Relationship of leaf anatomy with photosynthetic acclimation of Valeriana jatamansi was studied under full irradiance [FI, 1 600 mol(PPFD) m–2 s–1] and net-shade [NS, 650 mol(PPFD) m–2 s–1]. FI plants had thicker leaves with higher respiration rate (R D), nitrogen content per unit leaf area, chlorophyll a/b ratio, high leaf mass per leaf area unit (LMA), and surface area of mesophyll cell (S mes) and chloroplasts (S c) facing intercellular space than NS plants. The difference between leaf thickness of FI and NS leaves was about 28 % but difference in photon-saturated rate of photosynthesis per unit leaf area (P Nmax) was 50 %. This indicates that P Nmax can increase to a larger extent than the leaf thickness with increasing irradiance in V. jatamansi. Anatomical studies showed that the mesophyll cells of FI plants had no open spaces along the mesophyll cell walls (higher S c), but in NS plants wide open spaces along the mesophyll cell wall (lower S c) were found. Positive correlation between S c and P Nmax explained the higher P Nmax in FI plants. Increase in mesophyll thickness increased the availability of space along the mesophyll cell wall for chloroplasts (increased S c) and hence P Nmax was higher in FI plants. Thus this Himalayan species can acclimate to full sunlight by altering leaf anatomy and therefore may be cultivated in open fields.  相似文献   

18.
Salinity significantly limits leaf photosynthesis but the factors causing the limitation in salt‐stressed leaves remain unclear. In the present work, photosynthetic and biochemical traits were investigated in four rice genotypes under two NaCl concentration (0 and 150 mM) to assess the stomatal, mesophyll and biochemical contributions to reduced photosynthetic rate (A) in salt‐stressed leaves. Our results indicated that salinity led to a decrease in A, leaf osmotic potential, electron transport rate and CO2 concentrations in the chloroplasts (Cc) of rice leaves. Decreased A in salt‐stressed leaves was mainly attributable to low Cc, which was determined by stomatal and mesophyll conductance. The increased stomatal limitation was mainly related to the low leaf osmotic potential caused by soil salinity. However, the increased mesophyll limitation in salt‐stressed leaves was related to both osmotic stress and ion stress. These findings highlight the importance of considering mesophyll conductance when developing salinity‐tolerant rice cultivars.  相似文献   

19.
We investigated the anatomical and physiological characteristics of stenophyllous leaves of a rheophyte, Farfugium japonicum var. luchuence, and sun and shade leaves of a non-rheophyte, F. japonicum, comparing three different populations from coastal, forest floor, and riparian habitats. Light adaptation resulted in smaller leaves, and riparian adaptation resulted in narrower leaves (stenophylly). The light-saturated rate of photosynthesis (P max) per unit leaf area corresponded to the light availability of the habitat. Irrespective of leaf size, the P max per unit leaf mass was similar for sun and shade leaves. However, the P max per mass of stenophyllous leaves was significantly lower than that of sun and shade leaves. This was because the number and size of mesophyll cells were greater than that required for intercellular CO2 diffusion, which resulted in a larger leaf mass per unit leaf area. Higher cell density increases contact between mesophyll cells and enhances leaf toughness. Stenophyllous leaves of the rheophyte are frequently exposed to a strong water flow when the water level rises, suggesting a mechanical constraint caused by physical stress.  相似文献   

20.
Abstract Using an open-system leaf chamber, gas exchange measurements on attached leaves of 3-4-year-old Golden Delicious apple trees, made through two seasons, provided data from which the parameters of a leaf photosynthesis model could be derived. The equation is: where C1 is internal CO2 concentration and Qp is the incident quantum flux. There was considerable leaf to leaf variation in the values of the parameters but no clear seasonal trends were established. The initial slope (a) had an average value of about 2.5 × 10?3 mg μmol?1? (i.e. quantum yield ~ 0.057); the mesophyll conductance (gm) was about 3.5 mm s?1 in extension leaves of trees carrying fruit and 2.5 mm s?1 in extension leaves of defruited trees. Differences between the values of gm for spur leaves with and without subtending fruits were not significant; 2.5 mm s?1 may be used. Dark respiration (Rd, mg m?2 s?1) increased exponentially with temperature (T°C); Rd~ 0.006 exp (0.09 T). At saturating photon flux density Pn was linearly related to Ci, up to Ci~ 250 mg m?3. Optimum temperatures for Pn were slightly different in the two years and were in the range 16-26°C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号